离心泵特性曲线实验报告(学习类别)
离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告离心泵特性曲线的测定实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产、农业灌溉和城市供水等领域。
了解离心泵的特性曲线对于正确选择和使用离心泵至关重要。
本实验旨在通过测定离心泵的特性曲线,分析其性能参数,为离心泵的应用提供参考。
一、实验目的1. 了解离心泵的基本原理和工作特性;2. 掌握离心泵特性曲线的测定方法;3. 分析离心泵的性能参数,如扬程、流量和效率等。
二、实验原理离心泵是利用离心力将液体从低压区域输送到高压区域的装置。
其工作原理是通过转子的旋转产生离心力,使液体在离心力的作用下产生压力,从而实现液体的输送。
离心泵的特性曲线是描述离心泵在不同工况下流量、扬程和效率之间关系的曲线。
三、实验仪器和材料1. 离心泵实验装置;2. 流量计;3. 压力计;4. 温度计。
四、实验步骤1. 连接实验装置:将离心泵与流量计、压力计和温度计等仪器连接好,确保密封良好;2. 开始实验:首先调整离心泵的转速,使其达到设定值。
然后逐渐调整流量计的开度,记录不同流量下的压力和温度数据;3. 测定数据:根据实验装置的读数,得到不同流量下的扬程、压力和温度数据;4. 绘制特性曲线:根据测得的数据,绘制离心泵的特性曲线,包括流量-扬程曲线和效率-流量曲线;5. 分析结果:根据特性曲线,计算出离心泵的最大流量、最大扬程和最佳效率点。
五、实验结果和分析根据实验数据绘制的特性曲线显示了离心泵在不同工况下的性能表现。
根据流量-扬程曲线,我们可以得到离心泵的最大流量和最大扬程。
最大流量是指离心泵能够输送的最大液体流量,而最大扬程是指离心泵能够提供的最大扬程高度。
根据效率-流量曲线,我们可以得到离心泵的最佳效率点。
最佳效率点是指离心泵在该点下的效率最高,能够以最小的能量损失输送液体。
通过分析特性曲线,可以选择合适的工况来提高离心泵的效率和使用寿命。
六、结论通过实验测定离心泵的特性曲线,我们可以得到离心泵在不同工况下的性能参数。
离心泵特性曲线实验报告

离心泵特性曲线实验报告一、目的:掌握离心泵特性曲线(H —Q 曲线,N —Q 曲线,η—Q 曲线)的测定方法。
二、设备简图:三、原理:1.流量测定:流量采用体积法,用电子流量计进行测量。
2.扬程:扬程采用离心泵出口压力表及进口真空表进行测量。
gP g P Z H VM ρρ++∆= 式中:H ——离心泵扬程m ;Z ∆——离心泵出口压力表中心到进口真空表测点之间的高差m ; V M P P +——离心泵出口压力表与真空压力表读值(MPa )。
3.功率:功率采用马达天平法进行测量。
将电机转子固定于轴承上,使电机定子可自由转动,当定子线圈通入电流时,定子与转子之间便产生一个感应力矩M ,该力矩使定子和转子按不同方向各自旋转。
若在定子上安装一套测力矩装置,使之对定子作用一反向力矩M ,当定子不动时,二力矩相等。
因此,只要测读测力表读数及力臂的长度,便可求出感应力矩M ,该力矩与转子旋转角度的乘积即为电机的输出功率。
转子旋转的角速度ω可通过测速表测量求得。
ωM N = FL M = 602nπω= 式中: N ——电机的输出功率w ;M ——电机与转子之间的感应力矩Nm ; ω——转子的旋转角速度l/S ; F ——力传感器读数; L ——力臂的长度m ; n ——电机的转速。
4.效率:效率等于离心泵的有效功率与电机的输出功率或轴功率之比,即: %100⨯=NgQHρη式中: η——离心泵的效率; ρ——水的密度 1000kg/m 3。
四、实验步骤及注意事项:1、实验前检查试验台的准备状况,确保水泵及电机连接螺栓紧固。
用手转动水泵联轴器,确认转动正常。
2、关闭水泵压水管阀门,打开入水管阀门及计量水箱的放水阀门。
3、启动水泵,将压水管阀门开到最大,为便于测量扬程,调节吸水管阀门至真空表读值为0.03MPa ,在以后的实验过程中,吸水管阀门开度固定不动。
4、逐次关小阀门,同时实测P M 、P V 、Q 、F 、n 各值并记录。
离心泵特性测定实验报告

离心泵特性测定实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。
2、掌握离心泵特性曲线的测定方法。
3、熟悉离心泵在不同工况下的运行特性,为实际应用提供参考。
二、实验原理离心泵主要依靠叶轮的高速旋转产生离心力,将液体甩出叶轮并进入压出室,从而实现液体的输送。
其性能通常用流量 Q、扬程 H、功率 N 和效率η 等参数来描述。
1、流量 Q 的测定通过安装在管路上的流量计来测量离心泵的流量。
2、扬程 H 的测定在离心泵进出口处分别安装压力表,根据压力差计算扬程:\H =(P_2 P_1) /(ρg) +(v_2^2 v_1^2) /(2g)\其中,P1、P2 分别为离心泵进出口处的压力,ρ 为液体密度,g 为重力加速度,v1、v2 分别为离心泵进出口处的流速。
3、功率 N 的测定由电机输入功率乘以电机效率和传动效率得到离心泵的轴功率:\N = N_e \times η_m \times η_v\其中,Ne 为电机输入功率,ηm 为电机效率,ηv 为传动效率。
4、效率η 的计算\η =(ρgQH) / N\三、实验装置1、离心泵实验中采用的是型号为_____的离心泵。
2、管路系统包括吸水管路和压出管路,管路上安装有阀门、流量计、压力表等测量仪表。
3、电机用于驱动离心泵运转。
4、测量仪表流量计采用_____型流量计,精度为_____;压力表采用_____型压力表,量程为_____。
四、实验步骤1、实验前准备(1)检查实验装置的连接是否牢固,各仪表是否正常工作。
(2)向离心泵内灌满液体,排除泵内的气体。
2、启动离心泵(1)接通电源,启动电机,缓慢打开出口阀门,调节流量至一定值。
(2)待离心泵运行稳定后,记录此时的流量、进出口压力、电机功率等数据。
3、改变工况(1)逐步调节出口阀门,改变流量,在不同流量下重复上述测量。
(2)记录多组数据,流量的调节范围应涵盖离心泵的正常工作范围。
4、实验结束(1)关闭出口阀门,切断电源,停止离心泵运行。
离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告离心泵特性曲线测定一、实验目的:1、了解离心泵的构造与特性,掌握离心泵的操作方法;2、测定并绘制离心泵在恒定转速下的特性曲线。
3、学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作。
二、实验原理:离心泵的主要性能参数有流量Q、压头H、效率和轴功率N,在一定转速下,离心泵的送液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。
而且,当期流量变化时,泵的压头、功率、及效率也随之变化。
因此要正确选择和使用离心泵,就必须掌握流量变化时,其压头、功率、和效率的变化规律、即查明离心泵的特性曲线。
用实验方法测出某离心泵在一定转速下的Q、H、n、N,并做出H-Q、n-Q、N-Q曲线,称为该离心泵的特性曲线。
扬程(压头)H(m)分别取离心泵进口真空表和出口压力表处为1、2截面,列柏努利方程得:2u2?u12p2?p1He?h0hf2g?g因两截面间的管长很短,通常可忽略阻力损失项Hf,流速的平方差也很小故可忽略,则: H?p2?p1?H0 ?g式中ρ:流体密度,kg/m3 ;p1、p2:分别为泵进、出口的压强,Pa;u1、u2:分别为泵进、出口的流速,m/s;z1、z2:分别为真空表、压力表的安装高度,m。
由上式可知,由真空表和压力表上的读数及两表的安装高度差,就可算出泵的扬程。
泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N测定时,流量Q可用涡轮流量计或孔板流量计来计量。
轴功率N 可用马达-天平式测功器或功率来表测量。
离心泵的性能与其转速有关。
其特性曲线是某一恒定的给定转速(一般nl=2900PRM)下的性能曲线。
因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。
换算公式如下:1当?nn?20%时,Q1?QQH?gnnn1He1?He(1)2N1?N(1)3?1?1e1n n n2 N1三、装置与流程:水由水箱1阀2、离心泵4涡轮流量计9回水箱1四、操作步骤及注意事项:(一)实验步骤1.实验准备(1)实验用水准备:清洗水箱,并加装实验用水;(2)离心泵排气:通过灌泵漏斗给离心泵灌水,排除泵内气体2. 实验开始(1)仪表自检情况,打开泵进口阀,关闭出口阀,试开离心泵,检查电机运转时声音是否正常,离心泵运转的方向是否正确。
离心泵特性曲线实验报告

离心泵特性曲线实验报告一、实验目的。
离心泵是一种常用的流体输送设备,其性能参数对于流体输送系统的设计和运行具有重要的影响。
本次实验旨在通过对离心泵的特性曲线进行测定,了解离心泵的性能特点及其在不同工况下的工作状态,为离心泵的选型和运行提供依据。
二、实验原理。
离心泵是利用离心力将流体加速并输送至出口的一种动能泵,其主要由叶轮、泵壳、轴承和密封等部件组成。
在离心泵运行时,叶轮受到驱动装置的转动,使流体产生离心力,从而加速流体并将其输送至出口。
离心泵的性能曲线通常包括流量、扬程、效率等参数,通过对这些参数的测定,可以全面了解离心泵在不同工况下的工作状态。
三、实验仪器与设备。
本次实验所使用的仪器设备包括离心泵、流量计、压力表、转速表等。
四、实验步骤。
1. 将离心泵与流量计、压力表、转速表等设备连接好,并按照实验要求进行调试和校准。
2. 开始进行实验测量,依次改变离心泵的转速,记录相应的流量、扬程和效率等参数。
3. 根据实验数据绘制出离心泵的特性曲线,并进行分析和讨论。
五、实验结果与分析。
通过实验测量和数据处理,得到了离心泵在不同转速下的特性曲线。
从曲线图中可以清晰地看出,随着转速的增加,离心泵的流量、扬程和效率等参数呈现出不同的变化规律。
具体分析如下:1. 流量与转速的关系,随着转速的增加,离心泵的流量呈现出逐渐增大的趋势。
当转速达到一定数值后,流量增长速度逐渐减缓。
2. 扬程与转速的关系,随着转速的增加,离心泵的扬程也呈现出逐渐增大的趋势。
但与流量不同的是,扬程的增长速度并不会随着转速的增加而减缓。
3. 效率与转速的关系,随着转速的增加,离心泵的效率呈现出先增大后减小的趋势。
在一定转速范围内,效率会达到最大值,超过这一范围后效率会逐渐下降。
六、实验结论。
通过本次实验,我们了解了离心泵特性曲线的测定方法,以及离心泵在不同工况下的性能特点。
实验结果表明,离心泵的流量、扬程和效率等参数与转速之间存在一定的关系,通过合理选择转速可以实现最佳的工作状态。
离心泵特性曲线测定实验报告

P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。
实验报告三:离心泵的特性曲线

实验报告三:离心泵的特性曲线离心泵的特性曲线一、实验目的1、了解离心泵结构与特性,学会离心泵的操作。
2、掌握离心泵特性曲线测定方法。
二、实验原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程h、轴功率n及效率η与流量v之间的关系曲线,它是流体在泵内流动规律的外部表现形式。
由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。
1.水头H的测量和计算在泵进、出口取截面列柏努利方程:2u2?u12p2?p1h??z2?z1??G2gp1,P2:泵进口和出口处的压力,N/mρ:液体密度kg/mu1,U2:泵进口和出口的流量分别为m/SG:重力加速度m/S当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:二232.轴功率n的测量和计算h?p2?p1?gn=0.94ww-电机输出功率;w可以看出,要测量泵的轴功率,只需测量电机的输出功率,并将其乘以功率转换中的放大倍数。
3、效率η的计算泵效率η是泵的有效功率ne与轴功率n的比值。
有效功率ne是单位时间内流体从泵获得的功,轴功率n是单位时间内泵从电机获得的功。
两者之间的差异反映了水力损失、体积损失和机械损失的大小。
泵的有效功率ne可用下式计算:ne=hvρg故η=ne/n=hvρg/n4、转速改变时的换算泵的特性曲线是规定速度下的数据,也就是说,特性曲线上所有试验点的速度相同。
然而,事实上,当感应电动机的转矩发生变化时,其速度也会发生变化。
这样,随着流量的变化,多个实验点的速度会有所不同。
因此,在绘制特性曲线之前,必须将测量数据转换为平均转速下的数据。
转换关系如下:三、实验装置流程离心泵性能特性曲线测量系统装置过程控制流程图和离心泵性能特性曲线测量实验仪表控制柜面板图如图所示:四、实验步骤及注意事项1.关闭入口阀和管道阀。
2、打开总开关,打开仪表开关通电,把离心泵电源转换到“直接”位置。
停止按钮灯亮。
离心泵特性实验报告

离心泵特性测定实验报告一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用;2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。
二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ (1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
2.轴功率N 的测量与计算k N N ⨯=电 (3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。
即:电N N 95.0= (4)3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理实验报告
实验名称:离心泵特性曲线实验报告姓名:张克川
专业:化学工程与工艺(石油炼制)班级:化工11203
学号:201202681
离心泵特性曲线实验报告
一、实验目的
1.了解离心泵的结构与特征,熟悉离心泵的使用。
2.测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作范围。
3.熟悉孔板流量计的构造与性能以及安装方法。
变化的规律。
4.测量孔板流量计的孔流系数C岁雷诺数R
e
5.测量管路特性曲线。
二、基本原理
离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
2.1扬程H的测定与计算
取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:z1+++H=z2+++ (1-1) 由于两截面间的管子较短,通常可忽略阻力项,速度平方差也很小,故也可忽略,则有
H=(z1-z2)+=H1+H2(表值)+H3 (1-2)
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
2.2轴功率N的测量与计算
N=N电k(w) (1-3) 其中,N电为电功率表显示值,k代表电机传动效率,可取0.90
2.3效率η的计算
泵的效率η是泵的有效功率Ne与轴功率N的比值。
有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne可用下式计算:。