牛顿法
牛顿(Newton)法

(2) 取初值 x 0 ∈ [ a , b ] ,使 f ( x 0 ) f " ( x 0 ) > 0
f " (ξ n ) (α − xn )2 , 故 α = xn+1 − 2 f ' ( xn ) xn+1 − α f "(ξn ) f "(α ) > 0(二阶收敛 )若 f " (α ) ≠ 0 → 2 = 2 f '( xn ) 2 f '(α ) = 0(大于二阶收敛 )若 f " (α ) = 0 xn − α
所以,此时Newton迭代法至少是二阶收敛的。 所以,此时Newton迭代法至少是二阶收敛的。 Newton迭代法至少是二阶收敛的
牛顿下山法 下山法——牛顿法的局部微调 牛顿法的局部微调 二. 牛顿下山法 牛顿法的
原理: 减小, 原理:若由 xk 得到的 xk+1 不能使 | f | 减小,则在 xk 和 xk+1 之间找一个更好的点 x k + 1 ,使得 f ( xk+1 ) < f ( xk ) 。 xk xk+1
]有单根α ] 设 f ( x ) = 0 在[a,b]有单根α,且 f ( x ) 在[a,b]上有 直到二阶的连续导数。 直到二阶的连续导数。
Newton迭 则 求 f ( x ) = 0的 单 根 α 的 Newton 迭 代 法 如 果 收 敛 , 其收敛至少是二阶的。
证明: 由定理2.3.1的证明有: 证明: 由定理2
牛顿法拟牛顿法

牛顿法拟牛顿法牛顿法是一种求解非线性方程的方法,其原理是在迭代中使用方程的导数来近似方程的根。
虽然牛顿法非常有效,但它往往需要非常精准的初始猜测才能保证收敛性。
另一种类似于牛顿法的方法是拟牛顿法,它可以通过逐步调整矩阵B来近似牛顿法的矩阵Hessian。
本文将介绍牛顿法和拟牛顿法的原理和应用。
一、牛顿法假设有一个n维非线性方程系统f(x)=0,其中x是一个n维向量。
牛顿法中的每个迭代都是通过以下公式来更新当前估计xk的:xk+1=xk-Hk^(-1)fk其中Hk是f(x)的Hessian矩阵在xk处的值,假设Hk是可逆的。
牛顿法的优点是它快速收敛,并且可以通过适当选择初始估计来实现收敛。
另一个好处是它可以直接用于求解大型系统,因为它只涉及二次导数的计算。
然而,牛顿法的缺点是它需要计算Hessian矩阵,这通常是一个费时且复杂的任务。
另一个问题是当Hessian矩阵的条件数(即最大特征值与最小特征值之比)很大时,牛顿法的收敛可能会变得很慢。
二、拟牛顿法拟牛顿法的思想是利用一个矩阵Bk来代替牛顿法中的Hk矩阵。
Bk是一个正定对称的矩阵,其初值通常为单位矩阵In。
在每个迭代中,Bk被更新为一个近似的Hessian逆矩阵。
最常用的拟牛顿法算法之一是BFGS算法,其更新规则如下:Bk+1=Bk+(yk^Tyk)/(yk^Ts)+(BkSkS^TBk)/(sk^TBksk)其中sk=xk+1-xk,yk=g(xk+1)-g(xk),g表示f的梯度,^T表示矩阵转置。
该公式是基于以下观察得出的:Bk+1应该满足以下性质:Bk+1是正定对称的。
Bk+1应该近似于Hk+1的逆,其应该满足以下方程:Bk+1sk=yk另外,BFGS算法的收敛速度也相对比牛顿法要慢,因为BFGS算法需要逐步修正矩阵Bk,直到其逼近Hessian矩阵的逆。
三、应用牛顿法和拟牛顿法在许多实际问题中应用广泛,特别是在数学、物理、金融和工程领域。
牛顿法求极值

牛顿法求极值牛顿法是解决多元函数最值问题的有效算法,它是求解一元函数极值时有效的梯度下降法的推广。
它与梯度下降法有着异曲同工之处,即均以梯度为主要信息,求解最值问题。
在梯度下降法中,梯度只是函数值的一阶导数,而牛顿法则以函数的二阶导数的信息来求解最值问题。
一、牛顿法求多元函数极值牛顿法求多元函数极值,即多元函数极大值或极小值时,首先用泰勒展开式将这个多元函数表示成一个近似于曲面的近似曲面,再根据泰勒展开式,应用牛顿迭代方法求多元函数极值问题。
它的基本思想是,根据当前点(x1, x2, ..., xn)处的函数值及梯度向量,把这个多元函数变换成一个一元函数,然后采用一元函数求极值的常用方法,一步步迭代求得极值点。
二、牛顿法的基本步骤1、选择一个初始点:(x1,x2,...,xn)2、计算该点的梯度:g(x1,x2,...,xn)3、计算该点的海森矩阵组成的对角阵:H(x1,x2,...,xn)4、计算下一个迭代点:H^-1 * g5、重复步骤2和步骤3,直到||g(x1,x2,...,xn)||停止这里,ε一个正小数,用于控制牛顿法的精度。
三、牛顿法的优势1、牛顿法比梯度下降法更容易收敛:由于牛顿法使用了更多的信息,牛顿法比梯度下降法更容易收敛,而梯度下降法需要经过多次迭代才能收敛。
2、牛顿法速度更快:牛顿法在较大的规模上比梯度下降法更有优势,因为它只需要求解一次海森矩阵,而梯度下降法在每次迭代中都要求解梯度,这影响了它的迭代效率。
3、牛顿法能够更好地求解初值法失效时的最优解:由于牛顿法使用的是更多的信息,它能够更好地求解多元函数的极值,而在梯度下降法中,如果初值法失效,不能收敛,就会得到错误的最优解。
四、牛顿法的不足1、牛顿法需要求解多元函数的二阶导数:牛顿法需要求解多元函数的对称海森矩阵,这需要计算多元函数的二阶导数,这是牛顿法的缺点,而梯度下降法只需要计算函数的一阶导数,这在实际中比较容易。
牛顿法原理

牛顿法原理
牛顿法是一种可以将非线性收敛到最小值的迭代法,是以传统意义上的函数最小值求解和极值求解具有重要意义的数值解法之一。
牛顿法(Newton's Method)或称牛顿迭代法,由英国数学家牛顿提出。
它是一种以逐步逼近的方式来求解极值,也就是最优求解法。
它可以帮助求解数学中连续函数极值及根的值,是近代数值分析的重要组成部分,也是当今最重要的最优方法之一。
牛顿法的基本思想是,如果一个连续函数的图像在某一点处有极值,那么该点处函数的导数为零,它即为函数的极值点。
根据这一思想,牛顿法寻找极值点,即就是不断从起点开始,计算梯度并根据梯度计算新的点,然后继续重复上面的步骤,直到收敛为止。
牛顿法的具体步骤有:
(1)确定变量的初始值,使用方程组求解;
(2)计算变量的一阶偏导数;
(3)根据一阶偏导数的函数值更新变量的值;
(4)用新值计算梯度,若精度满足要求,则可结束;若未满足要求,则重复步骤2和3。
在求解函数极值时,牛顿法优于迭代法。
牛顿法不仅使函数值逐渐收敛到极值,而且保持精度高。
其收敛速度快,收敛精度高,且稳定性好,而迭代法则收敛缓慢,而且收敛精度也不高。
总之,牛顿法是通过不断迭代计算求取函数极值的一种简便有效的求解方法,利用它求解特定类型函数的极值及其根可以弥补非线性方程其他求解方法的盲点,大大的提高了求解的效率。
牛顿法

牛顿法牛顿法(英语:Newton's method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。
方法使用函数的泰勒级数的前面几项来寻找方程的根。
起源:牛顿法最初由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿去世后的1736年公开发表)中提出。
约瑟夫·鲍易也曾于1690年在Analysis Aequationum中提出此方法。
原理:二阶逼近牛顿法对局部凸函数找到极小值,对局部凹函数找到极大值,对局部不凸不凹函数可能找到鞍点牛顿法要求估计二阶导数。
牛顿法据称比直接计算要快了4 倍。
其中的两次迭代(第二步迭代被注释掉了)就是用的牛顿法来求解方程,也就是的根。
牛顿法的思想其实很简单,给定一个初始点,使用在该点处的切线来近似函数,然后寻找切线的根作为一次迭代。
比如对于这个例子,令,给定初始点,在该点处的导数是,由此可以得到该处的切线为,求解得到正是代码中的迭代。
当然代码的重点其实不在这里,而在0x5f3759df这个奇怪的magic number,用于得到一个好的初始点。
这个神奇的数字到底是谁发现的,根据wikipedia 上的说法似乎至今还没有定论。
xkcd 还为此画了一条漫画,讽刺说每次我们惊奇地发现工业界里不知道哪个无名人士写出了0x5f3759df之类的神奇数字,背后都有成千上万的其他无名人士我们无从知晓,说不定他们中的某一个人已经解决了P=NP 的问题,但是那人却还在调某个自动打蛋器的代码所以我们至今仍无知晓。
:D回到我们今天的话题,从这段代码中我们可以看到两点:牛顿法收敛非常快,对于精度要求不是特别高的情况,比如上面的图形学相关的计算中,甚至只用了一次计算迭代。
另一方面,初始值的选取非常重要,我们接下去将会看到,初始值选得不好有可能会直接导致算法不收敛。
牛顿法

牛顿迭代法编辑同义词牛顿法一般指牛顿迭代法牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
中文名牛顿迭代法外文名Newton's method别名牛顿-拉夫逊(拉弗森)方法提出时间17世纪目录1 产生背景2 牛顿迭代公式3 其他迭代算法▪欧几里德算法▪斐波那契数列4 C语言代码5 C++代码6 matlab代码▪定义函数▪主程序7 Python代码8 Java代码9 JavaScript代码10 Fortran代码产生背景编辑多数方程不存在求根公式,因此求精确根非常困难,甚至不可解,从而寻找方程的近似根就显得特别重要。
方法使用函数的泰勒级数的前面几项来寻找方程的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。
另外该方法广泛用于计算机编程中。
牛顿迭代公式编辑设是的根,选取作为的初始近似值,过点做曲线的切线,,则与轴交点的横坐标,称为的一次近似值。
过点做曲线的切线,并求该切线与x轴交点的横坐标,称为r的二次近似值。
重复以上过程,得的近似值序列,其中,称为的次近似值,上式称为牛顿迭代公式。
用牛顿迭代法解非线性方程,是把非线性方程线性化的一种近似方法。
把在点的某邻域内展开成泰勒级数,取其线性部分(即泰勒展开的前两项),并令其等于0,即,以此作为非线性方程的近似方程,若,则其解为,这样,得到牛顿迭代法的一个迭代关系式:。
已经证明,如果是连续的,并且待求的零点是孤立的,那么在零点周围存在一个区域,只要初始值位于这个邻近区域内,那么牛顿法必定收敛。
并且,如果不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。
牛顿法求最小值

牛顿法求最小值
牛顿法是一种常用的数值优化方法,可以用来求解函数的最小值。
首先需要知道函数的一阶和二阶导数,然后通过迭代的方式逐步逼近最小值。
具体步骤如下:
1.选择初始点x0
2.计算函数的一阶和二阶导数f′(x)和f′′(x)
3.根据牛顿法公式,求解下一个点的值x1=x0-f′(x0)/f′′
(x0)
4.重复步骤2和3,直到满足停止条件为止。
停止条件可以选择迭代次数或者函数值的变化量小于某个阈值。
需要注意的是,牛顿法可能会在某些情况下产生发散或不收敛的情况,因此需要对函数进行一些特殊处理或者选择其他的数值优化方法。
- 1 -。
最优化理论与方法——牛顿法

牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。
结合着matlab 可以对其进行应用,求解方程。
牛顿迭代法(Newton Newton’’s s method method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。
牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。
牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。
收敛。
牛顿法的几何解释:牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。
如下图:轴的焦点的横坐标。
如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点轴的交点 的横坐标1k x +作为*x 的新的近似值。
鉴于这种几何背景,牛顿法亦称为切线法。
牛顿法亦称为切线法。
2 牛顿迭代公式:(1)最速下降法:x-d gk k×Gg sks×GGd 101x x x -(1)令k k G v I k G -=+,其中:,其中:0k v =,如果k G 正定;0,k v >否则。
否则。
(2)计算_k G 的Cholesky 分解,_T k k k k G L D L =。
(3)解_k k G d g =-得k d 。
(4)令1k k k x x d +=+牛顿法的优点是收敛快,缺点一是每步迭代要计算()()'k k f x f x 及,计算量较大且有时()'k fx 计算较困难,二是初始近似值0x 只在根*x附近才能保证收敛,如0x 给的不合适可能不收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿法一般指牛顿迭代法,牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
牛顿法产生背景
多数方程不存在求根公式,因此求精确根非常困难,甚至不可解,从而寻找方程的近似根就显得特别重要。
方法使用函数的泰勒级数的前面几项来寻找方程的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。
另外该方法广泛用于计算机编程中。
牛顿迭代公式
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。
迭代算法是用计算机解决问题的一种基本方法。
它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量
在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。