纳米材料整理版(必考))

合集下载

纳米材料复习题

纳米材料复习题

纳米材料复习题纳米材料复习题一、纳米材料的定义和特点纳米材料是指在至少一维尺度上具有纳米级别尺寸的材料。

其特点包括:1. 尺寸效应:纳米材料的尺寸与其物理、化学性质密切相关。

例如,纳米颗粒的表面积相对较大,导致其具有更高的活性和反应性。

2. 量子效应:纳米材料的电子结构受到量子效应的影响,其光学、电学、磁学等性质与宏观材料有所不同。

3. 界面效应:纳米材料的界面处存在着相互作用和相变,这些效应对其性能和应用具有重要影响。

二、纳米材料的制备方法1. 碳纳米管的制备:碳纳米管可以通过电弧放电、化学气相沉积、热解等方法制备。

2. 金属纳米颗粒的合成:金属纳米颗粒可以通过化学还原、溶胶凝胶法、热分解等方法制备。

3. 量子点的制备:量子点可以通过溶液法、气相法、热分解法等方法制备。

4. 纳米薄膜的制备:纳米薄膜可以通过物理气相沉积、化学气相沉积、溶液法等方法制备。

三、纳米材料的应用领域1. 纳米电子学:纳米材料在电子器件中的应用具有重要意义。

例如,纳米晶体管可以实现更高的电子迁移率和更小的功耗。

2. 纳米医学:纳米材料在医学领域的应用包括药物传递、生物成像和癌症治疗等。

纳米颗粒可以作为药物载体,实现精确的靶向治疗。

3. 纳米能源:纳米材料在能源领域的应用包括太阳能电池、燃料电池和储能材料等。

纳米结构可以提高能量转换效率和储存密度。

4. 纳米传感器:纳米材料可以制备成高灵敏度的传感器,用于检测环境中的化学物质、生物分子和物理参数等。

四、纳米材料的挑战和前景1. 安全性问题:纳米材料的生物毒性和环境风险需要重视。

在纳米材料的应用过程中,需要对其安全性进行评估和监测。

2. 大规模制备:纳米材料的大规模制备是一个挑战。

目前,研究人员正在探索高效、低成本的纳米材料制备方法。

3. 多功能性:纳米材料的多功能性使其在各个领域具有广泛的应用前景。

未来,纳米材料的研究将更加注重材料的设计和功能的定制。

总结:纳米材料作为一种新兴的材料,具有独特的特点和广泛的应用前景。

纳米材料考试重点

纳米材料考试重点

第一章概述1.简述纳米材料的四个效应。

(1)小尺寸效应(2)表面与界面效应(3)量子尺寸效应(4)宏观量子隧道效应2.纳米材料的分类(按维数来分)(1)零维(2)一维(3)二维第二章补充1.金属材料的分类?2.实际应用金属材料的形态?3.合金的分类及每种合金的特点(1)混合物合金(2)固溶体合金(3)金属间化合物合金4.铁系合金分类及每一种是怎么形成的、含碳量高低及塑性、硬度、强度等(P120)5.硅酸盐水泥的三个过程(水化、凝结和硬化)(P144)6.玻璃的形态及组分构成(对网络结构的作用)形态:?组分构成(1)形成体(2)中间体(3)改性剂7.什么是陶瓷(成分及经历什么过程形成)P1518.陶瓷的一般结构与基本性质P1519.普通陶瓷的三大原材料(各自的特点)长石黏土石英特点:?10.结构陶瓷中氧化铝陶瓷、碳化硅陶瓷、氮化硅陶瓷、氮化硼陶瓷的主晶相及晶型。

P156~P157(1)氧化铝陶瓷(2)碳化硅陶瓷(3)氮化硅陶瓷(4)氮化硼陶瓷11.复合材料的特点?(1)(2)(3)12.复合材料的组成(两部分,分别包括那些种类)(1)基体——连续相金属材料陶瓷材料聚合物材料(2)增强材料——分散相颗粒晶须纤维13.复合材料的复合原理混合法则第三章制备1.纳米材料制备技术的分类(按照纳米材料的制备方法分及纳米材料制备的体系状态分)制备方法:(1)化学法(2)物理法(3)综合法制备体系(1)气相法(2)液相法(3)固相法2.零维纳米材料的物理制备方法包括惰性气体沉淀法、机械粉碎法、非晶晶化法、氢等电弧离子体法(1)惰性气体沉淀法(2)机械粉碎法(3)非晶晶化法(4)氢等电弧离子体法3.氢电弧等离子体法中氢气的作用。

(1)释放大量热,使金属蒸发(2)降低金属表面张力4.化学沉淀法的原理和分类(细分)原理特点分类(1)直接沉淀法(2)共沉淀法(3)均相沉淀法(4)水解沉淀法5.微乳法的原理???6.一维纳米材料制备技术中气-固(VS)生长机理(过程)及该法常用来制备什么材料。

纳米材料考试复习

纳米材料考试复习

1、纳米材料:指三维空间中至少有一维处于纳米尺度范围内或由它们作为基本单元构成的材料。

2、“自上而下”:是指通过微加工或固态技术, 不断在尺寸上将人类创造的功能产品微型化。

如:切割、研磨、蚀刻、光刻印刷等。

(从大到小)3、“自下而上”:是指以原子分子为基本单元, 根据人们的意愿进行设计和组装, 从而构筑成具有特定功能的产品,这种技术路线将减少对原材料的需求, 降低环境污染。

如化学合成、自组装、定位组装等。

(从小到大)4、荷花效应:莲花出淤泥而不染,其表面的特殊结构有自我清洁功能,水珠会夹带灰尘颗粒离开叶面,莲花的这一自我清洁功能称为莲花效应。

是由粗糙表面上微米结构的乳突以及表面蜡状物的存在共同引起,认为在荷叶表面微米结构的乳突上还存在纳米结构, 这种微米结构与纳米结构相结合的阶层结构是引起超疏水表面的根本原因5、在超高分辨率电子显微镜下可以清晰看到:在荷叶叶面上布满着一个挨一个隆起的“小山包”,在山包上面长满绒毛,在“山包”顶则又长出一个个馒头状的“碉堡”凸顶。

因此,在“乳突”间的凹陷部份充满着空气,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。

这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上“乳突”的凸顶形成几个点接触。

雨点在自身的表面张力作用下形成球状,水球在滚动中吸附灰尘,并滚出叶面,这就是“荷叶效应”能自洁叶面的奥妙所在。

再加上叶片表面的细微结构之助,使水与叶面的面积更小而接触角变大,因此加强了疏水性,同时也降低污染颗粒对叶面的附着力。

6、荷叶效应:应用:包括防水底片、防水噴霧劑;外衣、鞋子、車子的外殼、反光鏡、安全帽鏡片、廚具、瓦斯爐等容易髒污的器具表面,甚至飛機的表面7、硅藻土:它具有一些独特的性能,如:多孔性、较低的浓度、较大的比表面积、相对的不可压缩性及化学稳定性,能吸附等于自身质量1.5-4倍的水和1.1-1.5倍的油分徽墨,壁虎脚:高粘附力8、纳米材料与传统材料的主要差别:①纳米材料至少有一维处于0.1~100nm (尺寸)②因具有量子尺寸效应、界面效应、表面效应,宏观量子隧道效应等,引起光学,热学,电学,磁学,力学,化学等性质发生显著变化。

高中化学纳米材料知识点归纳总结

高中化学纳米材料知识点归纳总结

高中化学纳米材料知识点归纳总结纳米材料是指尺寸在纳米尺度(1-100纳米)范围内的材料,具有特殊的物理、化学和生物学性质。

近年来,随着纳米技术的快速发展,纳米材料在许多领域中的应用越来越广泛。

本文将对高中化学中与纳米材料相关的知识点进行归纳总结。

一、纳米材料的定义与分类纳米材料是尺寸在纳米尺度范围内的材料,可以按材料种类进行分类,如纳米金属、纳米氧化物、纳米碳材料等;也可以按结构特点进行分类,如核壳结构纳米粒子、纳米线、纳米球等。

二、纳米材料的制备方法1. 物理方法:包括溶剂热法、溶胶凝胶法、气相沉积法等。

2. 化学方法:包括溶胶凝胶法、热分解法、水热法等。

3. 生物合成法:利用生物体外或体内合成纳米材料,如纳米金、纳米银的生物还原法。

三、纳米材料的性质1. 尺寸效应:纳米尺度下材料的性质发生显著变化,如界面增强效应、量子效应等。

2. 表面效应:纳米材料的比表面积大,导致其表面活性增强,与其他物质的相互作用更明显。

3. 光学性质:纳米材料具有特殊的光学性质,如表现出的颜色与粒子尺寸有关的“量子尺寸效应”。

四、纳米材料的应用1. 催化剂:纳米金属颗粒在催化反应中具有较大的比表面积和特殊的表面性质,能够提高催化反应速率。

2. 电子器件:纳米电子材料被广泛应用于电子器件中,如纳米晶体管、纳米电池等。

3. 医学领域:纳米材料在医学领域有广泛应用,如纳米药物传输系统、纳米诊断剂等。

五、纳米材料的安全性纳米材料在应用过程中,其安全性备受关注。

纳米材料对人体健康和环境有潜在的风险,需要进行安全评估和监测。

六、纳米材料的前景与挑战纳米材料在科学研究和应用领域具有巨大的潜力,但同时也面临一些挑战,如制备工艺的复杂性、安全性等问题需要解决。

综上所述,纳米材料是指尺寸在纳米尺度范围内的材料,具有特殊的性质和应用前景。

了解和掌握纳米材料的制备方法、性质和应用对于推动纳米技术的发展具有重要意义。

我们期待纳米材料在各个领域中的应用能够为人类社会带来更多的创新和进步。

(完整word版)纳米材料(选修课考试资料)(word文档良心出品)

(完整word版)纳米材料(选修课考试资料)(word文档良心出品)

第一章1 什么是纳米材料?它与普通材料相比有什么特殊的性质?答:尺寸大小处于1-100 nm含有范围内的物质就是纳米物质,含有纳米结构的材料就是纳米材料。

2 纳米材料的四大效应是什么?答:(1)小尺寸效应(尺寸越小,熔点越低)(2)表面效应(颗粒越小,表面活性越高)(3)量子效应(4)宏观量子隧道效应3 什么是荷叶效应?它的原理是什么?答:荷叶叶面都具有极强的疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的"荷叶自洁效应"。

原理:荷叶叶面上存在着非常复杂的多重纳米和微米级的超微结构。

荷叶表面上有许多微小的乳突而每个乳突有许多直径为200纳米左右的突起组成的。

在荷叶叶面上布满着一个挨一个隆起的"小山包",它上面长满绒毛,在"山包"顶又长出一个馒头状的"碉堡"凸顶。

因此,在"山包"间的凹陷部份充满着空气,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。

这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上"山包"的凸顶形成几个点接触。

雨点在自身的表面张力作用下形成球状,水球在滚动中吸附灰尘,并滚出叶面,这就是"荷叶效应"能自洁叶面的奥妙所在。

4 神秘的碳家族的成员有那些?各有什么作用?5 常见的润滑材料有那些?第二章1 什么是晶体、晶胞与空间点阵?答:晶体是在三维空间上由原子按一定排列的空间结构重复单元组成的;在空间点阵中选取一个能够代表整体的简单单元,这个单元叫晶胞;把原子作为一个点,把这些点在空间的排列用线连接起来,所形成的网络。

在空间点阵中的每个点周围的原子都是相同的原子。

2 体心立方晶格、面心立方晶格与密排六方晶格各有什么特点?答:体心立方晶格的晶胞是一个立方体,立方体的八个顶角和立方体的中心各有一个原子。

纳米材料考试复习

纳米材料考试复习

1纳米尺度是指 1~100nm。

2纳米科学是研究纳米尺度内原子、分子和其他类型物质运动和变化的科学;纳米技术是在纳米尺度范围内对原子、分子等进行操作和加工的技术。

3纳米材料的基本性质主要包括表面效应、体积效应、量子尺寸效应、宏观量子隧道效应。

4 一维纳米材料中电子在2个方向受到约束,仅能在1个方向自由运动,即电子在2个方向的能量已量子化。

一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为量子线。

5根据原料的不同,溶胶-凝胶法可分为无机盐水解和醇盐水解。

6溶胶-凝胶是制备纳米粉体的一种湿法化学法,主要包括以下3个过程:溶胶的制备、溶胶-凝胶转化、凝胶干燥。

7在纳米粉碎加工过程中,由于受到机械力化学的作用,物料将会发生以下三种主要变化:粒子结构、粒子表面物料化学性质、化学组成。

8所谓自组装是指基本结构单元自发形成有序结构的一种技术,自组装至少有三个特征使其成为一个独特的概念,分别是()()和().9小晶体与同一种的大块晶体相比较,其饱和蒸汽压(选填大、小),熔点(选填高、低),表面张力(选填增大、不变、降低),开始烧结温度(选填增大、不变、降低)。

10微乳液是制备纳米材料的一种重要的方法,微乳液是指两种互不相容的液体形成的具有热力学稳定的、各向同性的、外观透明或不透明等性质的分散体现,由水、油、表面活性剂和助表面活性剂构成。

1纳米科技、纳米材料的基本概念纳米科技:在纳米尺度(l~100纳米)上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术。

纳米材料:三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料。

2纳米材料的物理、化学性质及分类。

物理性能:表面效应;小尺寸效应;量子尺寸效应;宏观量子隧道效应化学性能:表面活性及敏感性;催化性能纳米材料的分类 :纳米材料通常按照维度进行分类:超细粒子,团簇→ 0维材料 ;纳米线或管→ 1维纳米材料 ;纳米膜→ 2维纳米材料;纳米块体→3维纳米材料.3纳米材料的合成路线、制备方法基本原理(蒸发-冷凝法、水热合成法(工艺流程图)、溶剂热合成法、均匀沉淀法、溶胶-凝胶法、微乳液法及其构成要素、模板合成法、自组装法及其特点、VLS机制,VS机制等)蒸发-冷凝法原理:在高真空的条件下,金属试样经蒸发后冷凝。

(完整)纳米材料导论期末复习重点

(完整)纳米材料导论期末复习重点

名词解释:1、纳米:纳米是长度单位,10-9米,10埃。

2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。

3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。

4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。

5、布朗运动:悬浮微粒不停地做无规则运动的现象.6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应.7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。

8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。

9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。

10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。

11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。

HAII—Petch公式:σ--强度; H--硬度;d--晶粒尺寸;K--常数纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。

14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。

15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。

大题:纳米粒子的基本特性?(1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。

(2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。

(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性)(3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。

(完整版)纳米知识点与答案

(完整版)纳米知识点与答案

第一章1、纳米科学技术概念纳米科学技术是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。

2、纳米材料的定义把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。

即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。

“功能”概念,即“量子尺寸效应”。

3、纳米材料五个类(维度)0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料4、0、1、2维材料定义、例子0维材料—尺寸为纳米级(100 nm)以下的颗粒状物质。

富勒烯、胶体微粒、半导体量子点1维材料—线径为1—100 nm的纤维(管)。

纳米线、纳米棒、纳米管、纳米丝2维材料—厚度为1 —100 nm的薄膜。

薄片、材料表面相当薄的单层或多层膜5、纳米材料与传统材料的主要差别尺寸:第一、这种材料至少有一个方向是在纳米的数量级上。

比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。

性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。

比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。

6、金属纳米粒子随粒径的减小,能级间隔增大7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比8、纳米材料的四大基本效应尺寸效应,介电限域效应,表(界)面效应,量子效应9、什么是量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。

10、什么是小尺寸效应当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲:1、莲花效应:莲花为什么出淤泥而不染:荷叶面具有超疏水及自洁的特性。

荷叶表面的疏水、不吸水的表面始终叶面永远保持一尘不染。

荷叶效应:在表面张力作用下,水与超疏水表面会有一接触角,水珠会夹带灰尘颗粒离开叶面。

(蜡质结晶+微细结构导致荷叶效应。

)为什么会有荷叶效应:在超高解析度电子显微镜下可以清晰看到:●在荷叶叶面上布满着一个挨一个隆起的“小山包”●在山包上面長滿絨毛●在“山包”頂則又長出一个个馒头狀的“碉堡”凸頂。

因此,在“乳突”间的凹陷部份充滿著空氣,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。

这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上“乳突”的凸頂形成几个点接触。

雨点在自身的表面張力作用下形成球狀,水球在滚动中吸附灰尘,並滾出叶面,这就是“荷叶效应”能自洁叶面的奧妙所在。

2、自然界的纳米技术:人体和兽类的牙齿、海洋中的生命粒子、蜜蜂的“罗盘”-腹部的磁性纳米粒子、螃蟹的横行-磁性粒子“指南针”定位作用的紊乱、海龟在大西洋的巡航-头部磁性粒子的导航、荷花出污泥而不染、观音土(能吸附等于自身质量1.5-4倍的水和1.1-1.5倍的油分)、徽墨写出的毛笔字光泽性好(纳米级石墨)、壁虎能飞檐走壁(壁虎脚部刚毛组织及单根刚毛与物体表面的黏附)等。

制造纳米材料的路线3、自上而下:是指通过微加工或固态技术, 不断在尺寸上将人类创造的功能产品微型化。

如:切割、研磨、蚀刻、光刻印刷等。

(从大到下)4、自下而上:是指以原子分子为基本单元, 根据人们的意愿进行设计和组装, 从而构筑成具有特定功能的产品,这种技术路线将减少对原材料的需求, 降低环境污染。

如化学合成、自组装、定位组装等。

(从小到大)5、纳米技术与微电子技术的主要区别:•纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;•而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。

•人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。

6、什么是纳米科技:1)他们必须至少有一个维度具有1纳米到100纳米的尺度;2)它们的设计过程必须体现微观操控的能力,即能够从根本上左右分子尺度的结构的物理性质与化学性质;3)它们能够组合起来形成更大的结构且具有优异的物理、化学或生物的性能。

7、纳米科技的分类:(1) 纳米材料学;(2)纳米化学;(3) 纳米体系物理学;(4)纳米生物学;(5)纳米电子学;(6) 纳米力学;(7) 纳米加工学等8、纳米材料:指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。

第二讲:1、小尺寸效应:当固体颗粒的尺寸与德布罗意波长相当或更小时,这种颗粒的周期性边界条件消失,在声、光、电、磁、热力学等方面出现一些新的变化。

小尺寸效应的变现首先是纳米微粒的熔点发生改变。

2、量子效应:是指当粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象。

3、宏观量子隧道理论:电子既具有粒子性又具有波动性。

隧道效应是指电子贯穿势垒的现象。

一些宏观物理量(如微颗粒的磁化强度、量子相干器件中的磁通量等)显示出隧道效应,称之为宏观隧道量子效应。

4、表面与界面效应:粒子尺寸减小,表面或界面的原子数必然增多,粒子的表面能级、表面张力增加,从而导致粒子表面活性增高;5、热学性能:由于界面原子的振动焓、熵和组态焓、熵明显不同于点阵原子,使纳米材料表现出一系列与普通多晶体材料明显不同的热学特性,如比热容升高、热膨胀系数增大、熔点降低等。

6、熔点下降的原因:由于颗粒小,纳米微粒的表面能高、表面原子数多,这些表面原子近邻配位不全,活性大(为原子运动提供动力),纳米粒子熔化时所需增加的内能小,这就使得纳米微粒熔点急剧下降。

7、光学性能:1)宽频带强吸收:当黄金被细分到小于光波波长的尺寸时,便失去了原有的富贵光泽而呈黑色。

事实上,所有的金属在超微颗粒状态都呈现为黑色。

尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。

2)蓝移:即吸收带移向短波长方向产生原因:由于颗粒尺寸下降能隙变宽,这就导致光吸收带移向短波方向。

3)红移:吸收带移向长波长。

产生原因:由于表面或界面效应,引起纳米微粒的表面张力增大,使发光粒子所处的环境变化致使粒子的能级改变,带隙变窄所引起的。

8、发光性能:光致发光是指在一定波长光照射下被激发到高能级激发态的电子重新跃回到低能级被空穴俘获而发射出光子的现象。

1)电子跃迁可分为:非辐射跃迁和辐射跃迁。

通常当能级间距很小时,电子跃迁通过非辐射跃迁过程发射声子,此时不发光。

而只有当能级间距较大时,才有可能实现辐射跃迁,发射光子。

2)当纳米微粒的尺寸小到一定值时可在一定波长的光激发下发光。

3)随粒径减小,发射带强度增强并移向短波方向。

当粒径大于6nm时,这种光发射现象消失。

9、力学性能:(例子)1)陶瓷材料在通常情况下呈脆性,陶瓷茶壶一摔就碎,然而由纳米超微颗粒压制成的纳米陶瓷材料,竟然可以象弹簧一样具有良好的韧性。

2)人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。

呈纳米晶粒的金属要比传统的粗晶粒金属硬3~5倍。

至于金属---陶瓷等复合纳米材料,其应用前景十分宽广。

10、纳米碳管的性质与应用:1)性质:碳纳米管奇特的力学性质:它的强度比钢高100倍,但是重量只有钢的六分之一;碳纳米管的导电性十分怪异,不同结构碳纳米管的导电性可能呈现良导体、半导体、甚至绝缘体。

电子在碳纳米管的径向运动受到限制,表现出典型的量子限域效应;而电子在轴向的运动不受任何限制,因此可以认为碳纳米管是一维量子导线。

2)应用:微型马达、纳米壁挂电视(使用具有高度定向性的单壁碳纳米管作为电子发送材料,不但可以使屏幕成像更清晰,而且可以缩短电子到屏幕之间的距离,从而制成更薄的电视机)。

纳米碳管储氢。

(碳纳米管是直径非常细的中空管状纳米材料,它能够大量地吸附氢气,成为许多个“纳米钢瓶”。

)第三讲:1固相法:1)球磨法:球磨设备对混合的宏观尺寸的物料进行球磨,以达到物体尺寸细化的目的,形成合金或是混合物。

机械合金化法:机械合金化法---高能球磨法将合金粉末或预合金粉末在保护气氛中,在一个能产生高能压缩冲击力的密闭容器中进行研磨,可将金属粉末、金属间化合物粉末或难混溶粉末研磨成纳米颗粒,并可在很微细的尺寸上达到均匀混合。

优点:工艺简单、成本低廉、体系广、产量大,耗时短(几到十几小时),已成为纳米材料制备的一种主要方法。

2)气相冷凝法:直接利用气体或者通过各种手段将物体变为气体,使之在气体状态下发生物理或化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法。

3)其特点(优点):表面清洁;粒度整齐、粒径分布窄;粒度容易控制;颗粒分散性好4)原理:欲蒸的物质置于坩埚内,通过钨电阻加热器或石墨加热器等加热装置逐渐加热蒸发,产生原物质烟雾,由于惰性气体的对流,烟雾向上移动,并接近充液氦的冷却棒(冷阱,77K)。

在蒸发过程中,原物质发出的原子与惰性气体原子碰撞而迅速损失能量而冷却,在原物质蒸气中造成很高的局域过饱和,导致均匀的成核过程,在接近冷却棒的过程中,原物质蒸气首先形成原子簇,然后形成单个纳米微粒。

在接近冷却棒表面的区域内,单个纳米微粒聚合长大,最后在冷却棒表面上积累起来。

用聚四氟乙烯刮刀刻下并收集起来获得纳米粉。

5)气体冷凝法影响纳米微粒粒径大小的因素:惰性气体压力,蒸发物质的分压即蒸发温度或速率,惰性气体的原子量。

CVD:Chemical Vapour Deposition是指在远高于临界反应温度的条件下,通过化学反应,使反应产物蒸气形成很高的过饱和蒸气压,自动凝聚形成大量的晶核,这些晶核不断长大,聚集成颗粒,随着气流进入低温区,最终在收集室内得到纳米粉体。

化学气相沉积的特点①保形性: 沉积反应如在气固界面上发生,则沉积物将按照原有固态基底的形状包复一层薄膜。

②可以得到单一的无机合成物质。

③如果采用某种基底材料,在沉积物达到一定厚度以后又容易与基底分离,这样就可以得到各种特定形状的游离沉积物器具。

④可以沉积生成晶体或细粉状物质,甚至是纳米尺度的微粒。

优势:颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺尺寸可控和过程连续。

可通过对浓度、流速、温度;组成配比和工艺条件的控制,实现对粉体组成,形貌,尺寸,晶相的控制。

应用领域:适用于制备各类金属、金属化合物,以及非金属化合物纳米微粒,如各种金属氮化物,硼化物,碳化物等,后来用于制备碳纤维、碳纳米管等。

6)电极溅射法:用两快金属板分别作为阴极和阳极,阴极为蒸发用的材料,在两极间间冲入惰性气体,电极间施加一定的电压,由于两级间的辉光放电使多惰性气体如氩等形成离子,离子在电场得作用下,冲击阴极靶材表面,使靶材原子从求其表面蒸发出来,经团聚形成纳米粒子,并在附着面沉积下来。

纳米粒子的大小及其分布主要取决于两电极间的电压、电流和气体压力。

靶材的表面积越大,原子的蒸发速度越快,获得的纳米微粒越多。

7)纳米粉体粒径的控制:可通过调节惰性气体的压力、温度、原子量;蒸发物质的分压即蒸发温度或速度等;惰性气体的原子量越大,或压力越大,粒子近似成正比增大,压力增大,粒子增大;8)液相法:将均相溶液通过各种途径使溶剂和溶质分离,溶质形成一定大小和形状的颗粒,得到所需粉末的前躯体,热解后得到纳米颗粒。

9)沉淀法:(共沉淀法和均相沉淀法)沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH--,CO32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、水合氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子除去,经热分解或脱水即得到所需的化合物粉料。

沉淀法包括共沉淀法、均相沉淀法•例如,•在Ba、Ti的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO(C2O4)2·4H2O沉淀。

•经高温(450~750℃)加热分解,经过一系列反应可制得BaTiO3粉料10)水热法是在高压釜里的高温、高压反应环境中,采用水作为反应介质,使得通常难溶或不溶的物质溶解,在高压环境下制备纳米微粒的方法。

•在高温高压的水热体系中,水的性质将产生下列变化。

•水热介质—水热条件下水的粘度的变化。

•化合物在水热溶液中的溶解度11)水热技术具有以下特点:1)、其温度相对较低。

对比气相法2)、在封闭容器中进行,避免了组分的挥发。

3)、体系一般处于非理想、非平衡状态。

4)、溶剂处于接近临界、临界或超临界状态。

与一般湿化学法相比较的优势:(1)水热可直接得到分散且结晶良好的微粒,不需作高温灼烧处理,避免了可能形成的微粒硬团聚。

相关文档
最新文档