数列题型及解题方法归纳总结

合集下载

数列题型及解题方法

数列题型及解题方法

数列题型及解题方法数列是数学中常见的一种数学对象,它是按照一定的规律排列的一组数的集合。

在数学中,数列是一个非常重要的概念,它不仅在初等数学中有着广泛的应用,而且在高等数学中也有着重要的地位。

数列题型及解题方法是数学学习中的一个重要内容,下面我们就来详细介绍一下数列的相关知识和解题方法。

一、数列的基本概念。

数列是按照一定的规律排列的一组数的集合,它可以用一个通项公式来表示。

数列中的每一个数称为该数列的项,数列中的第一个数称为首项,数列中的最后一个数称为末项。

数列中的相邻两项之间的差称为公差,如果数列中的相邻两项之间的比值是一个常数,则称这个数列是等比数列,否则称为等差数列。

二、等差数列的求和公式。

对于等差数列来说,如果已知它的首项a1、末项an和项数n,那么可以利用等差数列的求和公式来求出这个等差数列的和。

等差数列的求和公式为Sn=n(a1+an)/2,其中Sn表示等差数列的和,n表示项数,a1表示首项,an表示末项。

利用这个公式可以很方便地求出等差数列的和,从而简化计算过程。

三、等比数列的求和公式。

对于等比数列来说,如果已知它的首项a1、末项an和项数n,那么可以利用等比数列的求和公式来求出这个等比数列的和。

等比数列的求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示等比数列的和,a1表示首项,q表示公比,n表示项数。

利用这个公式可以很方便地求出等比数列的和,从而简化计算过程。

四、数列题型及解题方法。

1. 求等差数列的和,对于已知的等差数列,如果要求它的和,可以利用等差数列的求和公式来求解。

首先要确定等差数列的首项、末项和项数,然后代入求和公式即可得到结果。

2. 求等比数列的和,对于已知的等比数列,如果要求它的和,可以利用等比数列的求和公式来求解。

首先要确定等比数列的首项、末项和项数,然后代入求和公式即可得到结果。

3. 求等差数列的通项公式,对于已知的等差数列,如果要求它的通项公式,可以利用等差数列的通项公式an=a1+(n-1)d来求解。

数列极限的题型及解题步骤

数列极限的题型及解题步骤

数列极限的题型及解题步骤
数列极限是微积分中的重要内容,主要用于研究数列的收敛性和发散性。

下面是一些常见的数列极限的题型及解题步骤:
1. 常数数列:如果数列的每一项都是一个常数,那么该数列的极限就是这个常数本身。

解题步骤:直接写出数列的通项公式,观察是否存在极限。

2. 等比数列:如果数列的每一项与它前一项的比值为常数,那么该数列的极限存在,并且极限值为0或正无穷大或负无穷大。

解题步骤:写出数列的通项公式,观察比值是否为常数,如果是常数,则根据比值的大小确定极限值。

3. 等差数列:如果数列的每一项与它前一项的差为常数,那么该数列的极限不存在。

解题步骤:写出数列的通项公式,观察差是否为常数,如果是常数,则说明数列是等差数列,极限不存在。

4. 递推数列:如果数列的每一项都可以由前面的项递推得到,那么数列的极限存在,并且可以通过递推关系式求得。

解题步骤:写出递推关系式,求出数列的极限。

5. 倒数数列:如果数列的每一项是前一项的倒数,那么数列的极限为0。

解题步骤:写出数列的通项公式,观察每一项与前一项的关系,如果是倒数关系,则极限为0。

6. 无穷级数:如果数列是一个无穷级数的部分和数列,那么可以通过求级数的极限来求得数列的极限。

解题步骤:将无穷级数表示成数列的形式,然后求级数的极限。

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析

2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。

在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。

一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。

对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。

1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。

设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。

(1)等差数列中,任意三项可以构成一个等差数列。

(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。

与等差数列不同的是,等比数列中的任意两项的比值都相等。

2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。

设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。

(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。

数列题型及解题方法

数列题型及解题方法

数列题型及解题方法题型1:等差数列解题方法:首先确定数列的首项和公差,然后使用递推公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。

根据题目给出的条件,可以求得所求的项或者公式中的未知数。

题型2:等比数列解题方法:首先确定数列的首项和公比,然后使用递推公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。

根据题目给出的条件,可以求得所求的项或者公式中的未知数。

题型3:斐波那契数列解题方法:斐波那契数列是指后一项等于前两项之和的数列,即an = an-1 + an-2。

根据题目给出的条件,可以使用递归或循环的方式计算斐波那契数列的第n项。

题型4:数列求和解题方法:对于等差数列和等比数列,可以使用求和公式直接计算数列的和。

等差数列的和用Sn = (n/2)(a1 + an)表示,等比数列的和用Sn = a1(1 - r^n)/(1 - r)表示。

根据题目给出的条件,代入公式计算即可得到所求的和。

题型5:数列拓展解题方法:有时候题目需要在基本的数列模型上进行拓展,可以根据数列的特点和题目的要求进行分析和解答。

可以使用递推公式或者递推关系式进行推导,并根据题目给出的条件计算所求的项或和。

题型6:递推关系式解题方法:有时候数列无法使用基本的递推公式进行求解,需要根据数列的特点建立递推关系式。

递推关系式是指数列的每一项与前面的若干项之间存在某种关系,通过这个关系可以递推求解数列的项或和。

根据题目给出的条件,建立递推关系式,并根据初始条件求解所求的项或和。

数学数列题型归纳解题方法

数学数列题型归纳解题方法

数列等差数列与等比数列1.根本量的思想:常设首项、〔公差〕比为根本量,借助于消元思想与解方程组思想等。

转化为“根本量〞是解决问题的根本方法。

2.等差数列与等比数列的联系1〕假设数列{}na是等差数列,那么数列}{n a a是等比数列,公比为d a,其中a是常数,d是{}na的公差。

〔a>0且a≠1〕;2〕假设数列{}na是等比数列,且na>,那么数列{}loga na是等差数列,公差为loga q,其中a是常数且0,1a a>≠,q是{}n a的公比。

3〕假设{}na既是等差数列又是等比数列,那么{}na是非零常数数列。

3.等差与等比数列的比拟【题型1】等差数列与等比数列的联系例1 〔2010文16〕{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.〔Ⅰ〕求数列{an}的通项;〔Ⅱ〕求数列{2an}的前n项和Sn.解:〔Ⅰ〕由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列得121d+=1812dd++,解得d=1,d=0〔舍去〕,故{an}的通项an=1+〔n-1〕×1=n. (Ⅱ)由〔Ⅰ〕知2m a=2n,由等比数列前n项和公式得Sm=2+22+23+…+2n=2(12)12n--=2n+1-2.小结与拓展:数列{}na是等差数列,那么数列}{n a a是等比数列,公比为d a,其中a是常数,d是{}na的公差。

〔a>0且a≠1〕.【题型2】与“前n项和Sn与通项an〞、常用求通项公式的结合例2数列{an}的前三项与数列{bn}的前三项对应一样,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.求数列{an}与{bn}的通项公式。

解:a1+2a2+22a3+…+2n-1an=8n(n∈N*)①当n≥2时,a1+2a2+22a3+…+2n-2an-1=8(n-1)(n∈N*)②①-②得2n-1an=8,求得an=24-n,在①中令n=1,可得a1=8=24-1,∴an=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2,∴数列{bn+1-bn}的公差为-2-(-4)=2,∴bn+1-bn=-4+(n-1)×2=2n-6,法一〔迭代法〕bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=8+(-4)+(-2)+…+(2n-8) =n2-7n+14(n∈N*).法二〔累加法〕即bn -bn -1=2n -8, bn -1-bn -2=2n -10, …b3-b2=-2, b2-b1=-4, b1=8,相加得bn =8+(-4)+(-2)+…+(2n -8) =8+(n -1)(-4+2n -8)2=n2-7n +14(n ∈N*).小结与拓展:1〕在数列{an}中,前n 项和Sn 与通项an 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n .是重要考点;2〕韦达定理应引起重视;3〕迭代法、累加法与累乘法是求数列通项公式的常用方法。

数列极限证明题型及解题方法

数列极限证明题型及解题方法

数列极限证明题型及解题方法
数列极限证明题型主要包括单调有界数列的极限证明、递推数列的极限证明、函数极限与数列极限的关系证明等。

下面介绍一些常见的数列极限证明题型及解题方法。

1. 单调有界数列的极限证明:
设数列{an}为单调递增数列且有上界,要证明序列{an}收敛。

一般可采用以下两种方法之一:
- 利用单调有界原理:由于数列{an}为单调递增且有上边界,根据单调有界原理,该数列必定存在极限。

- 找到上确界和下确界:由于该数列有上界,可设上界为M,同时查找下确界,证明数列{an}的极限存在。

2. 递推数列的极限证明:
设数列{an}满足递推关系an+1 = f(an),其中f(x)为已知函数。

一般可采用以下两种方法之一:
- 显式计算法:若递推关系能够推导出显式的解析表达式an = g(n),则可通过计算g(n)的极限来证明数列{an}的极限存在。

- 极限迭代法:设数列{an}的极限为L,对递推关系an+1 =
f(an)两边同时取极限,得到L = f(L),进而求得L的值。

3. 函数极限与数列极限的关系证明:
对于给定的函数f(x),要证明该函数在某点c处存在极限L,可以采用以下方法之一:
- 利用数列极限定义:构造数列{an},使得函数f(x)在点c附近的取值与数列{an}之间存在关系,然后利用数列的极限来证明函数的极限存在。

- 利用函数极限定义:对于给定的极限L,构造函数f(x),使得当x趋近于c时,函数f(x)的极限趋近于L。

高二数列题型及解题方法

高二数列题型及解题方法

高二数学数列题型及解题方法
一、数列的概念和分类
数列是指按照一定规律排列的一组数,其中每一个数称为这个数列的项。

按照项之间的关系,数列可以分为等差数列、等比数列、斐波那契数列等。

二、等差数列
等差数列是指每一项与它的前一项之差相等的数列。

等差数列的通项公式为 an=a1+(n-1)d,其中 a1 是首项,d 是公差,n 是项数。

解题方法:
1. 根据题意,确定等差数列的首项和公差。

2. 利用通项公式求出第 n 项。

3. 根据题意,求出数列的前 n 项和。

三、等比数列
等比数列是指每一项与它的前一项之比相等的数列。

等比数列的通项公式为 an=a1*r^(n-1),其中 a1 是首项,r 是公比,n 是项数。

解题方法:
1. 根据题意,确定等比数列的首项和公比。

2. 利用通项公式求出第 n 项。

3. 根据题意,求出数列的前 n 项和。

四、斐波那契数列
斐波那契数列是指每一项都等于前两项之和的数列。

斐波那契数列的通项公式为 an=a1+(n-1)*(a1+a2)/2,其中 a1 是首项,a2 是
第二项。

解题方法:
1. 根据题意,确定斐波那契数列的首项和第二项。

2. 利用通项公式求出第 n 项。

3. 根据题意,求出数列的前 n 项和。

五、解题技巧
1. 认真审题,确定数列类型和题目要求。

2. 利用通项公式和前 n 项和公式求解。

3. 注意数列的性质,如公比为 1 的等比数列就是等差数列。

4. 熟练运用数学公式和技巧,提高解题效率。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1例2、已知{}n a 满足112n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a .解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。

两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得: ∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。

求n a 。

(6)递推式为S n 与a n 的关系式关系;(2)试用n 表示a n 。

∴)2121()(1211--++-+-=-n n n n n n a a S S∴11121-+++-=n n n n a a a ∴文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.n n n a a 21211+=+ 上式两边同乘以2n+1得2n+1a n+1=2na n +2则{2na n }是公差为2的等差数列。

∴2na n = 2+(n-1)·2=2n数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和1n n a a +⎧⎫⎨⎬+⎪⎪⎩⎭(其中{}n a 等差)可裂项为:111111()n n n n a a d a a ++=-⋅,111()n n n n a a da a ++=-+等差数列前n 项和的最值问题:1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。

(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值(ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小;数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

已知12()n a a a f n =g g L g 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

⑷若1()n n a a f n +-=求na 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-L1a +(2)n ≥。

⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅L (2)n ≥。

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以nk 得到一个等差数列后,再求n a 。

(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。

(3)形如1kn n a a +=的递推数列都可以用对数法求通项。

(7)(理科)数学归纳法。

(8)当遇到q a ad a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式。

数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式。

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=二、解题方法:求数列通项公式的常用方法:1、公式法2、n n a S 求由3、求差(商)法 解:n a a ==⨯+=1122151411时,,∴ [练习]4、叠乘法 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 5、等差型递推公式[练习]6、等比型递推公式 [练习]7、倒数法2.数列求和问题的方法 (1)、应用公式法等差、等比数列可直接利用等差、等比数列的前n 项和公式求和,另外记住以下公式对求和来说是有益的。

1+3+5+……+(2n-1)=n 2【例8】 求数列1,(3+5),(7+9+10),(13+15+17+19),…前n 项的和。

解 本题实际是求各奇数的和,在数列的前n 项中,共有1+2+…+n=)1(21+n n文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.个奇数,∴最后一个奇数为:1+[21n(n+1)-1]×2=n 2+n-1 因此所求数列的前n 项的和为 (2)、分解转化法对通项进行分解、组合,转化为等差数列或等比数列求和。

【例9】求和S=1·(n 2-1)+ 2·(n 2-22)+3·(n 2-32)+…+n (n 2-n 2)解 S=n 2(1+2+3+…+n )-(13+23+33+…+n 3) (3)、倒序相加法适用于给定式子中与首末两项之和具有典型的规律的数列,采取把正着写与倒着写的两个和式相加,然后求和。

例10、求和:12363nn n n n S C C nC =+++L 例10、解 0120363nn n n n n S C C C nC =•++++L∴ S n =3n ·2n-1(4)、错位相减法如果一个数列是由一个等差数列与一个等比数列对应项相乘构成的,可把和式的两端同乘以上面的等比数列的公比,然后错位相减求和.例11、 求数列1,3x ,5x 2,…,(2n-1)x n-1前n 项的和.解 设S n =1+3+5x 2+…+(2n-1)x n-1. ① (2)x=0时,S n =1.(3)当x ≠0且x ≠1时,在式①两边同乘以x 得 xS n =x+3x 2+5x 3+…+(2n-1)x n,②①-②,得 (1-x)S n =1+2x+2x 2+2x 3+…+2x n-1-(2n-1)x n.(5)裂项法:把通项公式整理成两项(式多项)差的形式,然后前后相消。

相关文档
最新文档