智能变电站的对时系统(一)

合集下载

时间同步系统及智能变电站对时技术0827PPT课件

时间同步系统及智能变电站对时技术0827PPT课件
由于地球自转存在不 均匀性,真太阳时日长的 均匀性太差,不能作为时 间计量的单位。
平太阳时
平太阳时就是天球 上的一个假想的点,它在 赤道上运动的速度是均匀 的,且与真太阳时的平均 速度一致,其解决了真太 阳日作为时间标准的不均 匀性,因此得到了各国的 广泛认同。
时间的基本概念
利用“子午环”测定格林尼治平太阳时
1970年1月1日0时0分0秒。
时间的基本概念
闰秒
由地球自转速率不均匀性引起的UT1与TAI的差值,须采用 在UTC时刻中加1秒或减1秒的闰秒(即跳秒)措施来补偿。
闰秒的时间定在6月30日或12月31日,也就是说使UTC在 6月30日或12月31日这两个日期的最后一分钟为61秒或59秒。
近二十年来,世界时每 年比原子时大约慢1秒,在 确定原子时的起点后,二者 间的差逐年累积,到2010年 已达34秒。
目录
电力系统的时间同步系统
时间同步网的组成
电力系统时间同步网由设在各级电网的调度机构、 变电站(发电厂)的时间同步系统组成。在满足技术 要求的条件下,网内的时间同步系统可通过通信网络 接收上一级时间同步系统发出的有线时间基准信号, 也能对下一级时间同步系统提供有线时间基准信号, 从而实现全网范围内有关设备的时间同步。
目前已发送的13颗北斗导航系统组网卫星顺利送 入太空预定转移轨道,预计在2020年中国将建成由30 多颗卫星组成的,覆盖全球的“北斗二号”卫星导航 定位系统。
1 对时在电力系统中的作用 2 时间的基本概念 3 授时技术 4 电力系统的时间同步系统 5 智能变电站的对时方式 6 时间同步方法 7 守时性能
量事件和顺功序角记动录态装监置测、、厂机站
GPS
组自动和控电制网设参备数、校安验全的稳准定

继电保护员初级工复习题与答案

继电保护员初级工复习题与答案

继电保护员初级工复习题与答案1、对变压器绝缘强度影响最大的是()。

A、温度B、水分C、纯度D、磁场答案:B2、一根长为L的均匀导线电阻为8Ω。

若将其对折后并联使用,其电阻为()。

A、4ΩB、2ΩC、8ΩD、1Ω答案:B3、中性点非有效接地系统中,作单相接地监视用的电压互感器,一次中性点应接地,为防止(),应在一次中性点或二次回路装设消谐装置。

A、谐振过电压B、操作过电压C、大气过电压D、雷电行波答案:A4、保护装置的参数、配置文件仅在()投入时才可下装,下装时应闭锁保护。

A、主保护投退压板B、检修压板C、远方操作投退压板D、后备保护投退压板答案:B5、蓄电池引出线绝缘电阻应用()V兆欧表测量,对于220V蓄电池组,绝缘电阻不低于20MΩ。

A、100B、500C、1000D、2500答案:B6、一条线路M侧为系统,N侧无电源但主变(Y0/Y0/△接线)中性点接地,当Y0侧线路A相接地故障时,如果不考虑负荷电流,则()。

A、N侧A相有电流,与B.C相电流大小相等且相位相同B、N侧A相有电流,B.C相有电流,但大小不同C、N侧A相有电流,B.C相无电流D、以上都不对答案:A7、将一额定电压数值相同的交流接触器应用到直流电路中,将引起()。

A、线圈烧毁B、触头烧毁C、铁芯烧毁D、引线烧断答案:A8、智能变电站配置的对时系统应优先采用()。

A、伽利略系统B、北斗系统C、GPS系统D、以上均可答案:B9、运行中电压互感器发出臭味并冒烟应()。

A、注意通风B、监视运行C、防油D、停止运行答案:D10、不应在二次系统的保护回路上接取()。

A、试验电源B、电源C、充电电源D、检修电源答案:A11、微机型防误装置的运行状态必须与变电站实际运行状态实时对位,在每次现场操作前,()。

A、必须核对无误后方可进行模拟操作B、为了节约时间不用核对即可进行模拟操作,因为微机五防装置与设备有实时对位功能C、要与操作票核对正确D、以上都正确答案:A12、由两个及以上厂站的稳定控制装置通过通信设备联络构成的系统,实现区域或更大范围的电力系统的稳定控制。

自动化试题库(有答案)

自动化试题库(有答案)

1、DL/T860标准中关于SCD描述正确的是 AA、是全站系统配置文件,全站唯一;B、是IED实例配置文件;C、是系统规范描述文件;D、是IED能力描述文件2、DL/T860标准中关于ICD描述正确的是 DA、是全站系统配置文件,全站唯一;B、是IED实例配置文件;C、是系统规范描述文件;D、是IED能力描述文件3、DL/T860标准中关于CID描述正确的是 BA、是全站系统配置文件,全站唯一;B、是IED实例配置文件;C、是系统规范描述文件;D、是IED能力描述文件4、DL/T860标准中关于SSD描述正确的是 CA、是全站系统配置文件,全站唯一;B、是IED实例配置文件;C、是系统规范描述文件;D、是IED能力描述文件5、DL/T860标准中不同的功能约束代表不同的类型,ST代表的是 AA、状态信息;B、测量值;C、控制;D、定值组6、DL/T860标准中不同的功能约束代表不同的类型,MX代表的是 BA、状态信息;B、测量值;C、控制;D、定值组7、DL/T860标准中不同的功能约束代表不同的类型,SG代表的是 DA、状态信息;B、测量值;C、控制;D、定值组8、DL/T860标准中不同的功能约束代表不同的类型,CO代表的是 CA、状态信息;B、测量值;C、控制;D、定值组9、DL/T860-7 关于TrgOp触发条件中dchg描述正确的是 AA、数据变化;B、数据更新;C、品质变化;D、以上都不正确10、DL/T860-7 关于TrgOp触发条件中qchg描述正确的是 CA、数据变化;B、数据更新;C、品质变化;D、以上都不正确11、DL/T860-7 关于TrgOp 触发条件中dupd描述正确的是 BA、数据变化;B、数据更新;C、品质变化;D、以上都不正确12、应用DL/T860标准的变电站,设备之间采用TCP/IP通讯,其中站控层设备、间隔层设备分别是(B )A、服务器端、客户端;B、客户端、服务器端;C都是服务器端;D、都是客户端13、SV报文中,电压采样值值为32为整形,1LSB=();电流采样值值为32为整形,1LSB=(A)A、10mV 1mA;B、1mV 1mA ;C、10mV 10mA;D、1mV 10mA14、SCL模型中,LDNAME的字符数不大于( D )A、4;B、8;C、16;D、3215、SCL模型中,dataNAME的字符数不大于(D )A、1;B、5;C、7;D、1016、DL/T860中,取代是一种功能约束,其英文标示为( A )A、SV;B、SP;C、DC;D、CF17、SCL模型中数据属性列入标示为“M”代表( B )A、可选;B、强制;C、取代;D、配置18、逻辑节点组指示符中的“M”代表(C )A、控制;B、保护;C、计量和测量;D、监控19、SCL模型中的数据属性“q”代表的是(A )A、品质;B、时间;C、值;D、其他20、常用(B)节点表示GOOSE服务节点。

变电站自动化系统GPS对时原因及原理分析

变电站自动化系统GPS对时原因及原理分析

2 . 2 站端 监控 系 统 对 时 方 式
站端监控系 统电脑在接收 远动装置 ( 子站) 对时命令后 , 通
过R S 一 2 3 2 / 4 2 2 / 4 8 5 、 L O N 或 以 太 网方 式 , 逐 一 连 接 到 各 个 智 能
设备来实现 时间 同步 。但这种 同步方式也存在 缺点Fra bibliotek, 首先是 串
1 . 2 装 置 守 时 能 力 不 一 致
3 . 2 GP S装 置 的 输 出对 时 方式
各种 保护装 置 、 测控 单元 、 录波装 置等智 能设备 上都装有 内部 时 钟 , 但 由于 设 备 质 量 的 差 异 , 在 对 时 精 度 上 存 在 一 定 的
3 . 2 . 1 同 步 脉 冲 输 出方 式
3 . 1 GPS装 置 原 理
1 变 电站 智 能 设 备 需 要 时 间 同 步 的 原 因 分 析
1 . 1 统 一 时 间 基 准 分 析 数 据
G P S是 英文 G l o b a l P o s i t i o n i n g S y s t e m( 全球定位 系统) 的 简 称, 利用 G P S定 位 卫 星 , 在 全球 范 围内进行 实 时定位 、 导 航 的
口对 时 使 用 的 电缆 长 度 不 能 过 长 , 其 次 监 控 服 务 器 的 反 应 速 度、 延 迟 都 直 接 影 响 对 时 精 度 。目前 , 在 综 合 自动 化 变 电站 和 数 字 化 变 电站 中 , 已不 使 用 该 种 对 时 方 式 。
2 . 3 GP S 系 统 对 时 方 式
S对 时系统 每秒发送一 次信 号 , 并且不 间断地 发送 自 统 一时间基准 , 可 以对 变 电 站 进 行 有 效 的运 行 监 控 和 事 故 系 统。GP 其 中, 发送 的时间信 息包含 年 、 月、 分析 。 对于故障录波而 言, 如果两端录波数据 的时间基准统一 , 身 的星历参 数和时 间信 息 ,

智能变电站常用的对时方式的分析

智能变电站常用的对时方式的分析

智能变电站常用的对时方式的分析摘要:通过对智能变电站的脉冲对时、IRIG-B码对时的原理的分析与探讨,对比出各自的优缺点以及适用场合,从而为理解智能站的对时系统打好基础。

关键字:智能变电站;对时方式;脉冲对时;IRIG-B码1. 引言变电站中常用的对时方式有:脉冲对时(硬对时)、串口通信(软对时)、编码对时。

在智能站中,最常见的授时方式有脉冲对时、直流IRIG-B码对时。

本文就此两种对时方式做了详细的说明。

2. 脉冲对时2.1 概述脉冲对时信号主要分为三种:秒脉冲信号PPS(Pulse per Second)、分脉冲信号PPM(Pulse per Minute)和时脉冲信号PPH(Pulse per Hour)。

秒脉冲是利用GPS所输出的每秒一个脉冲方式进行时间同步校准,获得与UTC同步的时间准确度较高,上升沿的时间误差不大于1μs,这是国内外IED常用的对时方式;分脉冲是利用GPS所输出的每分钟一个脉冲方式进行时间同步校准。

其输出方式有TTL电平、静态空接点、RS-422、RS-485和光纤等。

脉冲对时方式进行对时时,装置利用GPS所提出的时间脉冲信号进行时间同步校准,常见的秒脉冲信号如图3所示:图1 秒脉冲信号2.2 技术指标智能变电站的过程层设备若采用1PPS对时方式,应采用850nm波长的光纤接口,其技术指标如下:(1)脉冲宽度th>10ms;(2)秒准时沿:上升沿,上升时间≤100ns;(3)上升沿的时间准确度:优于1μs;(4)使用光纤传导时,亮对应高电平,灭对应低电平,由灭转亮的跳变对应准时沿。

2.3 特点脉冲对时方式的特点如下:(1)实现简单:可适用于以翻转序号为主要应用的装置,如合并单元等;可用电缆或光缆作为传输通道;(2)抗干扰能力弱于IRIG-B码;(3)不能传输完整的时间信息,需与串口报文等其他报文配合使用;(4)对时误差不小于1μs,只能对时到秒。

3. IRIG-B码对时3.1 概述IRIG(InterRange Instrumentation Group)时间标准有两大类:(1)并行时间码:这类码由于是并行格式,传输距离较近,且是二进制,因此远不如串行格式广泛;(2)串行时间码:共有六种格式,即A、B、C、D、E、G、H。

智能变电站时间同步系统分析

智能变电站时间同步系统分析

智能变电站时间同步系统分析摘要:变电站同步系统主要作用是通过接收授时系统所发播的标准时间信号和信息来校准本地时钟,实现标准时间信号、信息的异地复制。

从而为变电站内各类运行设备提供精确、安全、可靠的时间基准,以满足不同等级的时间同步精度要求。

关键词:智能变电站;时间同步;网络时间协议一、智能变电站主要对时方式1.1硬对时(脉冲对时)主要有PPS(秒脉冲信号)、PPM(分脉冲信号),以及PPH(时脉冲信号)。

对时脉冲是利用GPS(全球定位系统)所输出的脉冲的上升沿(或下降沿)来进行时间同步校准,对时精度高,但不包含年月日等时间信息,传输信道包括电缆和光纤。

硬对时按接线方式可分成差分对时与空接点2种方式。

1.2软对时(串口报文对时)主钟通过串口以报文的形式发送时间信息,报文内容包括年、月、日、时、分、秒等在内的完整时间。

待对时装置通过串行口读取同步时钟每秒1次串行输出的时间信息实现对时,串口又分为RS232接口和RS485接口方式。

一般精确度为ms级,输出距离从几十到上百米。

串口对时往往和脉冲对时配合使用,弥补脉冲对时只能对时到秒的缺点。

1.3编码对时目前普遍采用IRIG-B码(美国靶场仪器组B型码)对时,有调制和非调制2种。

IRIG-B码实际上是一种综合对时方案,输出的帧格式既包含了对时的准时沿,又包含了串口报文对时的时间信息。

IRIG-B码可靠性高、接口规范,因此得到了广泛的应用,但不便于组建时间同步网。

根据传输介质的不同,B码对时又分为光B码和电B码,对时精度可以达μs级。

1.4网络对时网络对时是以电力自动化系统现有数据网络提供的通信通道为依托,为接入网络的任何系统提供对时。

主时钟将时间信息按特定协议封装为数据帧,发送给各被授时装置,被授时装置接收到报文后通过协议解析,获取当前时刻信息,校正时间,达到与主时钟时间同步的目的。

网络对时方式的授时精度因所采用协议的不同而有所差异:其中NTP(网络时间协议)授时精度可达到50ms;SNTP(简单网络时间协议)授时精度可达到1s;PTP(精确时间协议)授时精度可达到1μs。

智能化变电站中多源自适应时间同步系统

智能化变电站中多源自适应时间同步系统
10 8 0 0 5。Chn ia;4 Sh n h iTat nComm u iain En i eig Co Lt., ha g a 01 0 . a g a ia nc t gne rn . d S n h i2 2 4,Chna o i )
Absr c : n o de o s ts y t n r a i g r q r me t ftm e s nc o z ton s s e f rs r ta t I r r t a i f he i c & s n e uie n s o i y hr nia i y t m o ma t s bs a i n u t to s,a s he e o ulis ur e a a i e tme s n h on z tO y t m s p e e e n t s c m f m t— o c d ptv i y c r ia i n s s e i r s nt d i hi
第2 6卷第 3期
2 1 年 9月 01
电 力 科 学 与 技 术 学 报
J OURNAL OF EL TRI EC C POW ER CI S ENCE AND ECHNOLOGY T
Vo 6 NO 3 L2 .
Se . 0 1 p 2 1
பைடு நூலகம்
智 能化 变 电站 中多 源 自适 应 时 间同步 系统
t na oi m s rp sd whc a ef d pieslc teo t l i n o re i l r h i p o oe , i cns l a a t e t h pi migsu c.Th l— o g t h — v e ma t emut i
P we n ie r g C .L d ,B in 0 1 0 C i a . e ig Sfn t main C .L d ,B in o rE gn e i o t . e ig 1 0 2 , hn ;3 B in i g Au o t o t . e ig n j j a o j

1-智能变电站基础知识

1-智能变电站基础知识

• 通道延时需要在采样数据集中作为一路通道发送。
采样方式的优缺点
IEC 60044-8: • 优点:不依赖于外部同步时钟,谁用数据谁同步 处理,可靠性高。 • 缺点:物理接口专用接口; 数据点对点传输,接线较复杂。 IEC 61850-9-1/2: • 优点:物理接口标准以太网接口; 可以组网传输,利于数据共享; • 缺点:依赖外部时钟,时钟丢失时影响二次设备 功能。(组网) 数据点对点传输,接线较复杂(点对点)
IEC61850-9-2
• IEC61850-9-2:是国际电工委员会标准《IEC 61850-9-2: 特定通信服务映射(SCSM) 》中所定义的一种采样值传输方 式,网络数据接口 • 传输延时不确定 • 无法准确采用再采样技术 • 硬件软件比较通用,但对交换机要求极高 • 硬件和软件实现都将困难 • 不同间隔间数据到达时间不确定,不利于母差、变压器等 保护的数据处理 • 通道传送一次瞬时值
4000Hz(80点:保护、测量)或12800Hz(256点:电能 质量)。
过程层技术
智能变电站过程层设备
• 智能断路器的实现方式:
智能断路器的实现方式有两种:一种是直接将智能控制模 块内嵌在断路器中;另一种是将智能控制模块形成一个独 立装置-----智能终端,安装在传统断路器附近。 现阶段采用常规断路器+智能终端方案。
网络化 标准化
智能变电站概述
高级 应用
一次设备 智能化
传统变电站设备功能分布
交 流 输 入 组 件
转 换 组 件
保 护 逻 辑 (CPU)
开 入 开 出 组 件
人机对话模件
A/D
端子箱
传统微机保护测控
二次设备和一次设备功能重新定位。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能变电站的对时系统(一)
摘要:时间是基本物理量,那么时间也就会有精度的问题,不同时间源有着不同的精度。

如Apple Watch与iPhone配合使用,同UTC时间误差不超过50ms。

50ms误差对于人类的感知可以忽略,可是如果用在智能变电站中就显得不尽人意了。

Apple Watch的发售将智能手表提高到一个新的热度,时下不管哪个厂家的Watch都是在手表的基本时间功能上进行扩展,如加入心跳的测量,从而变成智能化。

提到时间,不同的人对时间有不同的理解,古代文人将时间的流逝描绘成一首首耐人寻味的诗句;哲学家将时间看成抽象概念,表达事物的生灭排列;科学家给出了时间科学的定义:事件过程长度和发送顺序的度量,是物理学中的七个基本物理量之一。

时间是基本物理量,那么时间也就会有精度的问题,不同时间源有着不同的精度。

如今人们生活获取的时间都是国际标准时间(UTC),不同的设备都是获取UTC进行对时,这样就产生了不同的精度,如Apple Watch与iPhone配合使用,同UTC时间误差不超过50ms。

50ms误差对于人类的感知可以忽略,可是如果用在智能变电站中就显得不尽人意了。

变电站对时系统的重要性
电网系统是时间相关的系统,对于电网的运行和事故系统性分析需要有描述电网暂态过程的电流、电压波形,断路器、保护装置动作时序的时间,各种事件发生的时间序列在电网运行或故障分析过程中起着决定性的作用,同时全站的时间同步技术也是智能化变电站乃至智能电网稳定运行的关键技术之一。

智能变电站的二次系统通常包含电子式互感器、合并单元、交换机、保护测控等设备。

这些装置必须基于统一的时间基准运行,方能满足事件顺序记录(SOE)、故障录波、实时数据采集时间一致性的要求,确保线路故障测距、相量和攻角动态监测、机组和电网参数校验的准确性。

这些要求对智能变电站的时钟同步系统提出严格的要求。

IEC61850标准将变电站分为站空层、间隔层和过程层,对时间同步精度的要求,各层设备是不同的。

间隔层设备需要到达ms精度;而过程层设备,由于主要传输采样值、跳闸信息,需要达到μs的同步精度。

智能变电站的测试设备DT6000系列(DT6000、DT6000E 和DT6000S)的对时精度可达μs的同步精度,完全满足变电站各层的设备的对时精度。

对时方式有哪些方式?
1. 脉冲对时方式
脉冲对时方式多使用空接点接入方式,主要有秒脉冲(PPS)、分脉冲(PPM)和时脉冲(PPH)三种对时方式。

脉冲对时方式的优点是可以获得较高精度的同步精度(μs级),对时接收电路比较简单。

不足之处是从设备必须预先设置正确的时间基准。

2. 串行口对时方式
串口对时方式是对时从设备通过串行口接收GPS时钟信息,来校正其自身的时钟。

由于串口接收一帧数据的时间较长,这种方式对时的额精度较低(ms级)。

3. IRIG-B对时方式
IRIG-B(简称B码)是专为时钟串行传输同步而制定的国际标准,采用脉宽编码调制。

同步时钟源每秒发出一帧含有秒、分、时、当前日期及年份的时钟信息。

IRIG-B对时方式融合了脉冲对时和串口对时的优点,具有较高的对时精度(μs级)。

4. 简单网络时间协议(SNTP)
SNTP基于NTP,适用于对时要求不是十分严格的网络,最高精度只能达到ms级。

5. IEEE 1588(PTP)
IEEE 1588是用于网络测量和控制系统的精密时钟同步协议标准,能达到μs级同步精度。

电力系统是一个实时系统,每个时刻系统的状态量均在发生变化。

微秒级的对时系统将保证电网运行人员掌握电网实时运行情况,对运行数据进行分析计算。

本章主要介绍了对时系统的重要性及对时系统的多种实现方式。

下一节小编会给大家讲解对时系统的校时方式,详细请见《浅析微秒级的对时系统(二)》。

相关文档
最新文档