小学工程问题应用题及答案

合集下载

小学工程问题精选题(含答案)

小学工程问题精选题(含答案)

工程问题知识要点:1、分数工程应用题,一般没有具体的工作总量,工作总量常用单位“1”表示,用1/工作时间 表示各单位的工作效率。

工作效率与完成工作总量所需时间互为倒数。

2、解工程问题的应用题,一般都是围绕寻找工作效率的问题进行。

3、工作效率、工作时间、工作总量是工程问题的三个基本量,解题时要注意对应关系。

例题:例1.一项工程,甲队单独干20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成。

问乙队单独完成这项工作需多少天?例2:一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天? 【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。

所以1÷【115 -(730 -115×3)÷(5-3)】=20(天)答:乙队单独完成全部工程需要20天。

例3:移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的1116 没有栽,已知哥哥每小时比弟弟每小时多栽7棵。

共要移栽西红柿苗多少棵?【思路导航】把“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、的合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几。

哥哥每小时栽总数的几分之几 (1-1116 -18 ×1)÷(3-1)=332一共要移栽的西红柿苗多少棵 7÷【332 -(18 -332 )】=112(棵)答:共要移栽西红柿苗112棵。

例4:一项工作,甲、乙、丙3人合做6小时可以完成。

如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的23 ;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的23。

小学经典数学应用题:工程问题(含答案解析)

小学经典数学应用题:工程问题(含答案解析)

⼩学经典数学应⽤题:⼯程问题(含答案解析)数学在⼩升初择校中的重要性已经不⽤多说,很多⼀线名校例如⼆中应元、六中珠江、⼴⼤附等都对数学情有独钟,对特别优秀的奥数⽜蛙甚⾄可以直接录取。

在⼩升初数学中,应⽤题⼜是⾼频考点,也是重点难点。

今天助⼿继续推出⼏道⼩学经典应⽤题——⼯程问题。

这些题⽬都是⼩升初奥数经典题、难题,建议家长保存起来,帮助孩⼦做好巩固和拓展。

1.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。

如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。

现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。

现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。

⼄单独做完这件⼯作要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。

已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。

单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。

甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。

现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案在本助⼿号对话框回复:答案0413即可查看答案及解析来源:⼴州⼩升初助⼿(id:xschelper)助⼿个⼈号:gzxsc666(关注我们,即可获得第⼀⼿升学资讯、学科复习指导。

(完整版)小学工程问题及答案

(完整版)小学工程问题及答案

(30-3×8)÷(4.2-3)=5(天). 很明显,最后转化成“鸡兔同笼”型问题.
由乙接着做,乙做的天数是甲做的天数的 3 倍,再 由丙接着做,丙做的天数是乙做的天数的 2 倍,终 于做完了这件工作.问总共用了多少天?
答:合作 3 天能完成这项工作. 解二:甲组 3 人 8 天能完成,因此 2 人 12 天能完
2400 个.问丙车间制作了多少个零件?
乙需丙帮助搬运
例 18 一个蓄水池,每分钟流入 4 立方米水.如果打
解一:仍设总工作量为 1. 甲每天比乙多完成 因此这批零件的总数是
(60- 5× 8)÷4= 5(小时). 三、水管问题
开 5 个水龙头,2 小时半就把水池水放空,如果打 开 8 个水龙头,1 小时半就把水池水放空.现在打开 13 个水龙头,问要多少时间才能把水放空?
因此,乙还要做 28+28= 56 (天). 答:乙还需要做 56 天.
我们都叫做“工程问题”.
下工作所需时间是
例 4 一件工程,甲队单独做 10 天完成,乙队单独
举一个简单例子.
(18- 2 × 3)÷ 3= 4(天).
做 30 天完成.现在两队合作,其间甲队休息了 2 天, 乙队休息了 8 天(不存在两队同一天休息).问开
一件工作,甲做 10 天可完成,乙做 15 天可完成. 解三:甲与乙的工作效率之比是
始到完工共用了多少天时间?
问两人合作几天可以完成?
6∶ 9= 2∶ 3.
解一:甲队单独做 8 天,乙队单独做 2 天,共完成
一件工作看成 1 个整体,因此可以把工作量算作 1. 所谓工作效率,就是单位时间内完成的工作量,我 们用的时间单位是“天”,1 天就是一个单位,
工作效率、工作时间这三个量,它们之间的基本数 完成.乙需要做几天可以完成全部工作?

六年级上册工程应用题及答案

六年级上册工程应用题及答案

六年级上册工程应用题及答案六年级上册工程应用题及答案 11.一列火车长120米,以每小时50公里的速度通过一座880米长的桥。

火车从上桥到完全下桥需要多少秒?解:50千米=50000米50000/(60*60)=125/9(米)120+880=1000(米)1000/(125/9)=72(秒)答:火车从开始上桥到完全离开桥要72秒.2、一个打字员打一篇稿件,第一天打了总数的25%,第二天打了总数的40%,第二天比第一天多打6页,这篇稿件由多少页?解:设一共X页,则40%X-25%X=6X=40答:一共40页3.6 (1)班今天在校48人,2人请假。

求今天这个班的出勤率。

解:48/(48+2)=*100%=96%答:出勤率96%4、妈妈存入银行5000元定期两年,年利率是2.25%,到期取款时,妈妈应缴纳20%的利息税,妈妈应缴纳税多少元?纳税后妈妈共取出多少元?解:利息=本金*利率*时间利息=5000*2.25%*2=225(元)税=225*20%=45(元)纳税后妈妈共取5000+225-45=5180(元)答:(1)45元 (2)5180元5.甲、乙、丙之和为1160。

a是B and B的一半,是c的两倍。

这三个数字是什么?解:1160÷(1+2+1)=290(甲、丙)290×2=580(乙)六年级上册工程应用题及答案 21.甲乙双方距离255km,两车同时从两地出发。

A车时速48公里,B车时速37公里,两车几小时后相遇?解:255/(48+37)=32.向群文具厂每小时能生产250个铅笔盒。

多少小时能生产一万个?解:设:x小时能生产10000个250x=10000x=40答:40小时能生产100003.一个长方体的铁盒子,长18厘米,宽15厘米,高12厘米。

这个铁盒子的体积是多少?解:18*15*12=32404.一个立方体的边长15厘米。

它的体积是多少?解:15*15*15=33755、修一条水渠,甲队单独修要用30天,已队单独修要用20天,两队合修多少天可以完成?解:1/30+1/20=1/121÷12=12天六年级上册工程应用题及答案 31.一块三角形的土地,底高358米,高160米。

10道小学奥数工程问题及答案解析

10道小学奥数工程问题及答案解析

10道小学奥数工程问题及答案解析一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。

两队合作需要多少天完成?二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。

如果两队合作,多少天能修完这条公路的一半?三、题目3一项工程,甲队独做15天完成,乙队独做10天完成。

甲队先做5天后,乙队加入,两队合作还需多少天完成?一条水渠,甲队修建需要25天,乙队修建需要20天。

如果两队同时从两端开始修建,多少天能相遇并修完整条水渠?五、题目5一项工程,甲队独做需要18天完成,乙队独做需要24天完成。

如果甲队先做3天后,乙队加入,两队合作还需要多少天才能完成?六、题目6一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。

如果两队合作,需要多少天才能完成这项工程?一条公路,甲工程队修建需要20天,乙工程队修建需要30天。

如果两队从两端同时开始修建,多少天能修完整条公路?八、题目8一项工程,甲队独做12天完成,乙队独做15天完成。

甲队先做3天后,乙队加入,两队合作还需多少天完成?九、题目9修建一条水渠,甲队独做需要20天,乙队独做需要25天。

两队合作5天后,甲队离开,乙队还需多少天才能完成?十、题目10一个水池有甲、乙两个进水管,单开甲管15小时可将水池注满,单开乙管20小时可将水池注满。

如果两管同时打开,多少小时可以注满水池的3/4?以下是答案一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。

两队合作需要多少天完成?答案:6.67天,约等于7天(因为天数不能为小数,所以向上取整)解析:甲队每天完成工程的1/12,乙队每天完成工程的1/15。

两队合作每天完成的工程比例为1/12 + 1/15 = 9/60 = 3/20。

因此,两队合作完成整个工程需要的时间为1 / (3/20) = 20/3天,约等于6.67天,向上取整为7天。

二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。

二年级工程问题应用题及答案

二年级工程问题应用题及答案

二年级工程问题应用题及答案1.在新农村建设中,区政府为南村修水泥路支持了一批水泥,用大卡车25辆,或小卡车30辆可以运完,今用大卡车10辆,小卡车15辆装这一次,还余下8吨没有运走,这批水泥一共有多少吨?2.学校把校园绿地平均分给六年级两个班清理,六(1)班用了15分钟完成,六(2)班用了20分钟完成.如果两班合做几分钟可以完成?3.有一个水池,单开进水管18分钟可注满空池,单开排水管24分钟可将满池水放尽,现在水池里已有六分之一的水,如果同时打开进水管和出水管,多长时间可注满水池?4.工程队修一条公路,计划每天修100米,40天完成.实际2天就修了800米,照这样的速度,多少天可以完成?5.整理一批图书,李老师单独整理要20分钟,小华单独整理要30分钟。

现李老师和小华共同整理,要几分钟完成?完成时李老师比小华多整理96本,这批图书一共多少本?6.一份稿件王红独抄需要8小时,这份稿件正由别人抄了1/5,剩下的交给王红抄,还要几小时才能完成一半?7.甲、乙两人加工一批零件,甲独做30天完成,乙每天可完成20个。

两人合做12天刚好完成。

这批零件共有多少个?8.甲地去乙地,去时用了5小时,返回时用了4小时,车速提高了百分之几?9.小玲12分钟打960个字,小芳18分钟打1170个字。

(1)她们俩谁打字的速度快?(2)一篇2000字的文章谁能在半个小时打完?10.修筑一条水泥路,甲队独修需要12天完成,乙队3天完成.两队合修几天完成?11.一条水渠全长5312米.已经修了8天,还剩456米没修,平均每天修多少米?12.小红4分钟打字168个.小明2分钟打字90个。

谁打字打得快?13.一项工程,甲、乙合作6天完成;甲独做10天完成,乙独做几天完成?14.师徒两人加工一种零件.用同样的时间,徒弟可以加工3个,师傅可以加工5个。

如果两人共同加工200个这样的零件,师傅、徒弟分别要加工多少个?15.幼儿园的老师把一些画片分给A,B,C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A 班,每人能得几张?16.有一块铁皮,能做8个同样的圆柱形水桶的侧面,或做同一规格的圆柱形水桶的底24个。

小学数学工程问题应用题

小学数学工程问题应用题1、加工360个零件,单独完成这批任务,甲需要20天,乙需要30天,两人共同工作,需要多少天能完成任务?分析:加工360个零件,单独完成,甲需20天,甲的工作效率是360÷20=18(个),乙需要30天,乙的工作效率是360÷30=12(个),两人合作,那么工作效率和是18+12=30(个)。

根据:工作总量÷工作效率和=合做的工作时间,即360÷30=12(天)解:360(360÷20+360÷30)=360÷30=12(天)答:需要12天能完成任务。

或:如果把工作总量360个看作单位“1”,那么,甲的工作效率是1/20,乙的工作效率是1/30他们的工作效率和是1/20+1/30,根据:工作总量÷工作效率和=合做的工作时间1÷(1/20+1/30)=1÷1/12=12(天)2、一项工程,由甲队单独工作需要15天完成,由乙队单独工作需要12天完成,由丙队单独工作需要10天完成。

现在由甲乙两个工程共同工作了3天后,剩下的工程由丙队单独完成,丙队还需要几天才能完成这项工程?分析:这一项工程看作单位“1”,甲队单独工作需15天完成,工效应是1/15,乙队单独工作需要12天完成,乙工效应是1/12,丙队单独工作需10天完成,丙队工效应是1/10,现由甲乙两队先共同工作3天,可完成这项工程的.(1/15+1/12)×3=9/20,还剩下1-9/20=11/20,剩下的由丙队去完成,需要的天数是11/20÷1/10解:[1-(1/15+1/12)×3]÷1/10=[1-9/20]÷1/10=11/20÷1/10=5.5(天)答:丙队还需要工作5.5(天)3、一个水池安装甲、乙两个进水管和丙放水管,单开甲管4小时能把空池注满水,单开乙管5小时能把空池注满水,单开丙管3小时能把满池水放完。

小学数学六年级工程问题应用题及答案

小学数学六年级工程问题应用题及答案小学数学六年级工程问题应用题及答案 1工科一直是考试的必答题。

我们来看看一些典型的问题。

例1:一群工人完成了某个项目。

如果能再增加6个工人,10天就能完成;如果能加2个人,需要20天才能完成。

现在只能增加两个人,那么这个项目需要多少天才能完成?根据题目意思,我们先假设原来有工人为x人那么我们可以列出等式:(x+6)×10=(x+2)×2010x+60=20x+4010x=20x=2(个)那么工作的总量我们就能算出来(2+6)×10=80增加两个人的需要的天数就可以算出来为80÷(2+2)=20(天)a:那么完成这个项目需要20天。

例2:A队和B队共同修复一段公路。

如果A队单独做,需要20天,B队单独做需要12天。

现在两队同时从两端出发,在距离中点750米处相遇。

这条路有多长?根据题目意思,我们知道甲和乙的速度比(1÷20除以1÷12)=3÷5我们假设这段公路总共为8份,那么甲修了公路的3÷8,乙修了公路的5÷8他们同时开工,在距离中点750米处相遇,那么我们就知道乙比甲·多修了750×2=1500(米)3÷8-5÷8=1÷4,这是乙比甲多修的为总路程的1÷4我们就可以算出这段公路总长为1500除以1÷4=6000(米)答:这段公路长6000米。

例3:有一批零件要加工。

A一个人做要8天,B一个人做要10天。

如果两个人合作,那么A在完成任务时比B多做了40个零件。

这批有多少零件?根据题目意思,我们知道甲和乙做同样的工作,工作时间比是8➗10=4÷5那么他们的工作效率之比位5÷4我们设这批零件总量为9份,那么完成任务时甲比乙多做了40个,这就是其中的一份那么零件的总数量就可以算出来了为40➗1÷9=40×9=360(个)答:这批零件共有360个。

(完整)六年级数学工程问题(附例题答案)

第七讲 工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是101,乙的工作效率是151,我们想求两人合作所需时间,就要先求两人合作的工作效率151101+,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天) 实际上我们把111()1015÷+这个算式,先用30乘了一下,都变成整数计算,就方便些. 10天与15天,体现了甲、乙两人工作效率之间比例关系11:3:21015=.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据3:2,两人合作时,甲应完成全部工作的33325=+,所需时间是31065⨯=(天). 因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析:甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9 ×3=1/3余下的工作:1 -1/3 =2/3 乙需做的天数:2/3 ÷1/6=4(天)例2.有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。

(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)

(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)1.某修路队修好一条路,第一天修了全长的14;第二天修了余下的13,正好是150米。

这条路长多少米? 【答案】600米【解析】【详解】(1-14)×13=14150÷14=600(米) 答:这条路长600米。

2.一条公路,如果由甲队单独修,24天可以修完;如果由乙队单独修,36天可以修完,现在由乙队先修6天,剩下的由两队合修,还要多少天可以修完?【答案】12天【解析】【详解】÷=÷ =12(天)3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。

丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?【答案】35【解析】把一池水的水量看为单位 “1”,5小时甲乙两个水管共注水1195201616⎛⎫+⨯= ⎪⎝⎭,离注满还有716,这时打开丙管,则注满水池需要的时间为711116201610⎛⎫÷+- ⎪⎝⎭。

【详解】11111152016201610⎡⎤⎛⎫⎛⎫-+⨯÷+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ =716÷180=35(小时)答:水池注满还需要35小时。

【点睛】本题考查工程问题,此类问题需要掌握工作效率、工作时间和工作总量之间的基本关系:工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4.修一条路,甲工程队单独修需要20天,乙工程队单独修需30天,先由甲单独修5天,再由甲、乙两个工程队合修,还需多少天完成?【答案】9天【解析】【详解】1÷20=1 201÷30=1 30(1-120×5)÷(120+130)=9(天)答:由甲单独修5天,再由甲、乙两个工程队合修,还需9天完成.5.某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需要48天完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学工程问题应用题及答案
例1:
一批零件,甲独做6小时完成,乙独做8小时完成。

现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
解题思路:
设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。

因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷(1/6-1/8)=168(个)
解二上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7
所以,这批零件共有24÷1/7=168(个)
例2:
一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。

现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
解题思路:
必须先求出各人每小时的工作效率。

如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷12=560÷10=6 60÷15=4
因此余下的工作量由乙丙合做还需要
(60-5×2)÷(6+4)=5(小时)
也可以用(1-1/12*2)/(1/10+1/15)
例3
一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。

当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?
解题思路:
注(排)水问题是一类特殊的工程问题。

往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。

为此需要知道进水管、排水管的工作效率及总工作量(一池水)。

只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知
每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1
即一个排水管与每个进水管的工作效率相同。

由此可知
一池水的总工作量为1×4×5-1×5=15
又因为在2小时内,每个进水管的注水量为1×2,
所以,2小时内注满一池水
至少需要多少个进水管?(15+1×2)÷(1×2)=8.5≈9(个)
【数量关系】
解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
【解题思路和方法】
变通后可以利用上述数量关系的公式。

相关文档
最新文档