一次函数教学反思
八年级数学下册《一次函数》教学反思

八年级数学下册《一次函数》教学反思八年级数学下册《一次函数》教学反思身为一位到岗不久的教师,我们要有很强的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,教学反思应该怎么写才好呢?以下是小编为大家收集的八年级数学下册《一次函数》教学反思,欢迎阅读与收藏。
八年级数学下册《一次函数》教学反思1本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。
求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。
通过本节课的教学发现:1、有一小部分的学生还是不懂得看函数图像。
2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。
3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。
另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。
1.一次函数的'图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。
2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。
八年级数学下册《一次函数》教学反思2今天上完一次函数的图像这节课,颇有感慨。
一次函数的图像在本章起着很重要的作用,因为只有掌握了函数图象的画法,学生才能够画出函数图像,从而从图像中学习一次函数的性质,也为后一节的一次函数与二元一次方程,一次函数与一次不等式打下基础。
我在设计本节课时,仔细研究了新课标,认为本节的重点是:1、通过列表、描点、连线教会学生会画一次函数的图像,并与学生一起总结一次函数的图像,画一次函数图像需要几个点,一次函数的图像有什么特征;2、让学生理解图像上的点的坐标与函数表达式之间的关系。
教学环节设计分为三步:1、通过复习再次理解函数图像的概念,并通过举例让学生了解,让学生明确函数图像的重要作用。
八年级数学一次函数的应用教学反思

八年级数学一次函数的应用教学反思函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容,下面给大家分享一次函数的应用教学反思,一起来看看吧!一次函数的应用教学反思1 从整体上反思在这节课中我总体完成了知识目标,但是过程目标与情感态度价值观目标在课堂中体现的不过好,完成了重点但没有更好的突破难点,整体的课堂环节较为完整。
首先将课堂实施做以反思:在创设情境,这块在课堂实施过程中做得还算可以,基本上达到预设效果,但在揭示课题时语言组合的还不够完美。
在呈现定义,促进一次函数确定关系式的形成过急、过快,没有进行重点反复强调。
学生在得出待定系数确定一次函数的关系式不太熟悉和确定,没能深一步的促进理解。
还有没有及时归纳数学思想。
其次说说教学设计中存在的问题1.实际问题的背景有点远,如果能是我们身边的实际情景,我想效果更佳,2.在新旧联系,正反对照中习题设计的太单一,题量有点少。
第三,教师在课堂中的表现1.整个课堂中紧张,所以也有点影响学生的正常发挥,紧张的原因我还是认为自己准备的还是不够充分,底气不足。
2.课堂中语音不够简练、生动,缺乏数学严谨性,缺乏生活化的语音。
语言较干瘪,重复较多。
在幻灯片切换时候衔接语不好,过于生硬。
自己想想试着从以下几点做点改进:一、加强同学生的沟通,课前要检查预习,布置任务要有针对性。
课上多注意学困生的表现。
二、加强备课的精细度,深度。
备学生在备课中的比重。
认真思考和分析学生的接受情况,实时掌控学生学习状态。
精心选择适合学生和教学内容的表现方法来呈现。
三、多和同事交流、沟通。
多向他们取取经,多在一起探讨教学。
取长补短,让自己尽快的成长和成熟起来。
一次函数的应用教学反思2 本节课通过提出问题,创设情境来提高学生的学习兴趣,然后通过教师和学生的双边活动让学生掌握一次函数的应用,并拓展到决策性问题的探究,以锻炼学生的探究归纳能力。
教师帮助学生建立近似人口增长的一次函数,并说明这种模糊方法在数学中的应用,让其逐步领略数学应用的奥妙所在.学生经过建立坐标系、描点、连线,熟悉函数作图的一般过程,并在教师指导下确立近似一次函数的解析式,提高预估能力.这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。
一次函数复习课后的教学反思范文(精选6篇)

一次函数复习课后的教学反思范文(精选6篇)一次函数复习课后的教学反思范文(精选6篇)身为一名优秀的人民教师,我们需要很强的教学能力,写教学反思能总结教学过程中的很多讲课技巧,那么大家知道正规的教学反思怎么写吗?以下是小编整理的一次函数复习课后的教学反思范文(精选6篇),仅供参考,希望能够帮助到大家。
一次函数复习课后的教学反思1一次函数的图象和性质在实际生活中的应用十分广泛,有行程、温度、利润、电话费等问题,特别是与经济问题相关的问题是近几年各省市中考数学试题中的热点题型. 能用一次决实际问题,对发展学生的数学应用能力和建模能力起着非常重要的作用。
上完这节课后,我希望学生对这节课的内容能更加熟悉,能更加重视这部分内容;在利用图表信息得到与一次函数表达式有关数据的过程中,体会“数形结合”思想在数学应用中的重要地位。
上完这节课后,受到其他老师和区教研员肯定的是:1、教态比较自然;课堂给予学生学习时间;学生学习积极性较强,不同层次的学生都在学习。
2、所选例题针对性较强,较有层次。
3、能够把学生出现的问题预测到了。
4、比较注重对学生做题的常规要求,特别是要求学生作图用尺子和圆规。
5、比较注重学生的评价,不管是老师对学生,还是学生对学生的评价。
但也有很多不足的地方:1、时间安排不够合理,在复习回顾所花的时间过多,这主要是跟我的习惯有关,对于学生讲过的内容,总是再重复一次,致使浪费了不必要的时间;以后上课要多在这些细节的地方注意,避免不必要的浪费时间;自己控制课堂时间的能力还有待加强。
2、学生紧张过度,自己调节能力功底不够,不能及时调节学生情绪,而给学生相互讨论的时间不够充裕,学生与学生,学生与老师之间交流互动的机会不够,致使课堂气氛沉闷。
自己应该学会怎么去调控学生的情绪,这也是我今后应该重点学习的。
3、老师包办太多,对学生过于不放心。
如在讲解如何求蜡烛燃烧剩下的高度h与燃烧时间t的函数关系式,学生回答:设y=kx+b,那时我就很着急,问:是y与x吗?这时学生就急急忙忙改为h=kt+b。
《一次函数》八年级数学教学反思

《一次函数》八年级数学教学反思•相关推荐《一次函数》八年级数学教学反思(精选13篇)在日常生活中,我们要在课堂教学中快速成长,反思过往之事,活在当下之时。
怎样写反思才更能起到其作用呢?以下是小编帮大家整理的《一次函数》八年级数学教学反思(精选13篇),仅供参考,欢迎大家阅读。
《一次函数》八年级数学教学反思篇1成为教师后才发现当好教师不容易。
结合一次函数的教学谈谈自己的几点肤浅感受、几处满意之笔、遗憾之点,以及对教材的几点不成熟的建议。
“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
教学完后,对新教材有了一些更深的认识。
肤浅感受:备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
一、教材课时安排过紧有关。
初二教材的教学时间不够,教参函数第一节第二节二节课,第三节一次函数节,课时太少,本节要加一个复习课二、教学内容不好处理。
在“2.一次函数的图象”中有平移的问题,1.(1)将直线y=3x向下平移2个单位,得到直线_____________________;(2)将直线y=-x-5向上平移5个单位,得到直线_____________________.与多位教师讨论后,我们用学案(下面的表)来处理,让学生更多一点感性认识,少一点理论上的结论2.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲环节二:概括一次函数图象的性质一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.(3)当b>0时,这时函数的图象与y轴的交点在:(4)当b>0时,这时函数的图象与y轴的交点在:待定系数法的引入上用“弹簧的长度y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),”三、难度不好处理:如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y=当m取什么值时,y是x的一次函数?当m取什么值是,y 是x的正比例函数。
一次函数的图像和性质教学反思

一次函数的图像和性质教学反思 篇一:一次函数图像教学反思 一次函数图像教学反思 一次函数图像>教学反思(一) 教学过程中教师应通过情境创设激发学生的学习兴趣, 对函数与图像的对应关系应让学生 动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。
在得出结论之后,让 学生能运用 “ 两点确定一条直线 ” ,很快做出一次函数的图像。
在巩固练习活动中,鼓励学 生积极思考,提高学生解决实际问题的能力。
根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发 学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍, 因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b , 那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对 象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的 学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函 数及性质的认识。
本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确 定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。
本节课 设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养, 为 后继学习打下基础。
由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理 解该知识,。
在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交 流、归纳等环节较成功地完成了教学目标,收到了较好的效果。
但还存在着不尽人意的地方, 由于课的内容容量较大, 对于有些知识点, 如 “ 随着 x 值的增大, y 的值分别如何化? ” , 本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动 开展的不充分。
一次函数教学反思

一次函数教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、规章制度、应急预案、条据书信、合同协议、评语大全、演讲致辞、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, rules and regulations, emergency plans, policy letters, contract agreements, comprehensive reviews, speeches, insights, teaching materials, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!一次函数教学反思一次函数教学反思(通用10篇)通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
一次函数的图像与性质教学反思
一次函数的图像与性质教学反思第一篇:一次函数的图像与性质教学反思一次函数的图像与性质教学反思一、总体概述:《一次函数图像的性质》这节课主要是在学生熟练掌握一次函数图像画法的基础上,通过观察几组特殊函数图象的特点和函数表达式之间关系归纳总结出函数图像的一般规律。
加深对图象表示的理解,进一步体会数形结合以及从特殊到一般的数学思想。
本节课的学习目标主要包括三部分内容:1.如果函数表达式中的k 相同,那么他们的函数图像互相平行;2.将直线y=kx沿y轴向上平移b个单位,得到直线y=kx+b;沿y轴向下平移b个单位,得到直线y=kx-b;3.由k、b的正负号判断函数图像所经过的象限。
本节课的难点是根据函数表达式中k和b的正负快速的画出图像的草图进而判断出图像所经过的象限。
二:教学流程上课一开始我让学生自己先动手运用两点法画出y=-2x,y=-2x+3,y=-2x-4这三个函数的图像,接着让给学生观察这三个函数图象的位置关系以及函数表达式中的共同点,并用自己的语言总结;第二步,我以教鞭作为教具取一个固定的点在黑板上动态的演示出直线的上下平移,得出图像的平移与函数表达式之间的关系;再讲最后一个内容之前先让学生观察函数表达式中的b和图像与y轴的交点的纵坐标之间的关系,使学生了解表达式中的b就是图像与y轴的那个交点,从而得出当y>0时图像交与y轴的正半轴,当y<0时,图像交与y轴的负半轴,再结合k正负决定函数的增减性这个知识点,学会在没有要求的情况下大致的画出函数图象,进而判断出函数所经过的象限。
这节课基本脱离教材的束缚从学生的认知顺序出发,层层递进。
在教学当中设计了多个学生自己思考的过程,给学生发表见解的机会,把课堂的大部分时间还给学生,教师做一个引导的作用让学生多思考,自己动手得到结论,让他们的印象更加深刻,在理解的基础上熟练掌握并运用结论。
通过随后的提问、练习以及下课前得小测发现大部分学生都掌握的很好,基本完成了学习目标。
一次函数的教学反思
一次函数的教学反思这次作者给大家整理了一次函数的教学反思(共含13篇),供大家阅读参考。
篇1:一次函数教学反思教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。
在得出结论之后,让学生能运用“ 两点确定一条直线” ,很快做出一次函数的图像。
在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。
根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。
本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。
本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。
由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识。
在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。
但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如“ 随着 x 值的增大, y 的值分别如何化?” ,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。
一次函数教学反思通用[15篇]
一次函数教学反思通用[15篇]一次函数教学反思1一、结合实际,引入概念正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项活动的把握是自始至终存在的教学难点。
本节课对一次函数、正比例函数的概念学习仅作“了解”要求,故我们根据实际问题列出函数表达式,进一步归纳得出形如y=kx+b(k,b为常数;k≠0) 的函数叫做一次函数,特别地,b当 b=0时,一次函数叫做正比例函数。
在这里教师会引导学生观察x的次数,由此让学生加深对“一次”的理解。
然后教师马上举几个例子让学生判断,比如“ y=-2x+1”、“ y=x2+5”等等。
这里大部分学生能够从形式上正确判断,即达到了“了解”目的。
二、直观教学,激发主体探索。
(1)学生用描点法画出一次函数的图象,教师结合PPT展示,让学生从直观上看出一次函数图象是一条直线,进而利用直线公理得出可用两点法画一次函数图象。
(2)借助几何画板的动画演示让学生直接感受并发现一次函数的增减性。
当点在直线上运动时,横坐标向右移动而纵坐标向上移动,或者横坐标向右移动而纵坐标向下移动,则形象的理解“y随x的增大而增大”和“y随x的增大而减小”的意义。
学生在观看动画的过程中理解函数变化过程的规律,归纳出函数的增减性。
(3)借助几何画板的动画演示让学生直接感受并发现平移的规律,对于相同的.k值,随着b值的不同,函数图象上移或下移。
学生在观看动画的过程中理解函数图象平移的规律。
三、修正教学设计,改善教学。
环节一、正比例函数、一次函数的概念教学设计里只有两个实际问题分别来引入一次函数、正比例函数的概念。
需要多加几个实际问题来引入概念,毕竟学生对概念的认识和理解是一个难点。
环节二、一次函数的图象原设计中,在归纳出一次函数图象是一条直线后,我们用“两点确定一条直线”公理引出两点法来画一次函数的图象。
这里设计不足的是,用这两点画出来的图象就是该一次函数图象吗?如果加上以下的小环节也许就可以解决这个缺陷:(1)从画出的该直线上取两个点,让学生验证是否满足函数表达式;(2)由函数表达式取几个点的坐标,判断它们是否在所画的函数图象上。
一次函数教学反思
一次函数教学反思一次函数教学反思一次函数教学反思1通过教学活动,充分体现了学生自主、合作、探究的学习方式。
重视学生的数学学习过程和他们的个性体验,充分让学生体会数学源于生活中的实际问题,又应用于生活。
突出人人学有价值的数学的思想。
帮助学生在学习过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得数学活动的经验。
给学生充分思考的空间和时间。
让学生自已互相学习,形成互动的'局面。
互相评价、互相尊重和互相信任。
在一种和谐、热烈讨论的气氛中进步成长,从而激发学生的学习兴趣。
但在如何把握好时间,使教学紧凑一些,增大教学容量,教学灵活选用各个教学环节还不够。
一次函数教学反思2一次函数与正比例函数作为函数中最简单、应用最为广泛的函数,本节课我力图通过问题情境的创设,例题的设计,学生活动的安排,使学生能深刻地感受到数学与生活的联系。
本节课开始以教师乘车从渭南到故市这一问题情境,拉近了师生的距离,同时能使学生感受到生活处处可见函数的影子。
由于小组之间有一个竞争机制在里面(评选出本节课的最佳合作小组),在探究活动中,学生探究的积极性相对比较高,参与率高,达到了学生积极参与的目的。
在选题中,由于选题典型且由易到难,逐层递进,有利于学生的思考。
本节课力求让所有学生积极参与,因此在各小组得分差距很大的情况下(3、6小组尚无得分),我采取了激励措施,将较易的.题留给他们,并对回答对的同学掌声鼓励,极大地调动了这两个小组同学的积极性。
对于学习目标的呈现也有利于学生学完本节课之后对自己的检测、对照、小结,当堂目标检测学生完成也相对较好。
总体上,本节课体现了以学生为主体,以问题为载体,以小组活动为核心展开,教师的亲和力也拉近了师生之间的距离,及时鼓励评价学生,课前语和结束语激励学生学知识学做人。
本节课的不足之处:1、本节课放的还不够开,可能是由于课堂容量较大,担心任务是否能按时完成,因而部分题没有留充分思考、交流的空间,显得处理问题有些着急。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数教学反思函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
教学完后,对新教材有了一些更深的认识。
精心备课备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
一:教材课时安排过紧有关。
初二教材的教学时间不够,教参函数第一节第二节二节课,第三节一次函数节,课时太少,本节要加一个复习课二:教学内容不好处理。
一次函数的性质中无b对函数的图象的影响,但题中有,要补讲环节二:概括一次函数图象的性质一次函数=kx+b有下列性质:1)当k>0时,随x的增大而______,这时函数的图象从左到右_____;2)当k<0时,随x的增大而______,这时函数的图象从左到右_____.3)当b>0时,这时函数的图象与轴的交点在:4)当b>0时,这时函数的图象与轴的交点在:待定系数法的引入上用弹簧的长度(厘米)来讲的,太难,要先讲书上的做一做:已知一次函数=kx+b的图象经过点(- 1,1)和点(1,-5),三:难度不好处理:如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数= 当m取什么值时,是x的一次函数?当m取什么值是,是x 的正比例函数。
学生难以理解,我个人认为太难,超出了学生的理解能力。
反而对一个具体的一次函数=-2x+3中k,b是多少强调的不多。
满意之笔一次函数有以下令自己较满意的地方:一. 结合生活实例,充分调动学生学习的激情,恰当的过渡,点燃其求知的欲望。
在本节课的引入部分采用班级里的真人真事(运用校运动会的具体事例)在此跑步过程中涉及到哪些量?假定每位选手各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?路程是时间的一次函数吗?等过渡性的问句既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二.大胆对教材作大幅度调整、修改对知识内容的完整性作了补充。
附一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。
)教材对一次函数图象的画法阐释得不太完整、详尽。
学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。
虽然在课后的习题与作业本中都有涉及到:当一次函数的自变量限制在某一范围时如何画此一次函数的图象,但在教材中似乎没有涉及到此类问题,对于B班的学生需要教师对此类问题做相关示范解决。
, , , ,而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)在以后的教学工作中,我要再接再厉,以能更好的体现数学课堂教学的有效性。
篇二:一次函数在学习了正比例函数的概念之后进行一次函数的概念学习,学生还是比较有信心学好的。
课例根据教材的安排,通过设计经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系;通过思考题来不断细化教材,达到层层铺垫、分层递进的目的。
1.理解一次函数和正比例函数的概念;通过类比的方法学习一次函数,体会数学研究方法多样性。
根据实际问题列出简单的一次函数的表达式.找出问题中的变量并用字母表示是探求函数关系的第一步。
3.本节课重点讲授了运用函数的关系式来表达实际问题,通过引导分析,感觉学生收获比较大。
另外,写出函数的关系式,学生比较困难,本节课也存在可以不断提高完善的地方。
篇三:一次函数一次函数解析式的求法一般是采用待定系法,对于学生而言,如何理解这种方法是解决这一问题的关键。
为了解决这个问题,我举了这样一个例子:已知直线=kx+b经过点(1,2)和点(-2,3)试求这个函数关系式?学生们很容易想到列方程组解决这个问题,我却提出了一个比较简单的问题,为什么你要选择列方程组解决这个问题,你的目的是什么?我教的那个班的学生沉默了好久,是啊,对于学生来说,他们习惯于如何做题,却从不想为什么采用这种方法,这种方法的出发点是什么?经过一段时间的思考,有的学生终于答出了这个问题:他们说这是为了确定k,b的值,只要k,b的值确定了,那么一次函数解析式就确定下来了。
而实际他们回答的恰恰是待定系数法的精髓,学生们只有能理解到这一点才能领会到待定系数法的精髓。
进而我总结,如果知道一次函数图象上个点就能确定它的解析式。
如上例是显而易见的两点。
接着我给出另一个例题:已知一次函数图象过点(1,-2),且与直线=3x+2交轴于同一点,试求该函数的解析式。
这个题一个点显而易见,另一个点是隐含的,学生们开始找到一个明线,通过分析找到了另一个暗线,最终大家一致认为两点确定一条直线,想求一次函数的解析式,只要找到两个点的坐标就行。
最后我出了一个例题:一个一次函数的图象,与直线=2x+1的交点M的横坐标为2,与直线=-x+2的交点N的纵坐标为1,求这个一次函数的解析式。
学生们发现没有一条明线,全是暗线,但只要理解找两个点求一次函数解析式,看似难的问题就会迎刃而解。
如果学生能理解透这三道其实是一类题,他们就会利用待定系数法求一次函数解析式了。
篇四:一次函数本周按教学进度应该上到确定一次函数表达式,但在教学过程中,发现学生对于坐标系中描点错误百出,对坐标是有序实数对这一点理解不够深,在运用过程中往往容易把横纵坐标看错,标错位置,导致在一次函数作图的时候闹笑话。
仔细反思了这一阶段以来的教学,发现这一问题实际上是在上一章《确定位置》就已经埋下了隐患。
在第五章确定位置的教学中,学生在学习如何利用坐标在坐标系中描点的时候,给学生练习的时间不够充分,在老师看来,这无疑是很简单的重复性练习,殊不知正是这一重复练习,可以加深学生对坐标系的认识,进一步理解有序实数对,坐标中的横纵坐标交换位置,会导致绘出的点相差很远,在教材中,是利用坐标点连线构成一系列美丽的图案,促使学生更有兴趣去练习。
在今后的教学过程中,不能过于简单地处理这一节教材内容,仍然需要按部就班,欲速则不达。
此外在讲一次函数图象性质的时候,补充内容不宜过多,许多中考题中对一次函数部分的要求是站在整个三年数学学习的基础上,仅仅在第一次学习一次函数就提出这些要求对学生来讲比较困难。
确定一次函数表达式的教学中,我们也发现这类问题,配套的辅导资料中,相当多的题目需要借助二元一次方程组,而学生目前并没有系统学习解二元一次方程组,所以,我们需要在教学过程中把握一个度。
拿今天上的确定一次函数表达式的教学讲,我在处理教材的时候,重新编写了例题。
首先给出一组已知一个点的正比例函数的图象,让学生来求它们的表达式,在此基础上,再给出一组已知轴交点坐标和另一点坐标的一次函数图象,最后是给出一组已知参数k的一次函数图象。
在设计本节课例题的时候,我参考了部分省市的中考题,简化其中对二元一次方程组部分的要求,让学生感受确定一次函数图象需要两个条件,并进一步明确解题的规范,通过规范养成,培养学生有条理地思维一次函数表达式的确定问题。
一次函数的教学在本学期中是一个重点内容,由于后期围绕一次函数的题型非常多,要求也更高,对学生在此阶段的基础提出了很高的要求,如果不能在这个阶段让学生充分理解一次函数概念及图象性质,对中考复习来说是一场灾难,到那时,就会发现,原本以为很简单的问题,学生硬是搞不明白,所以,本章剩下的两节内容仍然需要研究教材,发挥八年级组内各位老师的智慧,让学生收获更多,理解更深,打下良好的基础。
篇五:一次函数一次函数是学生在学习了正比例函数、反比例函数等知识基础上进行学习的,因此学生对一次函数比较熟悉了,所以,本教学设计注意以旧引新,通过复习,让学生讨论、试做,发挥学生的主体性,掌握一次函数的概念、图象性质以及实际应用。
巩固练习中,从基本练习、例题精讲一直到巩固练习,设计均有层次,有坡度。
这是一节章节复习课,虽然课程容量大,内容又较抽象,但采用了先进的多媒体辅助教学,使本课教学的知识概念变得具体、生动、可信。
本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力.本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力.不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。
重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。