均值的检验
均值检验方差分析课件

通过均值检验和方差分析,可以研究消费者行为、消费习惯、消费 心理等方面的差异和变化。
产业组织
在产业组织研究中,均值检验和方差分析可用于研究企业规模、市 场结构、企业绩效等方面的差异和变化。
04
均值检验与方差分析的注意事项
数据正态性的检验
总结词
在进行均值检验和方差分析之前,需要检验数据是否符合正态分布。正态分布是许多统计方法的前提假设,如果 数据不满足正态分布,可能导致分析结果不准确。
详细描述
为了控制第一类错误的概率,可以采用适当 的统计方法进行多重比较校正。例如,在方 差分析后,可以使用多重比较校正的方法( 如Tukey's HSD、Scheffé's method)来比 较各组之间的差异,以减少假阳性错误。此 外,还可以根据实际研究目的和数据情况选
择其他适当的统计方法进行多重比较。
适用场景
比较不同组别或不同时间点的平均值
例如比较不同班级的平均成绩、不同月份的平均销售额等。
检验总体均值的假设
例如检验某产品的平均质量是否符合标准。
计算方法
01
02
03
04
计算各组的平均值。
计算标准误差或标准差。
使用t检验或z检验等方法比较 平均值。
根据p值判断是否拒绝原假设 ,即各组平均值相等。
05
均值检验与方差分析的软件实现
SPSS软件实现
描述性统计
SPSS提供了丰富的描述性统计功能,如均值、中位数、众数、标准 差等,用于初步了解数据分布情况。
均值检验
SPSS中的“比较均值”功能可以比较两组或多组数据的均值,通过 T检验或非参数检验等方法,判断组间差异是否具有统计学显著性 。
方差分析
均值检验(T检验)规范

T检验的类型
数据 类型 连 续 数 据
比较内容
工具
一组数据的平均值与目标值相比较
两组数据的平均值相比较
两组成对数据的平均值相比较(或当数据 匹配时,比较两组平均值)
双样本T检验
双样本T检验
例子:某炼铁厂烧结为了提高烧结矿质量(烧结 矿强度),新进一种富矿粉,在烧结生产进行配 加试验,采用了两种配料方案A和B,在生产试 验时,除配料方案不同外,其他条件尽可能做到 相同,各生产6天得到烧结矿强度数据。且认为 两组数据来自相互独立的正态总体。问A和B方 案烧结矿质量好?
3、正态性检验
单样本T检验
百分比
面粉重量 的概率图
正态
99 均值 20.09
标准差 0.1371
95
N
30
90
AD 0.465
P 值 0.236
80
70
60 50 40 30
20
10 5
1
19.7 19.8 19.9 20.0 20.1 20.2 20.3 20.4
面粉重量
进行T检验
单样本T检验
单样本 t 检验 检验平均值 = 零(与 > 零) 计算功效的平均值 = 零 + 差值 Alpha = 0.05 假定标准差 = 0.137
样本 差值 数量 目标功效 实际功效 0.087 29 0.95 0.954539 0.087 23 0.90 0.904048 0.087 17 0.80 0.805185
双样本T检验
正态分布均值的假设检验

VS
详细描述
在单样本均值假设检验中,我们首先需要 确定一个期望的均值,然后计算样本的均 值。通过比较这两个值,我们可以判断样 本均值是否显著地偏离了期望的均值。常 用的统计量包括z分数和t分数,用于评估 样本均值与已知期望值之间的差异是否具 有统计学上的显著性。
双样本均值的假设检验
总结词
双样本均值的假设检验是检验两个独立样本的均值是否存在显著差异。
详细描述
在双样本均值假设检验中,我们需要比较两个独立样本的均值。通过计算两组样本的均值,并比较这两个值,我 们可以判断两个样本的均值是否存在显著差异。常用的统计量包括t检验和z分数,用于评估两个样本均值之间的 差异是否具有统计学上的显著性。
配对样本均值的假设检验
总结词
配对样本均值的假设检验是检验两个相关样本的均值是否存在显著差异。
Part
0(H0)
样本数据来自的总体均值等于某一固 定值。
备择假设(H1)
样本数据来自的总体均值不等于该固 定值。
选择合适的检验统计量
• 常用的检验统计量有t统计量、Z统计量等,根据具体情况选择合适的统计量。
确定显著性水平
• 显著性水平(α):在假设检验中,原假设为真但被拒绝 的概率,通常取值在0.01至0.05之间。
正态分布在统计学中的重要性
基础性
正态分布是统计学中最重要的概 率分布之一,许多统计方法和理 论都基于正态分布。
广泛应用性
正态分布在自然和社会科学领域 都有广泛的应用,如生物学、医 学、经济学、心理学等。
理论依据
正态分布在统计学中提供了理论 依据,许多统计推断和决策方法 都基于正态分布的性质和假设。
1 2
判断假设是否成立
通过假设检验,可以判断一个假设是否成立,从 而为进一步的研究或决策提供依据。
第二节 正态总体均值的假设检验

σ
~ N(0,1)
n
(σ 2 已知)
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
=0 ≠0
X 0 T= ~ T(n 1) S n
接受域
x 0 s n
≤ tα
(σ 2未知)
2
待估参数
枢轴量及其分布 置信区间
X 0 T= ~ T(n 1) S n
( x tα
2
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
U=
X 0
σ
U ≥ zα
2
n
U ≤ zα
N(0,1)
U ≥ zα
未知) T 检验法 (σ2 未知) 原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布 拒绝域
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
X 0 T= S n ~ t(n 1)
(2)关于 σ
2
χ2检验法 的检验
拒绝域
原假设 备择假设 检验统计量及其在 H1 H0为真时的分布 H0
σ
2=σ 2 0
σ
2≠σ 2 0
χ =
2
∑(X )
i=1 i
n
χ ≤ χ (n)
2 2 1α 2
2
或 χ 2 ≥ χα2 (n)
2
σ 2≥σ 02 σ 2<σ 02
σ
2 0
~ χ (n)
2
χ ≤ χ (n)
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
1 – 2 = δ 1 – 2 ≠ δ 1 – 2 ≥ δ 1 – 2 < δ 1 – 2 ≤ δ 1 – 2 > δ
正态总体均值的假设检验讲义PPT(39张)

一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验) 三、基于成对数据的检验(t 检验) 四、小结
一、单个总体 N(,2)均值 的检验
1 . 2为,关 已的 于 知 (Z 检 检 )验 验
在上节中讨论过体 正N态(总 ,2)
当 2为已 ,关 知 于 时 0的检验 : 问题
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度服从正态分布, 且标准差没有变
化, 试问该机工作是否正常? (0.05 )
解 因X 为 ~N (,2),0.15,
要检验假设
H 0:1.5 0, H 1:1.5 0,
n15, x1.04,80.0,5
(1)假设检 H0:验 0,H1:0; (2)假设检 H0:验 0,H1:0; (3)假设检 H0:验 0,H1:0.
讨论中都是H利 0 为用真时服N(从 0,1)分布
的统计Z量X0 来确定拒绝,这 域种 的 / n
检验法称 Z检 为验.法
一个有用的结论
解 设该次考试的学生为 成X绩, 0.0,5
则 X ~N (,2)样 , 本均X值 ,样为 本标准 S, 差
需检验假设: H 0 : 7 ,0 H 1 : 7 .0
因为 2未知 , 故采t用 检验,法 当H0为真, 时
统t 计 X 0 量 X 7~ 0 t(n 1 ), S /nS /n 查表 8-1 知拒绝域为 tX S/7n0 t/2(n1), 由 n 3 ,X 6 6 . 5 ,S 6 1 ,t 0 . 0 5 ( 3 2 ) 5 2 5 . 0,3
S/ n
当观察 t 值 xs/n0 过分大时 H0,就拒绝
SAS知识学习系列19.PROCMEANS均值以及均值的T检验

19. PROC MEANS均值以及均值的T检验(一)PROC MEANS过程步由PROC UNIVARIATE过程步生成的大多数统计描述,用PROC MEANS过程步也可以实现。
区别是,UNIVARIATE是做更深入的统计分析;如果只是需要计算少数的统计量,PROC MEANS更适合(不能做图形输出)。
基本语法:PROC MEANS data = 数据集statistic-keywords;CLASS variable;VAR variable-list;说明:(1)CLASS指定分组变量,VAR指定要做统计分析的变量;(2)默认置信水平是0.05(即95%的置信限),若要设定在统计量关键词位置加上,例如,ALPHA =0.1;(3)若不加统计量关键词,默认输出:均值、非缺省值个数、标准差、最小值、最大值。
可选的统计量关键词包括:例1 儿童书作家考察市面上儿童书的页数作为出书的参考,搜集数据(C:\MyRawData\Picbooks.dat)如下:读入数据,计算数据个数、均值、中位数,以及90%的置信限。
代码:data booklengths;infile'c:\MyRawData\Picbooks.dat';input NumberOfPages @@;run;*Produce summary statistics;proc means data = booklengths N MEAN MEDIAN CLM ALPHA = 0.10 MAXDEC = 2;title'Summary of Picture Book Lengths';run;运行结果:说明:有90%的把握说“儿童书的页数范围是:[26.44, 29.56]”.(二)假设检验的P值法一、什么是假设检验?实际中,我们只能得到抽取的样本(部分)的统计结果,要进一步推断总体(全部)的特征,但是这种推断必然有可能犯错,犯错的概率为多少时应该接受这种推断呢?为此,统计学家就开发了一些统计方法进行统计检定,通过把所得到的统计检定值,与统计学家树立了一些随机变量的概率分布进行对比,我们可以知道在百分之多少的机遇下会得到目前的结果。
均值检验
在统计学中,我们往往从样本的特性推知随机变量总体的特性。
但由于总体中个体之间存在差异,样本的统计量和总体的参数之间往往会有误差。
因此,均值不相等的样本未必来自不同分布的总体,而均值相等的样本未必来自有相同分布的总体。
也就是说,如何从样本均值的差异推知总体的差异,这就是均值比较的内容。
SPSS提供了均值比较过程,在主菜单栏单击“Analyze”菜单下的“Compare Means”项,该项下有5个过程,如图4-1。
图4- 1 均值检验菜单平均数比较Means过程用于统计分组变量的的基本统计量。
这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。
Means过程还可以列出方差表和线性检验结果。
[例子]调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据在数据编辑窗口输入分析的数据,如图4-2所示。
或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口2)启动分析过程在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。
出现对话框如图4-3。
图4-3 Means设置窗口3)设置分析变量从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“Independent List”框里,用户可以从左边变量列表里选择一个或多个分组变量。
均值检验
5.3.1 单正态总体均值检验
当总体标准差 σ 已知时,有公式
均值检验
Z=
X −µ ~ N ( 0 , 1) σ n
当总体标准差 σ 未知时,有公式
t=
(X − µ) ~ t (n − 1) S n
式子中, S 为样本标准差:
n
S=
∑(X
i =1
i
− X j ) 2 (n − 1)
5.3.1 总体标准差 σ 已知 1 临界值法
5.3.2.1 双正态总体均值检验
假设 X ~ N ( µ1 , σ 1 ) , Y ~ N ( µ 2 , σ 2 ) ,从总体 X 中抽取样本 X 1 , X 2 ,⋯. X n ,样本均值为 X ,
2 2 2 样本方差为 S X ,样本标准差为 S X ,从总体 Y 中抽取的样本为 Y1 , Y2 ,⋯Y n ,样本均值为 Y , 样 2
根据不同的备择假设给出不同的拒绝域, (1) 关于总体均值 µ 常用的三对假设:
1) H 0 : µ = µ 0 , H1 : µ ≻ µ 0 ⎫ ⎬ 单边假设检验 2) H 0 : µ = µ 0 , H1 : µ ≺ µ 0 ⎭
H 0 : µ = µ 0 , H1 : µ ≠ µ 0
(2) 检验统计量选择 Z 统计量.
本方差为 SY ,样本标准差为 SY 。 分 3 种情况讨论: 1) H 0 : µ1 = µ 2 , H 1 : µ1 ≻ µ 2 2) H 0 : µ1 = µ 2 , H 1 : µ1 ≺ µ 2 3) H 0 : µ1 = µ 2 , H 1 : µ1 ≠ µ 2 1, σ 1 , σ 2 已知,可以采用统计量
例子
快递公司投递时间
2. 正态性检验 例子面粉数据 AD 检验,RJ 检验以及 KS 检验
3总体均值的假设检验
• 第3步:在分析工具中选择“t检验:平均值的成对二样 本分析”
• 第4步:当出现对话框后
•
在“变量1的区域”方框内键入数据区域
•
在“变量2的区域”方框内键入数据区域
• 为0)
在“假设平均差”方框内键入假设的差值(这里
•
在“”框内键入给定的显著性水平
1 - 29
质量管理 学实验
匹配样本
(数据形式)
质量管理
实验三
学实验 总体均值的假设检验
1 一个(单)总体均值的检验 2 两个(双)总体均值之差的检验
1 -1
质量管σ2理已知时,样本均值的抽样分布 学实验
总体是否正态分布
否
是
样本容量n
大
小
正态分布
x
~N
(, 1 2 )
n
或Z x ~ N (0,1) / n
1 -2
正态分布 非正态分布
x
~N
•第1步:将原始数据输入到Excel工作表格中
•第2步:选择“工具”下拉菜单并选择“数据分析”选项
•第3步:在“数据分析”对话框中选择 “t-检验:双样本异方 差假设”
•第4步:当对话框出现后
•
在“变量1的区域”方框中输入第1个样本的数据区域
•
在“变量2的区域”方框中输入第2个样本的数据区域
•
在“假设平均差”方框中输入假定的总体均值之差
•
在“”方框中输入给定的显著性水平(本例为0.05)
•
在“输出选项”选择计算结果的输出位置,然后“确
定”
1 - 25
质量管理 学实验
两个总体均值之差的 检验
(匹配样本)
1 - 26
质量管理 两个总体均值之差的检验
8.2正态总体均值的假设检验
t t ( n1 n2 2).
x y 因为 t 4.295, 1 1 sw 10 10
t0.05 (18) 1.7341,
所以拒绝 H 0 ,
即认为建议的新操作方法较原来的方法为优.
例5 有甲、乙两台机床加工相同的产品, 从这两台机床加工 的产品中随机地抽取若干件, 测得产品直径(单位:mm)为 机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9
X 0 P Z / n
拒绝域为 Z Z
或 H0: 0;H1:0
X 0 P Z / n
拒绝域为 Z Z
2、方差未知 问题:总体 X~N(,2),2未知 假设 H0:=0;H1:≠0 构造T统计量 T X 0 ~ t (n 1)
t检验 双边检验
X 0 由 P t 2 (n 1) S n 确定拒绝域 T t 2 (n 1) x 0 如果统计量的观测值 T t 2 (n 1) S n
则拒绝原假设;否则接受原假设
S
n
例2 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1) 解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
得 k t / 2 (n1 n2 2).
故拒绝域为
( x y) t t / 2 ( n1 n2 2). 1 1 sw n1 n2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行业公司简称净资产收益率
销售增长率%
流动资产周转
已获利息倍数
资产负债率%总资产周转率
总资产报酬率
深能源A16.8512.3542.320.37 1.787.1845.73
电力、煤气及
深南电A2215.346.510.76 1.7715.6748.11
电力、煤气及
富龙热力8.977.9830.560.170.5810.4317.8
电力、煤气及
穗恒运A10.258.9940.440.46 2.46 5.0611.06
电力、煤气及
粤电力A20.812035.870.43 1.2534.8924.77
电力、煤气及
韶能股份8.867.5227.590.240.8420.59-3.5
电力、煤气及
惠天热电10.987.9449.30.360.6912.4316.88
电力、煤气及
原水股份8.858.8836.20.130.418.53-11.49
电力、煤气及
大连热电9.037.4146.890.280.79 6.8616.23
电力、煤气及
龙电股份12.078.716.810.280.6829.75 4.11
电力、煤气及
华银电力 6.85 6.1241.930.240.65 4.3811.2
电力、煤气及
房地产行业长春经开9.8510.531.230.340.417.1318.05
房地产行业兴业房产 1.07 1.5266.910.210.24 1.53-31.93
房地产行业金丰投资19.447.0173.340.260.37.0271.22
房地产行业新 黄 浦7.61 5.9239.640.160.17 4.214.77
房地产行业浦东金桥 4.24 3.9937.30.20.25 3.98-9.24
房地产行业外 高 桥 1.673 1.9249.050.030.05 1.06-21.74
房地产行业中华企业8.78 6.2857.420.170.19 3.5875.29
房地产行业渝开发A0.2 2.2463.40.090.15 1.07-12.56
房地产行业辽 房 天8.12 3.9869.10.10.72 2.65-35.83
房地产行业粤宏远A0.42 1.1637.420.090.15 1.5919.18
房地产行业ST中福 5.17 6.6265.480.160.21 1.33-19.91
房地产行业倍特高新0.72 2.7665.390.30.42 1.248.4
房地产行业三木集团 5.99 4.5365.170.740.88 4.1475.36
房地产行业寰岛实业0.420.224.030.020.03-8.18-71.33
房地产行业中 关 村9.32 4.4867.760.320.3716.42-29.42
信息技术业中兴通讯18.7811.0969.150.93 1.08 4.7980.8
信息技术业长城电脑14.949.4845.53 1.14 1.859.5134.47
信息技术业青鸟华光9.7888.736.670.280.3913.1128.36
信息技术业清华同方15.919.0834.190.85 1.1915.6198.92
信息技术业永鼎光缆9.48.6732.750.79 1.2513.4941.75
信息技术业宏图高科14.577.9665.860.760.94 3.9554.45
信息技术业海星科技 4.06 3.3536.490.480.6 4.64-16.28
信息技术业方正科技27.4816.6957.13 2.51 2.877.463.27
信息技术业复华实业 5.58 4.144.240.280.41 3.7712.92
资本积累率%
54.54
19.41
9.44
1.09
12.67
54.02
3.52
2.44
-1.52
63.06
3.8
7.18
1.08
12.73
7.91
4.69
0.24
2.93
0.29
3.16
0.43
23.74
0.7
0.87
0.42
4.09
23.27
35.93
7.87
95.66
6.33
15.71
1.69
32.02
2.3。