酶的非水相催化

合集下载

酶的非水相催化

酶的非水相催化
6.3 酶在有机介质中的催化特性
酶在有机介质中起催化作用时,由于有机溶剂的极性与水有很大差 别,对酶的表面结构、活性中心的结合部位和底物性质都会产生一定的 影响,从而显示出与水相介质中不同的催化特性
底物特异性 立体选择性 位置特异性 化学选择性 热稳定性
底物特异性: 底物特异性:是指酶具有区分两个结构相 似的不同底物的能力。 似的不同底物的能力。它取决于底物疏 水性能的差异。 水性能的差异。
底物的种类和浓度
有机溶剂的种类
水含量
温度
pH
离子强度
化学选择性: 化学选择性:酶选择性地催化底物分子 中不同功能基团中某个基团的反应的特 性。
热稳定性:分为两种情况, 热稳定性:分为两种情况,一种是酶处 于高温中, 于高温中,随着时间延长逐步发生的不 可逆的失去活性;另一种是由热诱导产 可逆的失去活性; 生的酶分子整体伸展失活, 生的酶分子整体伸展失活,这种通常是 瞬间的、可逆的失活。 瞬间的、可逆的失活。
本章 目录
6.4 有机介质中酶催化反应的条件及 其控制
酶在有机介质中可以催化多种反应,主要包括:合成反应、转 移反应、醇解反应、氨解反应、异构反应、氧化还原反应、裂 合反应等。 主要应控制的条件有
酶的种类和浓度 底物的种 本章 目录
酶的种类和浓度
在有机介质中进行的酶促反应,可以省略产物的萃取分离过程 提高收率。 在有机介质中进行的酶促反应,可以省略产物的萃取分离过程, 提高收率。
某些酶在有机介质与水溶液中的热稳定性
酶 猪胰脂肪酶 酵母脂肪酶 脂蛋白脂肪酶 胰凝乳蛋白酶 枯草杆菌蛋白酶 核糖核酸酶 酸性磷酸酶 腺苷三磷酸酶 ( F1-ATPase) 限制性核酸内切酶 (Hind Ⅲ) β-葡萄糖苷酶 溶菌酶 介质条件 三丁酸甘油酯 水, pH7.0 三丁酸甘油酯/庚醇 水,pH7.0 甲苯,90℃,400 h 正辛烷,100℃ 水,pH 8.0, 55℃ 正辛烷,110℃ 壬烷,110℃,6 h 水,pH 8.0, 90℃ 正十六烷,80℃ 水,70℃ 甲苯,70℃ 水, 60℃ 正庚烷,55℃,30d 2-丙醇,50℃,30 h 环己烷,110℃ 水90℃ 热稳定性 T1/2 < 26 h T1/2 < 2 min T1/2 =1.5 h T1/2 < 2 min 活力剩余40% T1/2 = 80 min T1/2 = 15 min T1/2 = 80 min 活力剩余95% T1/2 < 10 min T1/2 = 8 min T1/2 = 1 min T1/2 > 24 h T1/2 < 10 min 活力不降低 活力剩余80% T1/2 =140 min T1/2 = 10 min

第七讲 酶的非水相催化

第七讲 酶的非水相催化
?用酶催化转酯反应拆分外消旋体得高光学纯度对应体?在酶促反应体系中添加?糊精可提高对映体的纯度?枯草溶菌素有效催化合成氨基酸及肽的转酯等?杨波等提出了有机溶剂中在脂肪酶的催化作用下含手性中心碳原子的胺类化合物酰胺化的异构选择性规则?李志远等用胰脂酶在有机介质中催化反应得到高光学纯度的2氨基丙醇r和s对映体?宗敏华等探讨了超声辐射对有机相中脂肪酶催化有机硅醇与脂肪酸反应的促进作用?刘平等研究了有机溶剂中酶催化合成五肽前体的反应22气相介质中的酶催化?酶在气相介质中进行的催化反应
酶的非水相催化
7.1、酶催化反应的介质 7.2、有机介质反应体系 7.3、有机介质反应体系影响因素 7.4、酶在有机介质中的催化特性
7.5、有机介质中酶催化反应的条件及其控制
7.6、酶非水相催化的应用
7.1 酶催化反应的介质
水是酶促反应最常用的反应介质!
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。 因为许多有机化合物(底物)在水介质中难溶或不溶。
3、非极性有机溶剂—水两相/多相体系
由含有溶解酶的水相和一个非极性的有机溶剂(高 脂溶性)相所组成的两相体系。游离酶、亲水性底 物或产物溶解于水相,疏水性底物或产物溶解于有 机相。 如果采用固定化酶,则以悬浮形式存在于两相的界 面,催化反应通常在两相的界面进行。 一般适用于底物或者产物两者或其中一种属于疏水 性化合物的催化反应。
第七讲 酶的非水相催化
ห้องสมุดไป่ตู้学目标:
了解非水相中酶催化研究概况和反胶束体系的酶学研究情况 理解酶在有机介质中催化的反应的具体应用 掌握酶在有机介质中的催化特性
教学重点:
酶非水相中酶催化的影响因素、催化特性以及应用
教学难点:
有机介质中水和有机溶剂对酶催化反应的影响

酶非水相催化的名词解释

酶非水相催化的名词解释

酶非水相催化的名词解释酶非水相催化是一种特殊的生物化学反应过程,其特点是在无水环境中,通过酶作用催化生物分子的转化。

在酶非水相催化中,不同于传统的酶催化过程,水分子并不直接参与反应,而是由其他非水相溶剂来替代。

这种非水相催化的特性赋予了酶非常高的催化活性和选择性。

酶非水相催化的概念源于生物体内一些特殊的蛋白质,即金属蛋白和脱水酶。

这些蛋白质具有能够在缺水环境下活跃的特性。

在生物体内,金属离子可以起到酶的活性中心的作用,而脱水酶则可以在非常干燥的环境下,通过形成氢键网络来稳定酶的结构,并促进催化反应的进行。

酶非水相催化的研究对于认识生物体内酶催化反应的本质以及开发新型催化剂具有重要的意义。

通过研究酶非水相催化过程,科学家们可以揭示酶活性中心的结构和功能,以及介观生物学的规律。

此外,酶非水相催化还可以为合成有机化合物提供新思路和新方法,通过模拟生物体内的催化反应,可以设计和合成出高效、高选择性的催化剂。

在研究酶非水相催化的过程中,科学家们不仅仅关注酶本身,还对非水相溶剂的选择和影响进行了深入研究。

非水相溶剂可以影响酶非水相催化的活性和选择性,不同的溶剂性质会对酶的构象和催化效果产生直接的影响。

同时,科学家们还研究了不同非水相催化体系之间的相互作用,以及非水相溶剂的理论模拟和定量描述。

酶非水相催化的应用范围非常广泛。

在传统的酶催化反应中,水分子的存在常常会引起反应的副反应,限制了反应的效率和产率。

而在非水相催化反应中,由于水分子的排除,反应体系更为干燥,酶的活性得到了有效提升。

酶非水相催化可以应用于生物医学、制药、有机合成等领域,用于合成生物活性物质、开发新药物和催化有机反应等。

总结起来,酶非水相催化是一种在无水环境中利用酶催化生物分子转化的特殊过程。

通过研究酶非水相催化,我们可以认识酶的活性中心结构和功能,揭示生物催化的规律,为合成有机化合物提供新的思路和方法。

此外,酶非水相催化还有广泛的应用前景,可以应用于医学、制药和有机合成等领域。

第七章_酶的非水相催化

第七章_酶的非水相催化
第七章 酶的非水相催化
Enzymatic catalysis in Non-aqueous system
拒接翻版
Go Go Go Go Go
1、酶非水相催化的主要内容 2、有机介质中水和有机溶剂对催化反应的 影响 3、酶在有机介质中的催化特性 4、有机介质中酶催化反应的条件及其控制 5、酶非水相催化的应用
非水酶学的研究主要内容
第一,非水酶学基本理论的研究,影响酶催 化的主要因素以及非水介质中酶学性质; 第二,阐明非水介质中酶的催化机制,建立 和完善非水酶学的基本理论; 第三:应用
一、非水介质中酶的结构与性质
(一) 非水介质中酶的状态 存在状态有多种形.主要分为两大类 第一类为固态酶 它包括冷冻干燥的酶粉或固定化酶,它们以固 固态酶, 固态酶
(二)非水介质中的酶学性质
有机溶剂的存在,改变了疏水相互作用的精 细平衡,从而影响到酶的结合部位,有机溶 剂也会改变底物存在状态。因此酶和底物相 结合的自由能就会受到影响,而这些至少会 部分地影响到有机溶剂中酶的底物特异性、 立体选择性、区域选择性和化学键选择性等 酶学性质。
第二节:水对非水相介质中酶催化的影 响
第一节: 第一节:酶催化水相的主要内容
酶在非水介质中,酶存在状态与酶结构发生改变。 用于酶催化的非水介质包括 非水介质包括
有机溶剂体系
• • • • ①含微量水的有机溶剂单相体系; ②与水混溶的有机溶剂和水形成的单相体系; ③水与有机溶剂形成的两相或多相体系: ④胶束与反胶束体系;
超临界流体 气相 低共熔混合体系 又称为非常规介质。
体形式存在有机溶剂中。还有利用结晶酶进行非水介质中催化反应和酶 结构的研究,结晶酶的结构更接近于水溶液中酶的结构,它的催化效率 也远高于其他类型的固态酶。

非水相中酶催化技术

非水相中酶催化技术
酶催化技术:利用酶的催化作用,提高生物燃料生产效 率
非水相:在非水相环境中进行酶催化反应,提高反应速 率和选择性
应用前景:非水相中酶催化技术在生物燃料生产中具有 广阔的应用前景,有助于实现绿色、可持续的能源生产。
非水相中酶催化技术在环境保护中的应用
生物降解:利用酶催 化技术降解有机污染 物,减少环境污染
3
4
酶的生物合成:通过生物合成技术, 将酶的基因引入微生物中,实现酶
的工业化生产。
酶的生物催化反应:利用酶的生物 催化特性,实现化学反应的绿色化
和高效化。
谢谢
酶催化反应具有高度专一性,即一种酶只能催化 一种或一类底物。
酶催化反应具有高效性,即酶催化反应的速度比 非酶催化反应快得多。
非水相中酶催化反应的条件
01
非水相介质:如有机
溶剂、离子液体等
02
酶的稳定性:在非水
相中保持活性和稳定

03
底物浓度:底物浓度
对反应速率有影响
04
温度和pH值:反应温
度和pH值对反应速率
和产物选择性有影响
非水相中酶催化反应的影响因素
01
酶的性质:酶的活性、 稳定性和选择性
02
底物浓度:底物浓度 对酶催化反应的影响
03
反应条件:温度、pH 值、离子强度等对酶催 化反应的影响
04
非水相溶剂:溶剂的性 质、极性、粘度等对酶 催化反应的影响
非水相中酶催化 技术的应用
非水相中酶催化技术在生物制药中的应用
机遇:非水相
3 中酶催化技术 在生物医药领 域的应用
机遇:非水相
4 中酶催化技术 在环境保护领 域的应用
非水相中酶催化技术的未来发展方向

酶的非水相催化

酶的非水相催化

离子液介质中的酶催化
酶在离子液中进行的催化作用。离子液(ionic liquids)是由有机
阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,
挥发性低、稳定性好。酶在离子液中的催化作用具有良好的稳定性和区
域选择性、立体选择性、键选择性等显著特点。
本章
目录
6.2 有机介质反应体系
非极性有机溶剂酶悬浮体系(微水介质体系) 用非极性有机溶剂取代所有的大量水,使固体酶悬浮在有机相中。但
反应体系中水对酶催化反应的影响
酶都溶于水,只有在一定量的水存在的条件下,酶分子才能进行 催化反应。所以酶在有机介质中进行催化反应时,水是不可缺少 的成分之一。有机介质中的水含量多少对酶的空间构象、酶的催 化活性、酶的稳定性、酶的催化反应速度等都有密切关系,水还 与酶催化作用的底物和反应产物的溶解度有关。
本章 目录
6.3 酶在有机介质中的催化特性
酶在有机介质中起催化作用时,由于有机溶剂的极性与水有很大差 别,对酶的表面结构、活性中心的结合部位和底物性质都会产生一定的 影响,从而显示出与水相介质中不同的催化特性
底物特异性 立体选择性 区域选择性 键选择性 热稳定性
有机介质酶催化反应的优点
是否存在非水介质能保证酶催化??
1984年,克利巴诺夫(Klibanov)等人在有机介质中进行了酶催化反 应的研究,他们成功地在利用酶有机介质中的催化作用,获得酯类、肽 类、手性醇等多种有机化合物,明确指出酶可以在水与有机溶剂的互溶 体系中进行催化反应。
酶非水相催化的几种类型
有机介质中的酶催化 有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催 化反应。适用于底物、产物两者或其中之一为疏水性物质的酶催化 作用。酶在有机介质中由于能够基本保持其完整的结构和活性中心 的空间构象,所以能够发挥其催化功能。

酶非水相催化

  酶非水相催化

黏合剂、导电聚合物和发光聚合物等)。
15
3.与水不溶性有机溶剂组成的两相或多相体系
概念:是指由水和疏水性较强的有机溶剂组成的两相
或多相反应体系。
反应体系中酶的存在形式:游离酶以溶解状态存在;
固定化酶以悬浮形式存在。
➢催化反应通常在两相界面进行;
➢适用于底物和产物两者或其中一种属于疏水化合物的催
化反应;
具有与水溶液中可比的催化活性。5用于酶 Nhomakorabea催








① 含微量水的有机溶剂
② 与水混溶的有机溶剂和水形成的均一体系
③ 水与有机溶剂形成的两相或多相体系
④ 胶束与反胶束体系
⑤ 超临界流体
⑥ 气相
⑦ 离子液


它们不同于标准的水溶液体系,在这些体系中水含量
受到不同程度的严格控制,因此又称为非常规介质。
特性:酶的底物特异性、立体选择性、区域选择
性、键选择性、热稳定性等有所改变。
应用:多肽、酯类、甾体转化、功能高分子合成、
手性药物拆分的研究。
9
二、气相介质中的酶催化
指酶在气相介质中进行的催化反应。
适用范围:底物是气体或者能够转化为气体物质的酶
催化反应。
特性:气体介质密度低,扩散容易;与在水相中明显
离子液是由有机阳离子与有机/无机阴离子构成的在室
温条件下呈液态的低熔点盐类,挥发性好,稳定性好。
酶反应具有良好的稳定性和区域选择性、立体选择性、
键选择性等优点。
13
第二节 有机介质中水和有机溶剂
对酶催化反应的影响
一、有机介质反应体系
1、微水介质体系

酶的非水相催化

酶的非水相催化
水介质酶催化体系中,水 分的影响是至关重要的,要使酶能够表现出最 大的催化活力,确定适宜的水活度就显得十分 重要。不同种类的酶因为其分子结构的不同, 维持酶具有活性构象的必需水量也就不同,即 使是同一种类的酶,由于酶的来源不同,所需 的水量也会有显著不同。 最适水含量:催化反应速度达到最大时的 水含量。最适水含量随溶剂极性的增加而增加。 最佳水活度与溶剂极性大小没有关系,可以确 切研究非水介质酶催化作用,一般控制在0.50.6之间。
2 有机溶剂对酶活性的影响
极性较强的有机溶剂能够夺取酶蛋白表面的“必需 水”,扰乱酶分子的天然构象的形成,从而导致酶 的失活。 极性系数lgP:P为溶剂在正辛烷与水两相中的分配 系数。lgP越小,极性越强。 lgP小于2的极性溶剂不宜使用。
在有机介质中进行酶催化时,应选择好所用 溶剂,或通过酶分子修饰提高酶的亲水性。
(三)有机溶剂对酶催化反应的影响 1 2 3 4 有机溶剂对酶结构的影响 有机溶剂对酶催化活力的影响 有机溶剂对底物和产物的影响 有机溶剂对酶选择性的影响
酶在非水介质中的存在形式 一、固态酶。 冻干酶粉、固定化酶、结晶酶 以固体形式悬浮在有机溶剂中 二、可溶解酶。 水溶性大分子共价修饰酶 非共价修饰的高分子—酶复合物 表面活性剂—酶复合物 微乳液中的酶等
(二)水对非水介质中酶催化的影响 酶只有在一定量水的存在下,才能进行催 化反应,特别是在有机介质中的酶催化反应, 水含量的多少对酶的空间构象、催化活性、稳 定性、催化反应的速度、底物和产物的溶解度 等都有密切关系。
1 必需水
维持酶分子完整的空间构象所必需 的最低水量。 氢键、盐键等次级键。 在无水的条件下,酶的空间构象被 破坏,酶将变性失活。 通过必需水的调控,可以调节有机 介质中酶的催化活性和选择性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 常用的有机溶剂有辛烷,正己烷,苯,吡啶,季 丁醇,丙醇,乙腈,已酯,二氯甲烷等。 • 在有机溶剂对酶的活力、酶的稳定性、酶的催化 特性和酶的催化速度都有显著影响。 1、有机溶剂对酶的结构和功能影响 在水溶液中,酶分子均一地溶解于水溶液中, 可以较好地保持其完整的空间结构。在有机溶剂 中,酶分子不能直接溶解,而是悬浮在溶剂中进 行催化反应。根据酶分子的特性和有机溶剂的特 性的不同,保持其空间结化 酶在离子液中进行的催化作用。离子液(ionic liquids)是由有机阳离子与有机(无机)阴离子构成的 在室温条件下呈液态的低熔点盐类,挥发性低、稳定性 好。酶在离子液中的催化作用具有良好的稳定性和区域 选择性、立体选择性、键选择性等显著特点。
6
6.2 有机介质反应体系
选择性,即酶能够选择底物分子中某一区域的基
团优先进行反应。
13
• 键选择性:即在有机介质中当底物分子中两种以上的
键与酶反应时,酶对其中一种键优先进行反应。 键的选择性与酶的来源和有机介质性质有关。 • 热稳定性:许多酶在有机介质中热稳定性优于水溶液。 主要由于有机介质中缺少使酶分子变性失活的水分
2、有机溶剂对酶活性的影响 极性较强的有机溶剂,如甲醇,乙醇等,会 夺取酶分子的结合水,影响酶分子微环境的水化层, 从而降低酶的催化活性,甚至引起酶的变性失活。 因此应选择好所使用的溶剂,控制好介质中的含水 量,或者经过酶分子修饰提高酶分子的亲水性,避 免酶在有机介质中因脱水作用而影响其催化活性。 3、有机溶剂对底物和产物分配的影响 有机溶剂与水之间的极性不同,在反应过程中会 影响底物和产物的分配,从而影响酶的催化反应。
4
气相介质中的酶催化 酶在气相介质中进行的催化反应。 适用于底物是气体或者能够转化为气体的物质的酶催化反 应。 由于气体介质的密度低,扩散容易,因此酶在气相中 的催化作用与在水溶液中的催化作用有明显的不同特点。
超临界介质中的酶催化 酶在超临界流体中进行的催化反应。超临界流体是指温 度和压力超过某物质超临界点的流体。
• 水对酶催化反应速度影响
有机介质中水的含量对酶催化反应速度有显著影 响。例如马肝醇脱氢酶在含水量极低的情况下,酶催 化反应速度随含水量增加而增加。 在催化反应达到最大时的含水量称为最适水含量。 相同的酶,反应体系的最适含水量随有机溶剂种 类、固定化载体特性、修饰剂种类等不同而不同。
9
反应体系中有机溶剂对酶催化反应的影响
酶的非水相催化
定义: 酶在非水相中进行的催化反应。
在非水相中,酶分子受到非水介质的影 响,其催化特性有着很大不同。
3
酶非水相催化的几种类型
有机介质中的酶催化 有机介质中的酶催化是指酶在含有一定量水的有机 溶剂中进行的催化反应。 适用于底物、产物两者或其中之一为疏水性物质的 酶催化作用。酶在有机介质中由于能够基本保持其完整 的结构和活性中心的空间构象,所以能够发挥其催化功 能。 酶在有机介质中起催化作用时,酶的底物特异性、 立体选择性、区域选择性、键选择性和热稳定性等都有 改变 主要用于肽、酯类等生产,甾体转化,功能高分子 合成,手性药物拆分等。
• 非极性有机溶剂酶悬浮体系(微水介质体系)
用非极性有机溶剂取代所有的大量水,使固体酶悬浮在有机相 中。但仍然含有必需的结合水以保持酶的催化活性(含水量一般小 于2%)。 酶的状态可以是结晶态、冻干状态、沉淀状态,或者吸附在固 体载体表面上。 • 与水互溶的有机溶剂水单相体系 有机溶剂与水形成均匀的单相溶液体系。酶、底物和产物都能 溶解在这种体系中。 • 非极性有机溶剂水两相/多相体系
由含有溶解酶的水相和一个非极性的有机溶剂(高脂溶性)相所 不管采用何种有机介质反应体系,酶催化反应的介质中都含有机溶剂和 7 组成的两相体系。 一定量的水。它们都对催化反应有显著的影响。
水对有机介质中酶催化反应的影响
• 酶在有机介质中进行催化反应时,水是不可缺少的成 分之一。有机介质中的水含量多少对酶的空间构象、 酶的催化活性、酶的稳定性、酶的催化反应速度等都 有密切关系,水还与酶催化作用的底物和反应产物的 溶解度有关。 • 水对酶分子空间构象影响 酶分子只有在空间构象完整的状态下,才具有催化 功能。在无水的条件下,酶的空间构象被破坏,酶将 变性失活。故此,酶分子需要一层水化层,以维持其 完整的空间构象。维持酶分子完整的空间构象所必需 的最低水量称为必需水(essential water)。
酶的底物特异性发生改变。 不同有机溶剂具有不同极性,所以在不同有机介质 中酶的底物专一性不同。
12
• 立体选择性:酶在有机介质中催化与水溶液中催
化相比较,由于介质特性发生变化,而引起酶的
立体选择性发生变化。 一般说,酶在水溶液中立体选择性较强,而在有 机溶剂中立体选择性较差。 • 区域选择性:酶在有机介质中催化时,具有区域
11
6.3 酶在有机介质中的催化特性
酶在有机介质中起催化作用时,由于有机溶剂的极性与水 有很大差别,对酶的表面结构、活性中心的结合部位和底物性 质都会产生一定的影响,从而显示出与水相介质中不同的催化 特性.
• 底物特异性:在有机介质中,由于酶分子活性中心
的结合部位与底物之间的结合状态发生改变,致使
由于水的存在,往往有利于如水解、消旋化、聚合和分解等 副反应的发生。
是否存在非水介质能保证酶催化??
1984年,克利巴诺夫(Klibanov)等人在有机介质中进行了酶催化反 应的研究,他们成功地在利用酶有机介质中的催化作用,获得酯类、肽 类、手性醇等多种有机化合物,明确指出酶可以在水与有机溶剂的互溶 体系中进行催化反应。 2
Contents of Chapter 6
Go Go Go Go Go
1、酶催化反应的介质 2、有机介质反应体系 3、酶在有机介质中的催化特性 4、有机介质中酶催化反应的条件及其控制
5、酶非水相催化的应用
1
6.1 酶催化反应的介质
水是酶促反应最常用的反应介质。
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。 因为许多有机化合物(底物)在水介质中难溶或不溶。
相关文档
最新文档