移位寄存器计数器设计

合集下载

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告移位寄存器和计数器的设计实验室:实验台号:日期:专业班级:姓名:学号:一、实验目的1. 了解二进制加法计数器的工作过程。

2. 掌握任意进制计数器的设计方法。

二、实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。

三、实验原理图1.由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2.测试74LS161的功能3.熟悉用74LS161设计十进制计数器的方法。

①利用置位端实现十进制计数器。

②利用复位端实现十进制计数器。

四、实验结果及数据处理1.左移寄存器实验数据记录表要求:输入二进制:111100002.画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路。

8进制利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。

五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。

2. 设计十进制计数器时将如何去掉后6个计数状态的?答:通过置位端实现时,将Q0、Q3 接到与非门上,输出连接到置位控制端。

当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。

3. 谈谈电子实验的心得体会,希望同学们提出宝贵意见。

答:通过这学期的电子实验,我对电子电路有了更加深入地了解。

初步了解了触发器、寄存器、计数器等电子元件的使用。

将理论与实践相结合,更加深入的了解了电子技术,学到了很多,对这学期的电子实验十分满意。

用移位寄存器LS芯片实现扭环形计数器

用移位寄存器LS芯片实现扭环形计数器

实 验 原 理
2)扭环型计数器 将图2所示环形计数器稍加改动:将Q3反相得Q3 ,再送至 DSR,就构成了4位扭环形计数器。
实 验 原 理
3)双向移位寄存器设计 工作原理:
当X=1时,M1=0,M0=1, 执行右移功能;
n=3,其模值M=2×3=6;
当X=1时,M1=1,M0=0, 执行左移功能。
1.总结实现任意进制计数器的构成方法
2.总结移位寄存器的逻辑功能表 3. 叙述双向移位寄存器原理
4.根据测试数据,得出结论。完成思考题。
六、注意事项
注意一定要先查导线,再开始接线。 注意通常电源均按+5V和地接入,每个芯片都需接 入一对电源,为防止遗漏,可把它定为接线的第一 步。注意电源不要接反,否则会烧坏芯片。 不可在接通电源的情况下插入或拔出芯片。 移位寄存器74LS194的清除端( CR )除了清零时将 其置 0外,其它工作状态均应置为“l”。 环形计数器在工作之前,应先置入一个初始状态, 即被循环的四位二进制数。
n=3,其模值M=2×3-1=5。
n :代表环内包围的输出端的个数; 如果是通过二输入与非门取反馈作移入数据,则为奇数模, M=2n-1 如果是通过非门取反馈作移入数据,则为偶数模,M=2n。
步骤:
1、双向移位寄存器74LS194逻辑功能测试。 清除:先将端接+5V,检查Q端输出情况,再将端接0电平,所有Q端输 出应为0,清零后再将端接+5V。 并行输入:S1S0置入11,D端置入一组代码(如1011),给 CP 端送单次脉冲,观察 Q端的状态。此时若将DSL或DSR置入1或0, Q端的状态是否改变? 右移:令S1S0=01,CP=1HZ,再令DSL=0,观察Q端的变化,待 4个LED全灭以后(此时输入的串行码是什么?),再令DSR=l, 观察此时Q端LED点亮的次序。当 4个LED都点亮时,输入的串 行码又如何?若要串行输入代码1010(或其它非全0、非全1 码),在DSR端置入一位数码(低位先送),给 CP端送单次脉 冲,经过4个脉冲之后立即将S0置成0以使寄存器工作于保存状 态。 左移:令S1S0=10,CP=1HZ,代码1010由DSL端置入,其它步 骤与右移相同。 保持:在完成左移并工作于保持状态后,再给CP端送 4个单次 脉冲,观察输出端有何变化。

基于次态卡诺图的移位寄存器型计数器的自启动设计

基于次态卡诺图的移位寄存器型计数器的自启动设计
; 环形 计 数 器 ; 形 计 数 器 ; 自启 动 ;次 态 卡 诺 图 移 扭 环
文献标 志码 : A 文 章 编 号 : 0 89 9 ( 0 1 0 — 1 — 5 1 0 — 4 7 2 1 ) 44 90
中图 分 类 号 : 3 . TP 3 2 1
T NG X a g ( p r n f P y is B h i i es y, iz o 2 0 0 L a nn o ic , h n ) E in De a t t h s , o a v ri J n h u 1 1 0 , i o igPr vn e C i a me o c Un t
基 于次态 卡诺 图的移 位寄存 器 型计数 器 的 自启 动设 计
腾 香
( 海大学 物理 系 , 宁 锦州 110) 渤 辽 20 0

要 : 析 了移 位 寄存 器 型 计数 器 工 作 时 的 状 态 转 换 过 程 , 出 了移 位 寄 存 器 型 计 数 器 的 设 计 可在 保 持 右 移 移 分 提

第 3 第 4期 8卷 21 0 1年 7月




报( 学版 ) 理
V 1 8N . J3 o. o4
u.2 1 1 0 1
J u n to www. r vriaSd n eEd o o rhl fZhja gUn as z (ei. n s iin) a / ein o n est .ce c ct y t / p: j u il.j u c/ i
系, 而设 计 电路 时需 求解 触 发 器 的 激 励 函数 . 文 本
0 引 言
移位 寄存 器 型计数 器 是一 种存 在大 量冗余 无 效

时序逻辑电路的设计与实现

时序逻辑电路的设计与实现

时序逻辑电路的设计与实现时序逻辑电路是数字电路中的一种重要类型,它可以根据输入信号的变化和先后顺序,产生相应的输出信号。

本文将介绍时序逻辑电路的设计与实现,并探讨其中的关键步骤和技术。

一、概述时序逻辑电路是根据时钟信号的变化产生输出信号的电路,它可以存储信息并根据特定的时序条件进行信号转换。

常见的时序逻辑电路包括触发器、计数器、移位寄存器等。

二、时序逻辑电路的设计步骤1. 确定需求:首先需要明确所要设计的时序逻辑电路的功能和性能需求,例如输入信号的种类和范围、输出信号的逻辑关系等。

2. 逻辑设计:根据需求,进行逻辑设计,确定逻辑门电路的组合方式、逻辑关系等。

可以使用真值表、状态转换图、状态表等方法进行设计。

3. 时序设计:根据逻辑设计的结果,设计时序电路,确定触发器的类型和触发方式,确定时钟信号的频率和相位,以及信号的启动和停止条件等。

4. 电路设计:将逻辑电路和时序电路整合,并进行布线设计。

通过选择合适的器件和元器件,设计稳定可靠的电路。

5. 功能验证:对设计的时序逻辑电路进行仿真验证,确保电路的功能和性能符合设计要求。

三、时序逻辑电路的实现技术1. 触发器:触发器是时序逻辑电路的基本组成部分,常见的触发器有RS触发器、D触发器、T触发器等。

通过组合和串联不同类型的触发器,可以实现不同的功能。

2. 计数器:计数器是一种特殊的时序逻辑电路,用于计数和记录输入脉冲信号的次数。

常见的计数器有二进制计数器、十进制计数器等。

3. 移位寄存器:移位寄存器是一种能够将数据向左或向右移位的时序逻辑电路。

它可以在输入端输入一个位串,随着时钟信号的变化,将位串逐位地向左或向右移位,并将移出的位存储起来。

四、时序逻辑电路的应用领域时序逻辑电路广泛应用于数字系统中,例如计算机中的控制单元、存储器等。

它们在数据处理、信息传输、控制信号处理等方面发挥着重要作用。

总结:时序逻辑电路的设计与实现是一项复杂而重要的任务。

在设计过程中,需明确需求、进行逻辑设计和时序设计,并通过合适的触发器、计数器和移位寄存器等元件来实现功能。

寄存器实验实验报告

寄存器实验实验报告

寄存器实验实验报告一. 引言寄存器是计算机中重要的数据存储器件之一,用于存储和传输数据。

通过对寄存器进行实验,我们可以更好地理解寄存器的工作原理和应用。

本实验旨在通过设计和测试不同类型的寄存器,深入掌握寄存器的各种功能和操作。

二. 实验设计本实验设计了两个寄存器的实验,分别为移位寄存器和计数器寄存器。

1. 移位寄存器实验移位寄存器是一种特殊的串行寄存器,它能够实现对数据位的移位操作。

本实验设计了一个4位的移位寄存器,分别使用D触发器和JK触发器实现。

实验步骤如下:1) 首先,根据设计要求将4个D或JK触发器连接成移位寄存器电路。

2) 确定输入和输出端口,将输入数据连接到移位寄存器的输入端口。

3) 设计测试用例,输入测试数据并观察输出结果。

4) 分析实验结果,比较不同触发器类型的移位寄存器的性能差异。

2. 计数器寄存器实验计数器寄存器是一种能够实现计数功能的寄存器。

本实验设计了一个二进制计数器,使用T触发器实现。

实验步骤如下:1) 根据设计要求将多个T触发器连接成二进制计数器电路。

2) 设计测试用例,输入计数开始值,并观察输出结果。

3) 测试计数的溢出和循环功能,观察计数器的行为。

4) 分析实验结果,比较不同计数器位数的性能差异。

三. 实验结果与分析在实验过程中,我们完成了移位寄存器和计数器寄存器的设计和测试。

通过观察实验结果,可以得出以下结论:1. 移位寄存器实验中,无论是使用D触发器还是JK触发器,移位寄存器都能够正确地实现数据位的移位操作。

而使用JK触发器的移位寄存器在性能上更加优越,能够实现更复杂的数据操作。

2. 计数器寄存器实验中,二进制计数器能够准确地实现计数功能。

通过设计不同位数的计数器,我们发现位数越多,计数范围越大。

综上所述,寄存器是计算机中重要的存储器件,通过实验我们深入了解了寄存器的工作原理和应用。

移位寄存器和计数器寄存器都具有广泛的应用领域,在数字电路设计和计算机系统中起到了重要作用。

电路中的移位寄存器与计数器的原理与应用

电路中的移位寄存器与计数器的原理与应用

电路中的移位寄存器与计数器的原理与应用在现代科技中,电路是一个不可或缺的组成部分。

电路可以用于各种领域,其中移位寄存器和计数器是最为常见且重要的电路之一。

本文将深入探讨这两种电路的原理与应用。

一、移位寄存器的原理与应用移位寄存器是一种能够将输入数据连续地移位、保留并输出的电路。

其原理主要基于逻辑门电路的组合与连接。

1. 原理移位寄存器通常由多个触发器构成,触发器是一种能够存储一个二进制位的设备。

当输入数据进入移位寄存器时,触发器会按照一定的时序规律将数据进行移位,并输出。

移位寄存器可以实现向左(左移)或向右(右移)移动数据的功能。

2. 应用移位寄存器在数字系统中有广泛的应用。

例如,在串行通信中,移位寄存器可以将并行数据转化为串行数据进行传输;在移位加法器中,移位寄存器可以实现两个二进制数的相加;在移位寄存器阵列中,移位寄存器可以用于存储、处理和传输图像等。

二、计数器的原理与应用计数器是一种能够将输入的时钟信号进行计数并输出的电路。

计数器能够记录输入信号的数量,并根据设定的计数规则输出对应的结果。

1. 原理计数器通常由触发器和逻辑门电路构成。

当计数器接收到时钟信号时,触发器会根据时钟信号的上升沿或下降沿进行状态变换,从而实现计数功能。

计数器可以分为二进制计数器、十进制计数器等,根据不同的计数规则可以实现不同的计数功能。

2. 应用计数器在数字电路中有广泛的应用。

例如,在计算机中,计数器可以用于指示程序执行的步骤;在测量仪器中,计数器可以用于计算输入信号的频率或脉冲个数;在定时器中,计数器可以实现定时功能等。

综上所述,移位寄存器和计数器都是数字电路中重要的组成部分。

移位寄存器可以将输入数据按照一定的规律移位输出,广泛应用于数字系统中;计数器则可以根据输入的时钟信号进行计数输出,实现不同的计数功能。

这两种电路的原理与应用相互关联且互相补充,为数字电路的设计与实现提供了强大的工具与方法。

总之,了解移位寄存器和计数器的原理与应用对于理解和应用数字电路至关重要。

环形计数器

环形计数器

环形计数器是由移位寄存器加上一定的反馈电路构成的,用移位寄存器构成环形计数器的一般框图见图23-5-1,它是由一个移位寄存器和一个组合反馈逻辑电路闭环构成,反馈电路的输出接向移位寄存器的串行输入端,反馈电路的输入端根据移位寄存器计数器类型的不同,可接向移位寄存器的串行输出端或某些触发器的输出端。

图23-5-1 移位寄存器型计数器方框图23.5.1 环形计数器23.5.1.1 电路工作原理图23-5-2为一个四位环形计数器,它是把移位寄存器最低一位的串行输出端Q1反馈到最高位的串行输入端(即D触发器的数据端)而构成的,环形计数器常用来实现脉冲顺序分配的功能(分配器)。

假设寄存器初始状态为[Q4Q3Q2Q1]=1000,那么在移位脉冲的作用下,其状态将按表23-11中的顺序转换。

当第三个移位脉冲到来后,Q1=1,它反馈到D4输入端,在第四个移位脉冲作用下Q4=1,回复到初始状态。

表23-11中的各状态将在移位脉冲作用下,反复在四位移位寄存器中不断循环。

由上述讲讨论可知,该环形计数的计数长度为N=n。

和二进制计数器相比,它有2n-n个状态没有利用,它利用的有效状态是少的。

23.5.1.2 状态转换图和工作时序表23-11中是以1000为初始状态的,它所对应的状态转换图见图23-5-3。

如果移位寄存器中的初始状态不同,就会有不同的状态转换图。

图23-5-4给出了四位环形计数器可能有的其它几种状态转换图。

图23-5-3 状态转换图(a) (b) (c) (d)图23-5-4 四位环行计数器其它的状态转换图图23-5-4(a)、(b)、(c)三个状态转换图中各状态是闭合的,相应的时序为循环时序。

当计数器处于图23-5-4(d)所示的状态0000或1111时,计数器的状态将不发生变化。

这两个状态称为悬态或死态。

四位环形计数器可能有这么多不同的循环时序,是我们不希望的,只能从这些循环时序中选出一个来工作,这就是工作时序,或称为正常时序,或有效时序。

用移位寄存器74LS194实现7位串行左移并行转换电路、四位环形计数器

用移位寄存器74LS194实现7位串行左移并行转换电路、四位环形计数器

数字电子技术基础实验实验项目:移位寄存器班级:电气1804姓名:学号:0121811350304上课时间:2020年6月13日一、本项目的实验目的:1.掌握4位双向移位寄存器的逻辑功能和使用方法;2.熟悉用移位寄存器和计数器的应用.二、实验内容及步骤:1.7位串行/左移并行转换电路图:用2个移位寄存器(74LS194)和门电路(不限制)实现出7位串行/左移转换电路,其中用连续脉冲触发,选用合适的频率。

1)设计电路图:2)分析电路的工作原理:如图,设从左到右74LS194的输入端分别为D0-D7,对应输出端为Q0-Q7,D0-D6接“1”,D7接“0”,对应为11111110。

两S1接“1”,Q0和Q1相与再非运算,接入两S0。

左边SL接Q4,将两个74LS194级联起来,右边SL接输入,即串行输入。

开始时,由于Q0和Q1为“0”,经过变换向两S0输入“1”,又S1为“1”,Q0-Q7被置数为11111110,其中Q0和Q1相与后作为一个信号输出,即并行输出实际为1111110,7个信号。

下一个上升沿到来时,已有Q0和Q1的输出经运算向两S0输入“0”,即S1=1,S0=0,输出开始左移,设右边的输入一直是SL=1,那么输出变成1111101。

接下来一直左移,直到第一个“0”信号移到Q1,这时,输出是0111111,Q0=1,Q1=0,向两S0输入1,又S1=1,电路重新置数为1111110。

以上为一个循环,一个循环经过7个时钟脉冲,有7个输出状态,并且输出信号左移,也实现了串行输入,并行输出,所以该电路是7位串行/左移并行转换电路。

3)清零后观察输出状态,记录输出结果填入表中。

CP Q0Q1Q2Q3Q4Q5Q6Q7功能000000000清零111111110置数211111101送数311111011411110111511101111611011111710111111801111111911111110置数2.四位环形计数器:用一片移位寄存器(74LS194)及门电路(不限制)设计具有自启动功能的、有效状态分别为1000,0100,0010,0001(Q0Q1Q2Q3)的四位右移环形计数器,其中用连续脉冲触发,选用合适的频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10u 22u 47u D1 D2 DW1 DW2
+Ec
+5 v L8 L7 L6 L5 L4 L3 L2 L1
74248
RL
74248
74248
74248
51K +5 v
+5 v 1Hz
CP1
CP2
K8 K7 K6 K5 K4 K3 K2 K1
十进制设计电路图
U3
V1
50 Hz 5V
U1
14 1
实验四 移位寄存器、集成计数器
一、实验目的
1.用D触发器组成左移移位寄存器,并测试其工作状态。
2.熟悉集成单元计数器的使用,掌握各种进制的设计方法。
二、原理简述见实验指导书
三、实验内容与步骤
1.用D触发器组成四位左移移位寄存器
Q4
Q3
9 Q2
5 Q1
RD T4 CP D4
RD T3 CP D3
RD
T2 CP
INA INB
2 3
R01 R02
QA QB QC QD
12 9 8 11
74LS93D
U2A
DCD_HEX
4321
X6 X5 X4 X3 2.5 V
2.5 V 2.5 V
2.5 V
X1 2.5 V
X2 2.5 V
74LS08D
四、实验报告要求 1.画出实验线路图。 2.写出实验要求中真值表。 3.画出设计的计数器线路图,及Q1、Q2、Q3、Q4输出波形。
五.思考题
移1.移位寄存器有哪些移位方式? 由2.D触发器和JK触发器组成的计数器的区别
? 73.74LS 93 是同步还是异步.加法还是减法计 数器? 设4.分析十进制加法计数器是如何去掉后6个 计数状态的?
数据记入表21-2中。
2.用74LS93设计各种进制计数器
(1)74LS93管脚图
CP1
Q1 Q4 GND Q2 Q3
4位二进制计数器
14 13 12 11 10 9 8
R1 R2复位输入端
74LS93
12 3 4 5 6 7
CP2 R1 R2
Vcc
设计原理
输入A
14
12
QA
输入B
1
9
vcc 5 74LS93
实验机介绍
ON
OFF
+12v

-12V


+6V

GND
直流信号
I
直流信号
II
+5V

GND

部 分
1KHz
1Hz
逻辑笔 高电平 高阻态 低电平
1M
220K
T1
T2
ቤተ መጻሕፍቲ ባይዱ
Ui
10K 10K 10K
10K
0.1u
15K
0.5u
20K
10u
10K 10K 10K 2K 3.31K 5.1K 6.8K
20K 50K 30K 50K 100K 470K 7.5K
13
D2
12 11
RD
1
T1 D1
CP
23
清零端
串行输入端
移位脉冲
(1)清零:将清零端接逻辑开关置“0”即清零,清零后将逻辑 开关置“1”;
(2)串行输入端接逻辑开关,将数码“1101”在移位脉冲作用 下,送入移位寄存器中。此时,由LED的状态,观察移位过程。
(3)输入数据后,将D1端接地,加移位脉冲,则数据依次传送 到Q4使各输出端依次变成零状态。
GND 10
8
QB QC
R0(1)
2
11
QD
R0(2)
3
复位输入端
74LS93为非标准电源
复位计数功能表
输出端
R0(1)R0(2) QD QC QB QA
HH LX XL
LLLL 计数 计数
设计的计数器要求具有译码显示功能
Q1
Q2 计数器 Q3 74LS93 Q4
A
B 译码器
C 74LS248 D
相关文档
最新文档