第21章 二次根式单元测试题(一)及答案
初中-数学-华东师大版-第二十一章 二次根式 单元测试卷(一)

第二十一章二次根式单元测试卷(一)一、选择题1不是同类二次根式的是()A. B.D.C.2x应满足()A. x≠1B. x≥1C. x≤1D. x<13、下列计算正确的是()A. 5== B. 2C. =D. =4、下列式子不是二次根式的是()A. B.C. D.5、下列计算错误的是()A. =B. =C. =D. =6可化简为()C. D. 67是同类二次根式的是()A. B.C. D.+⋅=,若b是整数,则a的值可能是()8、已知(3a bA. B. 3C. 3+D. 29、下列计算,正确的是()A. =B. 13222 -=-C. =D.112 2-⎛⎫= ⎪⎝⎭10、若|m+1|0,则2m+n的值为()A. -1B. 0C. 1D. 311=a b,用含有a,b,下列表示正确的是()A. 20.1ab B. 30.1a bC. 20.2ab D. 2ab12)A. 5和6B. 6和7C. 7和8D. 8和9二、填空题13、函数124yx=-的自变量x的取值范围是______.14、当x>2150,0)a b>的结果是______.16是同类二次根式,则a=______.三、解答题1718、先观察下列等式,再回答问题:=1+1=2;②2212+2+()2=2+ 12=2 12; ③2213+2+()3=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.19、化简:(1)00=,22=______,2(2)-=______.,2a =______.; (2)30=0,333=______,33(3)-=______,33a =______;(3)根据以上信息,观察a b 、所在位置,完成化简:()()2323a b a a b +--+20、小明解答“先化简,再求值:21211x x ++-21211x x ++-,其中31x =+.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.21、计算:5-31562;(2)2×(12855-31)2;(4)( 352352).参考答案1、【答案】B【分析】根据最简二次根式的定义选择即可.【解答】A=A不正确;B不是同类二次根式,故B正确;C=是同类二次根式,故C不正确;D=是同类二次根式,故D不正确;故选:B.2、【答案】C【分析】根据二次根式有意义的条件可得1-x≥0,再解即可.【解答】解:由题意得:1−x⩾0,解得:x⩽1,故选C.3、【答案】B【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、与A选项错误;B、原式,所以B选项正确;C、原式,所以C选项错误;D、原式2,所以D选项错误.故选:B.4、【答案】Da≥0)是二次根式,可得答案.【解答】A.是二次根式,故A不符合题意;B.是二次根式,故B不符合题意;C.是二次根式,故C不符合题意;D.被开方数小于零,故D符合题意.答案第1页,共7页故选D.5、【答案】D【分析】根据二次根式的分母有理化对进行判断;根据二次根式的乘法对进行判断;根据二次根式的加减法对、进行判断.【解答】、1333=,故此计算正确;、361832⨯==,故此计算正确;、271233233-=-=,故此计算正确;23.故选:D.6、【答案】A12化简即可.1223=A7、【答案】D【分析】先将各选项化简,再找到被开方数为a的选项即可.【解答】A. 2a a233a=a42a a=aD.2a a故选:D.8、【答案】B【分析】利用平方差公式找出括号中式子的有理化因式即可.【解答】(3535954-=-=则a的值可能是35,故选:B.9、【答案】D【分析】A、先化简二次根式,再合并同类项即可求解;B、根据有理数减法法则计算、再求绝对值即可求解;C、根据二次根式的性质化简即可求解;D、根据负整数指数幂的计算法则计算即可求解.【解答】A=B、|12-2|=|-32|=32,故选项错误;C,故选项错误;D、112-⎛⎫⎪⎝⎭=2,故选项正确.故选:D.10、【答案】B【分析】先根据非负数的性质列出关于m、n的一元一次方程组,求出m、n的值,把m、n的值代入代数式进行计算即可.【解答】∵|m+1|∴m+1=0;n-2=0解得m=-1,n=2.∴2m+n=0.所以本题答案是B. 11、【答案】B330.10.10.1a b a b=⨯=故答案选:B.12、【答案】A【分析】先把各二次根式化为最简二次根式,再进行计算,再利用估算无理数的方法得出答案.=∵5<6,的运算结果应在5和6两个连续自然数之间.故选:A.答案第3页,共7页13、【答案】1x ≥且2x ≠【分析】根据二次根式及分式有意义的条件解答即可.【解答】由题意可得,x -1≥0且2x -4≠0,解得,1x ≥且2x ≠.故答案为:1x ≥且2x ≠.14、【答案】x -2【分析】根据二次根式的性质解答.【解答】∵x >2=|x -2|=x -2.故答案为:x -2. 15、【答案】3ab 【分析】直接利用二次根式的性质化简得出答案.(0,0)b a b a >故答案为: 16、【答案】4【分析】,故只需根式中的代数式相等即可确定a 的值.是同类二次根式,可得3a -1=11解得a=4 故答案为:4.17、【答案】【分析】直接化简二次根式,进而合并得出答案.【解答】原式=-答案第5页,共7页 18、【答案】(1=144+=144;(2=211n n n n ++=,证明见解答.【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”=414+=414; (2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【解答】(1=1+1=2=212+=212;③=313+=313;里面的数字分别为1、2、3,= 144+= 144. (2=1+1=2=212+=212=313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n ++==右边.=n 211n n n ++=成立. 19、【答案】(1)2、2、|a|;(2)3、-3、a ;(3)-3a .【分析】(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a 、b 的大小与正负,从而可以化简题目中的式子.【解答】解:(1=2=2.;故答案为:2、2、|a|;(2=3-3a ;故答案为:3、-3、a ;(3)由图可得,a <0<b ,|a|<|b|,=-a+b -a -(a+b )=-a+b -a -a -b=-3a .20、【答案】步骤①、②有误 【分析】异分母分式的的加减应通分,而不是去分母,据此可找出小明错误的步骤;然后按照异分母分式的运算法则计算即可. 【解答】步骤①、②有误.原式:1211(1)(1)(1)(1)(1)(1)1x x x x x x x x x -+=+==+-+-+--.当1x =时,原式3==.21、【答案】(1)-1;(2)2;4【分析】根据二次根式的混合运算法则先去括号,再进行乘除后加减依次进行计算即可.【解答】解:(1)1=-1.(2)2×(1=2- =2.-1)2=32-2-)2-=9-5--1=(9-5-3-+))]2-2=3-(7-4.答案第7页,共7页。
华东师大版 九年级上册 第21章二次根式单元测试卷及参考答案

(A) 3 − 2a
(B) 2a − 3
(C) −1
(D)1
5. 下列式子为最简二次根式的是
(D)9
(A) 5
(B) 12
6. 下列运算正确的是
(C) a 2
(D) 1 a
(A) 2 + 3 = 5
(B) 2 2 3 2 = 6 2
【】 【】 【】 【】
(C) 8 2 = 2
(D) 3 2 − 2 = 3
2 −2+2
2
……………………………………8 分
18.(8 分)已知 x = 2 − 3 ,求代数式
( ) ( ) 7 + 4 3 x2 + 2 + 3 x + 3 的值.
解:∵ x = 2 − 3
( ) ∴ x2 = 2 −
2
3 =4−4 3+3
=7−4 3 ……………………………………3 分
∴ (7 + 4 ) ( 3 x2 + 2 + 3)x + 3
(B) x ≥ 2 3
(D) x ≤ 2 且 x −3 3
2. 下列二次根式中,不能与 2 合并的是
【】 【】
(A) 1 2
(C) 8
(C) 12
(D) 18
3. 化简 (− 3)2 的结果为
(A)3
(B) − 3
(C) 3
4. 当1 a 2 时,式子 (a − 2)2 + 1 − a 的值为
21.(12 分)阅读材料: 黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意
是指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的
第21章 二次根式练习题及答案

第21章 二次根式练习题21.1二次根式一、填空题1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+与()2005_____________a b -=。
二、选择题13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )A. B.C.D.15. 若23a,则等于( )A. 52a -B. 12a -C. 25a -D. 21a -A. 24a +B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1B. ()2C. ()3D. ()4 三、解答题21. 2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20112012a b -的值。
第21章二次根式综合测试题(含答案人教版)

第21章二次根式综合测试题(含答案人教版)第21章二次根式综合测试题(含答案人教版)(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1.函数y=2-x+1x-3中自变量x的取值范围是().A.x≤2B.x=3C.x<2且x≠3D.x≤2且x≠32.小明的作业本上有以下四题:①16a4=4a2;②5a•10a=52a;③a1a =a2•1a;④3a-2a=a.其中做错的题是().A.①B.②C.③D.④3.计算27-1318-12的结果是().A.1B.-1C.3-2D.2-34.下列各式计算正确的是().A.m2•m3=m6B.1613=16•13=433C.323+33=2+3=5D.(a-1)11-a=---a=-1-a(a<1)5.若x=3-22,y=3+22,则x2+y2的值是().A.52B.32C.3D.146.若ab<0,则化简a2b的结果是().A.-abB.-a-bC.a-bD.ab7.化简4x2-4x+1-(2x-3)2的结果为().A.2B.-4x+4C.-2D.4x-48.下列各式计算正确的是().A.6÷(3+2)=63+62=2+3B.(4-23)2=16-(23)2=4C.2+3÷(2+3)=1D.35+2=+-+2=5-28.小亮设计了一种运算程序,其输入、输出如下表所示,若输入的数据是27,则输出的结果应为().输入0149162536…输出-1012345…A.26B.28C.33-1D.32+110.设0<m<1,则在实数m,1m,m,3m中,最小的数是().A.mB.1mC.mD.3m二、填空题(每题3分,共24分)11.计算:-+3=_______.12.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=5.那么12※4=__________.13.如果5+7,5-7的小数部分分别为a,b,那么a+b的值为________.14.若已知一个梯形的上底长为(7-2)cm,下底长为(7+2)cm,高为27cm,则这个梯形的面积为________.15.如图,数轴上表示1,3的对应点分别为点A、B,点B关于点A的对称点为C,设点C所表示的数为x,则x+3x的值为____________.(第15题)16.若a,b为实数,b=a2-9+9-a2a-3+5,则a2+b2=________.17.先阅读,再回答问题:因为12+1=2,且1<2<2,所以12+1的整数部分是1;因为22+2=6,且2<6<3,所以22+2的整数部分是2;因为32+3=12,且3<12<4,所以32+3的整数部分是3.以此类推,我们会发现a2+a(a为正整数)的整数部分是________,理由为___________________________________.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所依据的公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在某次交通事故调查中测得d=24m,f=1.3,则肇事汽车的车速大约是______km/h.三、解答题(第19题16分,第20――23每题6分,24、25题每题8分,共56分)19.计算:(1)50-38+18;(2)5-122+5-12+1;(3)24-1.5+223-53+623;(4).20.先化简,再求值:,其中.21.已知x+y=5,xy=3,求的值.22.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:12+1=-+-=2-12-1=2-1,13+2=-+-=3-23-2=3-2,同理可得14+3=4-3,……从计算结果中找出规律,并利用这一规律计算:23.生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的13,则梯子比较稳定.现有一梯子,稳定摆放时,顶端达到5米的墙头,请问梯子有多长?24.某小区有一块等腰三角形的草地,它的一边长为20m,面积为160m2,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为多少米.25.先观察下列等式,再回答问题.①②③(1)请根据上面三个等式提供的信息,猜想的结果;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式.附加题(共10分,不计入总分)26.宽与长之比为5-12∶1的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,如图所示,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.(第26题)数学家谈祥柏改诗谈祥柏是中国人民解放军军医大学数学教授,在科普领域辛勤耕耘,创作出不少优秀作品,深受广大青少年喜爱,此外,他对文学诗歌很有研究,常将数学与文学诗歌有机地结合在一起,显现了他的非凡才识与创新精神.有一次,他将我国近代著名诗人徐志摩一首很有名的新诗《再别康桥》:轻轻的,我走了……正如我轻轻的来……组成了一个有趣的数学题目,使数趣渗入到了诗歌领域.经改编,上述两句诗文成了如下的等式组:轻轻的=我+走了正-如÷我=轻轻的÷来这里,相同的汉字代表0,1,2,3,…,9中相同的数字,不同的汉字代表不同的数字,开平方得出的数,当然都是整数,这组等式有唯一的解答,你能试着把它解出来吗?这个问题的答案为:225=4+137-8÷4=225÷9第二十一章综合提优测评卷1.D2.D3.C4.D5.A6.A7.A8.D9.C10.A11.212.1213.114.14cm215.8+2316.3417.a理由略18.89.419.(1)22(2)(2)2(3)166-5(4)20.原式.把代入上式,得原式=.21.22.201123.梯子长5.3m24.m或m或m25.(1)(2)26.留下的矩形CDFE是黄金矩形.∵四边形ABEF是正方形,∴AB=DC=AF.∵ABAD=5-12,∴FDDC=AD-AFDC=ADDC-1=ADAB-1=25-1-1=5-12. ∴矩形CDFE是黄金矩形.。
北京市西城区第二十一章二次根式课堂练习题及答案

第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______.2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: 149=_______;22)7(_______; 32)7(-_______;42)7(--_______; 52)7.0(_______;622])7([- _______. 二、选择题5.下列计算正确的有 .①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是 . A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是 . A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是 .A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义 1;1x -2;2x -3;12+x 4⋅+-xx2110.计算下列各式:1;)23(2 2;)1(22+a3;)43(22-⨯-4.)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是 .A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是 . A .-7B .-5C .3D .7三、解答题17.计算下列各式:1;)π14.3(2- 2;)3(22--3;])32[(21-4.)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除一学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:1=⨯12172_________;2=--)84)(213(__________; 3=⨯-03.027.02___________.3.化简:1=⨯3649______;2=⨯25.081.0 ______;3=-45______. 二、选择题4.下列计算正确的是 . A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么 .A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是 . A .±3 B .3 C .-3 D .9三、解答题7.计算:1;26⨯2);33(35-⨯- 3;8223⨯4;1252735⨯ 5;131aab ⋅6;5252ac c b b a ⋅⋅7;49)7(2⨯-8;51322-9 .7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“”的运算法则为:,4@+=xy y x 则266=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:123_____32;225______34;3-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是 .A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于 . A .11- B .11C .44-D .112三、解答题14.计算:1=⋅x xy 6335_______;2=+222927b a a _______;3=⋅⋅21132212_______; 4=+⋅)123(3_______.15.若x -y +22与2-+y x 互为相反数,求x +y x的值.拓广、探究、思考16.化简:1=-+1110)12()12(________;2=-⋅+)13()13(_________.测试3 二次根式的乘除二学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:1=12______;2=x 18______;3=3548y x ______;4=xy______;5=32______;6=214______;7=+243x x ______;8=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2132与______; 232与______;3a 3与______; 423a 与______; 533a 与______. 二、选择题 3.xxx x -=-11成立的条件是 . A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是 . A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为 . A .3232 B .32321C .281D .241 三、计算题 6.1;2516 2;9723;324 4;1252755÷-5;1525 6;3366÷7;211311÷8.125.02121÷ 综合、运用、诊断一、填空题7.化简二次根式:1=⨯62________2=81_________3=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: 1=51_______2=x 2_________3=322__________4=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.结果精确到0.001 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为 . A .a =b B .ab =1 C .a =-bD .ab =-111.下列各式中,最简二次根式是 .A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:1;3b a ab ab ⨯÷ 2;3212y xy ÷3⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.1=+2271_______;2=+10111_______;3=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减一学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:1=+31312________; 2=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是 .A .10B .12C .21 D .61 4.下列说法正确的是 .A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是 . A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,a +b a的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.填“正确”或“错误” 二、选择题14.在下列二次根式中,与a 是同类二次根式的是 .A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:1判断下列各式是否成立你认为成立的,在括号内画“√”,否则画“×”.①322322=+②833833=+③15441544=+ ④24552455=+2你判断完以上各题后,发现了什么规律请用含有n 的式子将规律表示出来,并写出n 的取值范围.3请你用所学的数学知识说明你在2题中所写式子的正确性.测试5 二次根式的加减二学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:1=-+)18(50________;2=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是 . A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是 . A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于 . A .7 B .223366-+- C .1D .22336-+三、计算题能简算的要简算 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.1规定运算:ab =|a -b |,其中a ,b 为实数,则=+7)3*7(_______.2设5=a ,且b 是a 的小数部分,则=-baa ________.二、选择题14.b a -与a b -的关系是 . A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是 .A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求1x 2-xy +y 2;2x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: 125与______; 2y x 2-与______; 3mn 与______; 432+与______; 5223+与______; 63223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.精确到答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.17; 27; 37; 4-7; 5; 649.5.C . 6.B . 7.D . 8.D .9.1x ≤1;2x =0;3x 是任意实数;4x ≤1且x ≠-2.10.118;2a 2+1;3;23- 46. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.1π-3.14;2-9;3;23 436. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.1;6 224;3-.3.142;2;3.53- 4.B . 5.B . 6.B .7.1;32 245; 324; 4;53 5;3b 6;52 749; 812; 9⋅y xy 263 8..cm 62 9..72 10.210.11.1>;2>;3<. 12.B . 13.D .14.1;245y x 2;332b a + 3 ;34 49. 15.1.16.1;12- 2.2测试31.1;32 2;23x 3;342xy y x 4;xxy 5 ;36 6;223 7;32+x x 8630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.,. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.1.)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.1都画“√”;21122-=-+n nn n nn n ≥2,且n 为整数;3证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.1;22 2 .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.13;2.55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4可以按整式乘法,也可以按因式分解法.20.19; 210. 21.4.22.12; 2y x 2-; 3mn ; 432-; 5223-; 63223+答案不唯一. 23.约.。
二次根式单元测试卷及参考答案和评分标准

2-4丌
十
y2+6y十
VZ+2+13=o
新华师大版九年级 上册数学摸底试卷 第 8页
^卷
新华师大版九年级上册数学摸底试卷 (一
第 21章 二次根式单元测试 卷
姓名 时间 :90分 钟
满分 H⒛ 分
)
^卷 总分
一 、选择题 (每 小题 3分 ,共 sO分 )
工 2有 意义,则 夕 1,若 二次根式√ ¢ 的取值范围是
(A)曰 ≥2 (B)夕 ≤2 (C)夕 >2 (D)曰 ≠2
2-4J+4的 结果是 <2,则 化简√ 2,已 知艿 丌
求 兰+芏 的值 。
+1,
… ………………… …… …………・ 8分 ⒉ ,(9分 )一 个 三 角形 的三 边长分 别 为 5捂 ,:湎 ・
y
艿
解rr艿 =VΞ ~19y=VΞ +1
,∶
礓
;
∴ v=陋 -1肛 +θ =2-1=1
l=2刁 Ξ × +y=VΞ -1+VΞ 十
(1)求 它 的周长
(2)请 你 给 一 个 适 当 的 丌 值 ,使 它 的周
艮 式 则化 简 二 次本
、F劳
(A)扳
(:)w匚
7 ∶
(C)-扳
(D)-V匚
7 ∶
二 、填空题 (每 小题 3分 ,共 15分 )
11,计 算 :2丬
十 乇 )2= 硕
, . VΠ
,
12,化 简:~哂i-刁
t=
、 13.比 较大∷ :⒉ 厅 犭
2Vt,则 这个直角三角形的周长 14.己 知直角三角形两条直角边边长分别是让 娇口
九年级数学(上)第二十一章《二次根式》测试题及参考答案
九年级数学(上)《二次根式》测试题一、选择题(每小题3分,共30分)1、使式子1-x 2+x 有意义X 的取值范围是( )A 、X ≤1B 、X ≤1且X ≠-2C 、X ≠-2D X <1且X ≠-22、若代数式x x -+212有意义,则x 的取值范围是( )A 、21->x B 、4±≠x C 、0≥x D 、40≠≥x x 且 3、下列运算正确的是( ) A 、15.05.15.05.122=-=-B 、15.025.02=⨯= ≥C 、5)5(2-=-x xD 、x x x 22-=-4、下列根式中,最简二次根式是( )A 、a 25B 、22b a +C 、2aD 、5.05、已知:直角三角形的一条直角边为9,斜边长为10,则另一条直角边长为( )A 1B 19C 19D 296、若x=-3,则 ︳1-(1+X 2) ︳=( )A 1B -1C 3D -37、24n 是整数,则正整数n的最小值是( )A 4B 5C 6D 78、对于二次根式92+x ,以下说法不正确的是( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是39、下列说法错误是………………………………( ) A.962+-a a 是最简二次根式 B.4是二次根式 C.22b a +是一个非负数 D.162+x 的最小值是410、下列各式中与6是同类二次根式的是 ( ) A.36 B.12 C.32D.18二、填空题(每小题3分,共18分)11、使式子4-X 无意义的x取值是12、已知:X=2.5, 化简(X-2)2+ ︳X-4 ︳的结果是13、10xy .30yx (x>0,y>0)= 14、已知4322+-+-=x x y ,则,=xy . 15、三角形的三边长分别是20 ㎝ 45 ㎝ 40 ㎝,则这个三角形的周长为 16、观察下列各式:322322+=⨯;833833+=⨯;15441544+=⨯;……则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。
第21章 二次根式单元测试题(一)及答案
第21章二次根式单元测试之杨若古兰创作一、选择题(每小题2分,共20分)1.以下式子必定是二次根式的是() 2.若,则()A. B. C. D.A.b>3 B.b<3 C.b≥3 D.b≤33.上面计算准确的是()A. B. C. D.4.若x<0,则的结果是() 5.以下二次根式中属于最简二次根式的是()A.0 B.—2 C.0或—2 D.2 A. B.C.D.6.已知,则的值为()7.化简的结果为()A.B.C. D.A. B. C. D.8.小明的功课本上有以下四题:①;②;③;④.做错的题是()A.① B.② C.③ D.④9.若最简二次根式的被开方数不异,则a的值为()A. B. C.a=1 D.a= —110.计算2-6+的结果是()A.3-2B.5-C.5- D.2二、填空题(每小题2分,共20分)11.①;②.12.二次根式成心义的条件是.13.若m<0,则=.14.,.15.成立的条件是.16.比较大小:.17.计算=.18.的关系是.19.若,则的值为.20.化简的结果是.三、解答题(第21~22小题各12分,第23小题16分,共40分)21.求使以下各式成心义的字母的取值范围:(1)(2)(3)(4)22.化简:(1)(2)(3)(4)23.计算:(1)(2)(3)(4)四、综合题(每小题5分,共20分)24.若代数式成心义,则x的取值范围是什么?25.若x,y是实数,且,求的值. 26.浏览上面成绩:;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.A 6.A 7.D 8.C 9.C 10.A 二、填空题11.①0.3 ② 12.x≥0且x≠9 13.—m 14.x≥1 15.> 16. 18 17. 18.相等 19.1 20.三、解答题21.(1)(2)(3)全体实数(4)22.解:(1)原式=;(2)原式=;(3)原式=;(4)原式=.23.解:(1)原式=49×;(2);(3)原式=;(4)原式=;24.解:由题意可知:解得,.25.解:∵x—1≥0, 1—x≥0,∴x=1,∴y<.∴=.26.(1)=;(2)=;(3)=.。
新人教版九年级数学第二十一章二次根式测试题及答案(2套)范文
一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.(2005·岳阳)下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 8.化简6151+的结果为( ) A .3011B .33030C .30330D .11309.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 10.(2005·江西)化简)22(28+-得( ) A .—2 B .22- C .2 D . 224- 二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( 。
12.二次根式31-x 有意义的条件是 。
16.=∙y xy 82 ,=∙2712 。
17.计算3393aa a a-+= 。
18.23231+-与的关系是 。
19.若35-=x ,则562++x x 的值为 。
20.化简⎪⎪⎭⎫⎝⎛--+1083114515的结果是 。
11.若5-x 不是二次根式,则x 的取值范围是 。
12.已知a<2,=-2)2(a 。
13.当x= 时,二次根式1+x 取最小值,其最小值为 。
14.计算:=⨯÷182712 ;=÷-)32274483( 。
16.若433+-+-=x x y ,则=+y x 。
试求:(1)671+的值; (2)17231+的值;下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 1.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=2.若1762+--x x x 的值等于零,则x 的值是( ) A 。
二次根式单元测试题及参考答案
新华师大版九年级上册数学第21章 二次根式单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 若二次根式15-x 有意义,则x 的取值范围是 【 】(A )51>x (B )x ≥51(C )x ≤51 (D )51<x2. 化简()221-的结果是 【 】(A )12- (B )21- (C )()12-±(D )()21-±3. 下列二次根式中是最简二次根式的是 【 】 (A )32(B )2 (C )9 (D )12 4. 下列运算正确的是 【 】 (A )x x x 32=+ (B )3223=- (C )3232=+ (D )25188=+5. 下列二次根式中能与32合并的是 【 】 (A )8 (B )31(C )18 (D )9 6. 等式1313+-=+-x x x x 成立的x 的取值范围在数轴上可表示为 【 】 A. B. C. D.7. 已知a 为整数,且53<<a ,则a 等于 【 】 (A )1 (B )2 (C )3 (D )48. 计算()5452-515-÷⎪⎪⎭⎫⎝⎛的结果为 【 】(A )5 (B )5- (C )7 (D )7-9. 已知21,21-=+=n m ,则代数式mn n m 322-+的值为 【 】 (A )9 (B )3± (C )5 (D )3 10. 已知0>xy ,则化简二次根式2x yx -的结果是 【 】 (A )y (B )y - (C )y -(D )y --二、填空题(每小题3分,共15分)11. 计算:=--124_________. 12. 化简:()=--7177_________.13. 菱形的两条对角线的长分别为()1210+cm 和()3210-cm,则该菱形的面积为_________cm 2.14. 12与最简二次根式15+a 是同类二次根式,则=a _________.15. 对于任意的正数n m ,定义运算※为:m ※⎪⎩⎪⎨⎧<+≥-=nm n m nm n m n ,,,计算(3※2)⨯(8※12)的结果为_________.三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;(2)()()()2217373---+.17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围; (2)当15=x 时,求该二次根式的值.20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长.21.(10分)已知c b a ,,满足()023582=-+-+-c b a . (1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由.22.(11分)规律探究: 观察下列各式:()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+(1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫⎝⎛++++++++ .新华师大版九年级上册数学摸底试卷(一)第21章 二次根式单元测试卷C 卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.2312. 7 13. 44 14. 2 15. 2 三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;解:原式23212--+-=33332-=--=(2)()()()2217373---+. 解:原式()222179+---=1222232-=+-=17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()x x x x x x x xx x 11111111-+⋅+-=-+÷+--=()xx -=--=11当12+=x 时原式2121-=--=.18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.解:(1)由二次根式有意义的条件可知:x 21-≥0解之得:x ≤21; ……………………………………3分 (2)∵x 21-≥0,12-x ≥0∴x ≤21,x ≥21 ∴21=x……………………………………6分∴21211210022=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-++=y……………………………………8分 ∴()112121100100100==⎪⎭⎫⎝⎛+=+y x .……………………………………10分 19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围;(2)当15=x 时,求该二次根式的值.解:(1)由题意可得:⎪⎩⎪⎨⎧=+=+362b a b a ∴⎩⎨⎧=+=+964b a b a ……………………………………4分解之得:⎩⎨⎧==31b a……………………………………6分 ∴该二次根式为3+x 由二次根式有意义的条件可知:3+x ≥0 解之得:x ≥3-;……………………………………8分 (2)当15=x 时23183153==+=+x .……………………………………10分 20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长. 解:xx x x C 5445202155++=∆ x x x 52155++=x 525=; ……………………………………7分 (2)答案不唯一.……………………………………10分 21.(10分)已知c b a ,,满足()023582=-+-+-c b a .(1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由. 解:(1)∵()023582=-+-+-c b a()28-a ≥0,5-b ≥0,23-c ≥0∴023,05,08=-=-=-c b a ∴23,5,228====c b a ; ……………………………………7分 (2)能.……………………………8分52523522+=++=∆C .……………………………………10分 22.(11分) 解:(1)11310-;……………………………………2分 (2)n n n n -+=++111……………………………………4分证明:()()nn nn n n n n -+++-+=++11111 nn n n nn -+=-+-+=111……………………………………7分 (3) 2016.(过程略)……………………………………11分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:
GB8878185555334563BT9125XW
创作者: 凤呜大王*
第21章 二次根式单元测试
一、选择题(每小题2分,共20分)
1.下列式子一定是二次根式的是( ) 2.若
b b -=-3)3(2,则( )
A .2--x
B .x
C .22+x
D .22-x A .b>3 B .b<3 C .b ≥3 D .b ≤3
3.下面计算正确的是( )
A.3=3=2
35= D.2=-
4.若x<0,则x
x x 2-的结果是( ) 5.下列二次根式中属于最简二次根
式的是( )
A .0
B .—2
C .0或—2
D .2 A .14 B .48 C .
b
a D .44+a
6. 已知y =,则2xy 的值为( ) 7.化简
6
151+的结果为( )
A .15-
B .
15 C .152- D . 15
2
A .3011
B .33030
C .30330
D .1130
8.小明的作业本上有以下四题:
①24416a a =; ②a a a 25105=⨯; ③a a
a a a =•=1
12;④a a a =
-23。
做错的题是( )
A .①
B .②
C .③
D .④ 9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .4
3-
=a B .34
=a C .a=1 D .a= —1
10. 计算2
2
1-631
+8的结果是( )
A .32-23
B .5-2
C .5-3
D .22
二、填空题(每小题2分,共20分)
11.①=-2)3.0( ;②=-2
)52( 。
12.二次根式3
1-x 有意义的条件是 。
13.若m<0,则332||m m m ++= 。
14.=•y xy 82 ,
=•2712 。
15.1112-=
-•+x x x 成立的条件是 。
16.比较大小:。
17.计算3
393a
a a a
-
+= 。
18.232
31+-与的关系
是 。
19.若35-=
x ,则562++x x 的值为 。
20.化简
⎪
⎪⎭
⎫
⎝⎛--+1083114515的结果是 。
三、解答题(第21~22小题各12分,第23小题16分,共40分)
21.求使下列各式有意义的字母的取值范围: (1)43-x (2)
a 83
1
- (3)42+m (4)x
1-
22.化简:
(1))169()144(-⨯- (2)22531- (3)510242
1⨯- (4)n m 218
23.计算: (1)2
14
37
⎪⎪⎭
⎫
⎝
⎛
- (2) )459(43332-⨯ (3)2484554+-+ (4)2
3
3
232
6--
四、综合题(每小题5分,共20分) 24.若代数式
|
|11
2x x -+有意义,则x 的取值范围是什么?25.若x ,y 是实数,且
2
111+
-+-<x x y ,求
1
|
1|--y y 的值。
26.阅读下面问题:
12)12)(12()12(12
11-=-+-⨯=
+;
;
23)
23)(23(2
3231
-=-+-=
+
25)
25)(25(252
51-=-+-=
+。
试求:(1)6
71+的值; (2)
17
231
+的值; (3)
n
n ++11(n 为正整数)的值。
创作编号:
GB8878185555334563BT9125XW
创作者: 凤呜大王*
参考答案
一、选择题
1.C 2.D 3.B 4.D 5.A 6.A 7.D 8.C 9.C 10.A 二、填空题
11.①0.3 ②25- 12.x ≥0且x ≠9 13.—m 14.x ≥1 15.> 16.x y 4 18 17.a 3 18.相等 19.1 20.33
16
5315++ 三、解答题 21.(1)34≥
x (2)24
1<a (3)全体实数 (4)0<x 22.解:(1)原式=1561312169144169144=⨯=⨯=⨯; (2)原式=51531-=⨯-
;(3)原式=5165322
1532212-=⨯-=⨯-; (4)原式=n m n m 232322=⨯⨯。
23.解:(1)原式=49×
2114
3=;(2)345527315
)527(41532-=⨯-=-⨯;
(3)原式=225824225354+=+-+;
(4)原式=2
6
5626366-=-
-; 24.解:由题意可知: 解得,12
1
≠-
≥x x 且。
25.解:∵x —1≥0, 1—x ≥0,∴x=1,∴y<
2
1
.∴1|1|--y y =
111-=--y y . 26.(1)
671+=67-;(2)
17
231+=1723-;
(3)
n
n ++11
=n n -+1。
创作编号:
GB8878185555334563BT9125XW
创作者: 凤呜大王*。