抛物线的几何性质.
高中数学抛物线的几何性质总结课件

开口方向与开口大小的关系
开口方向与开口大小的相互影响
开口方向和开口大小是相互影响的,一般来说,向上开口的抛物线开口会逐渐变小,向下开口的抛物线开口会逐 渐变大。
特殊情况下的关系
当a=0时,抛物线退化为一条直线,此时开口方向和大小无法定义。
04 抛物线的对称性
抛物线的对称轴
抛物线关于其对称轴对称,对称轴是 一条垂直于x轴的直线。
对称轴是抛物线几何性质的一个重要 特征,它决定了抛物线的形状和位置 。
对于标准形式的抛物线 y=ax^2+bx+c,其对称轴的方程是 x=-b/2a。
抛物线的对称中心
抛物线的对称中心是其顶点的位 置,顶点坐标可以通过二次函数 的顶点式y=a(x-h)^2+k得到。
抛物线上的任意一点 到焦点的距离等于该 点到准线的距离。
抛物线的标准方程
开口向右的抛物线方程为 $y^2 = 2px$,其中 $p$ 是焦 距。
开口向左的抛物线方程为 $y^2 = -2px$,其中 $p$ 是 焦距。
ቤተ መጻሕፍቲ ባይዱ
抛物线的标准方程可以根据焦 点和准线的位置进行变换。
抛物线的几何性质
01
02
03
开口方向与函数值变化趋势
开口方向与函数值随x的变化趋势一致,向上开口时函数值随x增大而增大,向 下开口时函数值随x增大而减小。
抛物线的开口大小
开口大小与二次项系数的绝对值大小
开口大小由二次项系数的绝对值|a|决定,|a|越大,抛物线开口越小;|a|越小,抛 物线开口越大。
开口大小与函数值变化幅度的关系
抛物线的几何性质

抛物线的几何性质抛 物 线一、抛物线22(0)y px p =>的简单几何性质1、范围:因为0p >,由方程22y px =可知,这条抛物线上任意一点M 的坐标(),x y 满足不等式0x ≥,所以这条抛物线在y 轴的右侧;当x 的值增大时,y 也增大,这说明抛物线向上方和右下方无限延伸,它的开口向右.2、对称性:以y -代y ,方程22(0)y px p =>不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫作抛物线的轴3、顶点:抛物线和它的轴的焦点叫作抛物线的顶点.在方程22(0)y px p =>中,当0y =时,0x =,因此这条抛物线的顶点就是坐标原点.4、离心率:抛物线上的点到焦点的距离与到准线的距离的比,叫作抛物线的离心率,用e 表示.按照抛物线的定义,1e =知识剖析:抛物线的通径:过焦点且与焦点所在的轴垂直的直线与抛物线交于点12,M M ,线段12M M 叫作抛物线的通径,将02px =代入22y px =得y p =±,故抛物线22y px =的通径长为2p例1、已知点(),M x y 在抛物线28y x =上,则()22,129f x y x y x =-++的取值范围? 分析:本题的实质是将(),f x y 转化为关于x 的二次函数,求二次函数在区间[)0,+∞上的最值.()()22,812925f x y x x x x =-++=++,又[)0,x ∈+∞,所以当0x =时,(),f x y 取得最小值9,当[)0,x ∈+∞时,()()2,25f x y x =++,无最大值.故()22,129f x y x y x =-++的取值范围为[)9,+∞答案:[)9,+∞二、抛物线的四种标准方程相应的几何性质:知识剖析:(1)通过上表可知,四种形式的抛物线的顶点相同,均为()0,0O ,离心率均为1,它们都是轴对称图形,但是对称轴不同.(2)抛物线和椭圆、双曲线的几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形,抛物线不是中心对称图形; ②顶点个数不同:椭圆有4个顶点、双曲线有2个顶点、抛物线只有1个顶点; ③焦点个数不同:椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率的取值范围不同:椭圆的离心率的取值范围是01e <<,双曲线离心率的取值范围是1e >,抛物线的离心率是1e =;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线,由于抛物线没有渐近线,因此在画抛物线时切忌将其画成双曲线例2、某抛物线的顶点是椭圆22169144x y +=的中心,而焦点为椭圆的左顶点,求此抛物线的标准方程.分析:因为该椭圆的中心在坐标原点,左顶点为()3,0-,所以可直接设抛物线的标准方程,求得p 后可得方程.答案:解:由22169144x y +=得:221169y x +=,所以椭圆的左顶点为()3,0-.由题意设所求抛物线的标准方程为()220y px p =->,由32p=,得6p =,故所求抛物线的标准方程为212y x =-.三、焦点弦问题及其应用 1、焦点弦如图,AB 是抛物线()220y px p =>过焦点F 的一条弦.设点()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,过,,A B M 分别向抛物线的准线作垂线,垂足分别为111,,A B M ,则根据抛物线的定义有11AF BF AA BB +=+.又1MM 是梯形11AA B B 的中位线,1112AB AA BB MM ∴=+=.综上可得以下结论: ①121212,,2222p p p p AF x BF x AB x x x x p ⎛⎫⎛⎫=+=+∴=+++=++ ⎪ ⎪⎝⎭⎝⎭,其常被称作抛物线的焦点弦长公式.②022p AB x ⎛⎫=+ ⎪⎝⎭(焦点弦长与中点的关系)③若直线AB 的倾斜角为α,则22sin pAB α= 推导:12AB AF BF x x p =+=++由④的推导知,当AB 不垂直于x 轴时,()1220py y k k+=≠1212122222y y y y p p p x x p p k k k k+∴+=+++=+=+ 222212212tan sin p p AB p p k αα⎛⎫∴=+=+= ⎪⎝⎭当k 不存在时,即90α=时,22sin pAB α=亦成立 ④A B 、两点的横坐标之积、纵坐标之积为定值,即2124p x x =,212y y p =-分析:利用点斜式写出直线AB 的方程,与抛物线方程联立后进行证明.要注意直线斜率不存在的情况. 推导:焦点F 的坐标为,02p ⎛⎫⎪⎝⎭,当AB 不垂直于x 轴时,可设直线AB 的方程为:()02p y k x k ⎛⎫=-≠ ⎪⎝⎭,由222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得:2220ky py kp --= ()2224212212121222,22444y y y y p p y y p x x p p p p ∴=-==== 当AB 垂直于x 轴时,直线AB 的方程为:2px =则222212121212,,224y y p y p y p y y p x x p p ==-⇒=-==⑤11AF BF +为定值2p推导:由焦半径公式知,12,22p pAF x BF x =+=+ ()12212121211112224x x p p pp p AF BF x x x x x x ++∴+=+=+++++又21212,4p x x x x AB p =+=-,代入上式得:()22112424AB p p p AF BF p AB p +==+-+为常数 故11AF BF +为定值2p.2、抛物线中与焦点弦有关的一些几何图形的性质(1)抛物线以过焦点的弦为直径的圆和准线相切(2)抛物线()220y px p =>中,设AB 为焦点弦,M 为准线与x 轴的交点,则AMF BMF ∠=∠ (3)设AB 为抛物线的焦点弦.① 点A B 、在准线上的射影分别为点11A B 、,若P 为11A B 的中点,则PA PB ⊥;②O 为抛物线的顶点,若AO 的延长线交准线于点C ,连接BC ,则BC 平行于x 轴,反之,若过点B 作平行于x 轴的直线交准线于点C ,则,,A O C 三点共线. (4)通径是所有焦点弦(过焦点的弦)中最短的弦.例3、已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4π的直线,被抛物线所截得的弦长为6,求抛物线方程.解:当抛物线的焦点在x 轴正半轴上时,可设抛物线的标准方程为()220y px p =>,则焦点F的坐标为,02p ⎛⎫⎪⎝⎭,直线l 的方程为2p y x =-.设直线l 与抛物线的交点为()()1122,,,A x y B x y ,过点,A B 分别向抛物线的准线作垂线,垂足分别为点11A B 、,则有:111212+=622p p AB AF BF AA BB x x x x p ⎛⎫⎛⎫=+=+++=++= ⎪ ⎪⎝⎭⎝⎭,由222p y x y px⎧=-⎪⎨⎪=⎩,消去y ,得222p x px ⎛⎫-= ⎪⎝⎭,即22304p x px -+= 123x x p ∴+=,代入①式得:336,2p p p +=∴= ∴所求抛物线的标准方程为23y x =当抛物线的焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是:23y x =-例4、已知抛物线()220y px p =>的焦点为F ,点()()()111222333,,,P x y P x y P x y 、、在抛物线上,且2132x x x =+,则有( )123.A FP FP FP += 222123.B FP FP FP += 213.2C FP FP FP =+ 2213.D FPFP FP =解析:123P P P 、、在抛物线上,且2132x x x =+,两边同时加上p ,得2132()222p p p x x x +=+++ 即2132FP FP FP =+ 答案:C例5、过抛物线24y x =的焦点作直线交抛物线于()()1122,,,A x y B x y 两点,如果126x x +=,那么AB =?解析:由抛物线定义,得12628AB AF BF x x p =+=++=+=。
抛物线的几何性质

P O
(2b 4)2 4b2 16b 16 0, b 1.
x
∴切线方程为: y x 1.
y2 4 x x 1, , 得 解方程组 y x 1 y 2.
所以切点为P(1,2).
【2】直线 x+y-3=0 和抛物线 y2=4x 交于 A、 B 两点.在抛物线 AOB 上求一点C,使 △ABC 的 y 面积最大.
(3)以点Q为圆心,QS为半径作圆Q,则线段ST即为圆Q与圆M 的公共弦. 设点Q(-1,t),则QS2=QM2-4=t2+5,所以圆Q的方程为(x +1)2+(y-t)2=t2+5. 从而直线QS的方程为3x-ty-2=0.(*) 2 x= , 因为 3 y=0
一定是方程(*)的解,所以直线QS恒过一个定
【1】在抛物线 y2=4x 上求一点 P,使点 P 到直线 抛物线的最值问题 y=x+3 的距离最小.
抛物线上到直线l距离最短的点,是和此直线平行的切线的切点.
解:易知直线与抛物线相离, 设与y=x+3平行且与 y2=4x 相切的直线方程为y=x+b.
y
y2 4 x 由 , 化简得 x 2 (2b 4) x b 2 0 y xb
物线的定义知|AA1|+|BB1|=|AF|+|BF|=3,则AB的中点到y轴 1 1 5 的距离为2(|AA1|+|BB1|)-4=4. 答案 5 4
涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利 用抛物线的定义转化为点到准线(焦点)的距离问题求解.
【训练2】 已知F为抛物线x2=2py(p>0)的焦点,M为其上一 点,且MF=2p,则直线MF的斜率为________. 解析
抛物线的简单几何性质

抛物线的简单几何性质抛物线是数学中一个经典的曲线,由于其独特的形状和广泛的应用,它被广泛研究和使用。
本文将介绍抛物线的一些简单的几何性质。
1. 抛物线的定义抛物线是指平面上的一类曲线,其定义为平面上离定点(焦点)距离与定直线(准线)距离相等的点的集合。
这个定义可以用数学表达式来描述,即:y = ax^2 + bx + c其中 a、b 和 c 是常数,a 不等于 0。
这个方程描述了平面上所有满足以上条件的点的集合,即抛物线。
2. 抛物线的对称性抛物线具有轴对称性,即它关于某一直线对称。
这条直线称为抛物线的对称轴。
对称轴与抛物线的顶点有关,顶点是抛物线的最高点或最低点。
对于抛物线的标准方程y = ax^2 + bx + c,对称轴的公式为x = -b/(2a)。
3. 抛物线的顶点抛物线的顶点是曲线的最高点或最低点,位于抛物线的对称轴上。
对于标准方程y = ax^2 + bx + c,顶点的 x 坐标可以通过-b/(2a)计算得出。
将其代入方程中得到对应的 y坐标。
4. 抛物线的焦点和准线在抛物线的定义中提到了焦点和准线。
焦点是一个点,位于抛物线的对称轴上,与抛物线上的所有点到准线的距离相等。
准线是一个直线,与抛物线不相交,且与焦点的距离相等。
焦点的计算可以使用以下公式:F(x, y) = (x, y),其中 x = -b/(2a),y = (1 - (b^2 - 4ac))/(4a)准线的方程为y = (1 - (b^2 - 4ac))/(4a)。
5. 抛物线的焦距和方向焦距是指焦点到准线的距离,也可以视为焦点到对称轴的垂直距离。
焦距的计算公式为f = 1/(4a)。
由此可见,焦点到对称轴的距离与 a 的值有关。
当 a 的值越小,焦距越大,抛物线会变得扁平;当 a 的值越大,焦距越小,抛物线会变得尖锐。
根据 a 的正负,抛物线的方向也会有所不同。
当 a 大于 0 时,抛物线开口朝上;当 a 小于 0 时,抛物线开口朝下。
抛物线的简单几何性质

x
直线与抛物线的关系
例3.已知抛物线y2=4x,过定点A(-2, 1)的
直线l的斜率为k,下列情况下分别求k的
取值范围:
1. l与抛物线有且仅有一个公共点;
2. l与抛物线恰有两个公共点;
3. l与抛物线没有公共点.
例 1 已知抛物线的方程为 y 4 x ,直线 l 过定点 P ( 2 , 1 ) ,斜率为 k , k 为何值时,直线 l 与抛物线 2 y 4 x :⑴只有一个公共点;⑵有两个公共点;⑶ 没有公共点?
l
y
(4) 离心率:
O
F
x
e =1
方程 图
y2 = 2px
(p>0)
y
l O F x
y2 = -2px
x2 = 2py
x2 = -2py
(p>0)
y
x
l l F x
(p>0)
y
F
O l
(p>0)
y
x
O F
形 范围
对称 性
O
x≥0 y∈R
x≤0 y∈R
x∈R y≥0
x∈R y≤0
关于x轴对称 (0,0) e=1
2
分析:直线与抛物 线有一个公共点 的情况有两种情 形:一种是直线 平行于抛物线的 对称轴; 另一种是直线与 抛物线相切.
归纳方法:
1.联立方程组,并化为关于x或y的一元方程;
2.考察二次项的系数是否为0,
①若为0,则直线与抛物线的对称轴平行, 直线与抛物线有且仅有一个交点; ②若不为0,则进入下一步. 3.考察判别式 ⊿<0 直线与抛物线相离. ⊿=0 直线与抛物线相切; ⊿>0 直线与抛物线相交;
抛物线的几何性质

特点
1.抛物线只位于半个坐标平面内,虽然它可以无 限延伸,但它没有渐近线; 2.抛物线只有一条对称轴,没有对称中心; 3.抛物线只有一个顶点、一个焦点、一条准线; 4.抛物线的离心率是确定的,为1; 5.抛物线标准方程中的p对抛物线开口的影响.
例 .斜率为1的直线 l 经过抛物线 y2 = 4x 的焦 点F,且与抛物线相交于A,B两点,求线段AB的 长.
焦点弦的长度 AB p x1 x2
练习: 过抛物线y2 = 8x的焦点,作倾斜角为45°的
直线,则被抛物线截得的弦长为
例 已知抛物线的方程为y2=4x,直线 l 过定点
P(-2,1),斜率为 k,当 k 为何值时,直线 l 与 抛物线:只有一个公共点;有两个公共点; 没有公共点。
抛物线的几何性质
1.抛物线:为y2=2px的准线方程为x= -5,过 焦点F且垂直 x 轴的直线 l 与抛物线交于点 A、B,求A、B两点的距离。
2.已知抛物线C:为y2=4x的焦点为F,过点F 的直线 l 与抛物线C相交于点A、B。若 |AB|=8,求直线 l 的方程。
3.求抛物线y= -x2上的点到直线4x+3y-8=0的距 离的最小值。
p 2 x0
(0,0) p 2 x0
(0,0) p 2 y0
(0,0)
p 2
y0
p x1 x2 p (x1 x2 ) p y1 y2 p ( y1 y2 )
抛物线的几何性质
y2 = 2px (p>0)
y
lቤተ መጻሕፍቲ ባይዱ
OF x
y2 = -2px (p>0)
yl
x2 = 2py (p>0)
抛物线的几何性质

抛 物 线(一)知识回顾1.定义:在平面内,与一个定点F 和一条定直线L(L 不经过点F)的距离相等的点的轨迹叫抛物线.M F M H =,FK p =为焦准距。
2.标准方程:(1)焦点在x 轴正半轴:22y px =(0p >),焦点(,0)2p F ,准线:2p x =-;(2)焦点在x 轴负半轴:22y px =-(0p >),焦点(,0)2p F -,准线:2p x =;(3)焦点在y 轴正半轴:22x py =(0p >),焦点(0,)2p F ,准线:2p y =-;(4)焦点在y 轴负半轴:22x py =-(0p >),焦点(0,)2p F -,准线:2py =;(二)几何性质:以22y px =(0p >)为例 (1)范围:0x ≥,y R ∈; (2)对称性:x 轴;(抛物线的轴) (3)顶点:原点;(4)离心率:1e =抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1.说明:①对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程.②根据一次项的变量确定对称轴和焦点位置,根据一次项系数的符号确定开口方向。
根据焦参数p 的值确定抛物线开口的大小,p 越大,抛物线开口越开阔。
③抛物线没有渐近线.④垂直于对称轴的焦点弦叫抛物线的通径,其长为2p 。
(5) 范围:当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支的区别,无渐近线).(三)、抛物线中与焦点弦有关的一些几何图形的性质: (1)以过焦点的弦为直径的圆和准线相切;(2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;(3)设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;(四)弦长公式与中点弦问题:(1) 弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B的横坐标,则A B=12x -,若12,y y 分别为A 、B 的纵坐标,则A B =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则A B12y -。
第2课时抛物线的简单几何性质

第2课时 抛物线的简单几何性质一、抛物线的性质1.抛物线2y =2px(p>0)的简单几何性质(1)对称性:以-y 代y ,方程2y =2px(p>0)不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫做抛物线的轴,抛物线只有一条对称轴. (2)顶点:抛物线和它的轴的交点叫做抛物线的顶点.(3)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的离心率, (4)通径:过焦点垂直于轴的弦称为抛物线的通径,其长为2p.(5)范围:由y2=2px ≥0,p>0知x ≥0,所以抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,p 值越大,它开口越开阔. 2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A(x0,y0),则四种标准方程形式下的焦半径公式为3.p 表示焦点到准线的距离,p >0.p 值越大,抛物线的开口越宽;p 值越小,抛物线的开口越窄。
4.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l 相切; (2)|AB |=2(x 0+p2)=x 1+x 2+p ;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=42p ,y 1·y 2=2p.题型一、抛物线的对称性例1、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.[解析] 如图,设正三角形OAB 的顶点A 、B 在抛物线上,且它们坐标分别为(x 1,y 1)和(x 2,y 2)则:y 21=2px 1,y 22=2px 2.又|OA |=|OB |,∴x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,∴(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0,∴x 1=x 2, 由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称.由于AB 垂直于x 轴,且∠AOx =30°.∴y 1x 1=tan30°=33,而y 21=2px 1,∴ y 1=23p . 于是|AB |=2y 1=43p . 例2、等腰Rt △ABO 内接于抛物线2y =2px(p>0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是()A .82pB .42p C .22pD .2p[答案] B题型二、抛物线焦点弦的性质例3、斜率为2的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点A 、B ,求线段AB 的长. 解∴|AB|=|AF|+|BF|=x1+x2+2=3+2=5. 例4、过抛物线2y =8x 的焦点作直线l ,交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|的值为_____________.[答案] 10 题型三、最值问题例5、设P 是抛物线y 2=4x 上的一个动点,F 为抛物线焦点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[解析] (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连AF 交抛物线于P 点,故最小值为22+12,即 5. (2)如图把点B 的横坐标代入y 2=4x 中,得y =±12,因为12>2,所以B 在抛物线内部,自B 作BQ 垂直准线于Q ,交抛物线于P 1.此时,由抛物线定义知: |P 1Q |=|P 1F |.那么|PB |+|PF |≥|P 1B |+|P 1Q | =|BQ |=3+1=4. 即最小值为4. 例6、定点M ⎪⎭⎫⎝⎛310,3与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(1,2)C .(2,2) D.⎪⎭⎫ ⎝⎛-21,81 [答案] C例7、设抛物线C :x 2=2py 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.[正解] (1)由已知可得△BFD 为等腰直角三角形,当p >0时,|BD |=2p ,圆F 的半径|F A |=2p ,由抛物线定义可知A 到l 的距离d =|F A |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2,所以F (0,1),圆F 的方程为x 2+(y -1)2=8. 当p <0时,同理可得p =-2,∴F (-1,0), ∴圆F 的方程为x 2+(y +1)2=8.(2)因为A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°,由抛物线定义知|AD |=|F A |=12|AB |.所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3. 当m 的斜率为-33时,由图形的对称性可知,坐标原点到m ,n 的距离的比值为3. 课后作业一、选择题1.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,若x 1+x 2=10,则弦AB 的长度为( )A .16B .14C .12D .10[答案] C[解析] 设抛物线的焦点为F ,则|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2=10+2=12. 2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →与x 轴正向的夹角为60°,则|OA |为( )A.214pB.212pC.136p D.1336p [答案] B[解析] 设A (x 1,y 1),直线F A 的方程为y =3(x -p 2),由⎩⎪⎨⎪⎧ y 2=2px y =3(x -p 2),得⎩⎪⎨⎪⎧x 1=32p y 1=3p. ∴|OA |=x 21+y 21=94p 2+3p 2=212p . 3.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若点A 、B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为( )A .45°B .60°C .90°D .120°[答案] C[解析] 设抛物线方为y 2=2px (p >0). 如图,∵|AF |=|AA 1|,|BF |=|BB 1|, ∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.4.抛物线y 2=2x 的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2,则双曲线的离心率为( ) A.102B .2 C. 5 D.52[答案] A[解析] F (12,0),l :x =-12,由题意知a =12.由抛物线的定义知,x M -(-12)=2,∴x M =32,∴y 2M =3,∵点(x M ,y M )在双曲线上,∴9414-3b 2=1,∴b 2=38,∴c 2=a 2+b 2=58,∴e 2=c 2a 2=58×4=52,∴e =102. 5.已知A 、B 在抛物线y 2=2px (p >0)上,O 为坐标原点,如果|OA |=|OB |,且△AOB 的垂心恰好是此抛物线的焦点F ,则直线AB 的方程是( ) A .x -p =0 B .4x -3p =0 C .2x -5p =0D .2x -3p =0[答案] C[解析] 如图所示:∵F 为垂心,F 为焦点,OA =OB ,∴OF 垂直平分AB . ∴AB 为垂直于x 轴的直线设A 为(2pt 2,2pt )(t >0),B 为(2pt 2,-2pt ), ∵F 为垂心,∴OB ⊥AF ,∴k OB ·k AF =-1, 即-(2pt )2(2pt 2-p 2)·2pt 2=-1,解得t 2=54∴AB 的方程为x =2pt 2=52p ,∴选C.二、填空题6.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是__________________.[答案] π4或3π4[解析] 设直线的倾斜角为θ,由题意得12=2p sin 2θ=6sin 2θ,∴sin 2θ=12,∴sin θ=±22,∵θ∈[0,π),∴θ=π4或3π4.7.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=__________________.[答案] 8[解析] 如图,k AF =-3,∴∠AFO =60°,∵|BF |=4,∴|AB |=43, 即P 点的纵坐标为43, ∴(43)2=8x ,∴x =6, ∴|P A |=8=|PF |. 三、解答题8.如图,有一张长为8,宽为4的矩形纸片ABCD ,按如图所示的方法进行折叠,使每次折叠后点B 都落在AD 边上,此时记为B ′(注:图中EF 为折痕,点F 也可落在CD 边上).过点B ′作B ′T ∥CD 交EF 于点T ,求点T 的轨迹方程.[解析] 如图,以边AB 的中点O 为原点,AB 所在的直线为y 轴建立平面直角坐标系,则B (0,-2).连结BT ,由折叠知|BT |=|B ′T |.∵B ′T ∥CD ,CD ⊥AD ,∴B ′T ⊥AD .根据抛物线的定义知,点T 的轨迹是以点B 为焦点,AD 所在直线为准线的抛物线的一部分.设T (x ,y ).∵|AB |=4.即定点B 到定直线AD 的距离为4,∴抛物线的方程为x 2=-8y .在折叠中,线段AB ′的长度|AB ′|在区间[0,4]内变化,而x =|AB ′|,∴0≤x ≤4,故点T 的轨迹方程为x 2=-8y (0≤x ≤4).9.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点到y 轴距离的最小值,并求出此时AB 中点M 的坐标.[解析] 如图,设F 是抛物线y 2=x 的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,M 点到准线的垂线为MN ,N 为垂足,则|MN |=12(|AC |+|BD |),根据抛物线定义得|AC |=|AF |,|BD |=|BF |,∴|MN |=12(|AF |+|BF |)≥|AB |2=32.设M 点的横坐标为x ,则|MN |=x +14,∴x =|MN |-14≥32-14=54,等号成立的条件是弦AB 过点F , 由于|AB |>2p =1,∴AB 过焦点是可能的,此时M 点到y 轴的最短距离是54,即AB 的中点横坐标为54.当F 在AB 上时,设A 、B 的纵坐标分别为y 1、 y 2,则y 1y 2=-p 2=-14,从而(y 1+y 1)2=y 21+y 22+2y 1y 2=2×54-12=2,∴y 1+y 2=±2, ∴M 点的坐标为(54,±22)时,M 到y 轴距离的最小值为54.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
略证:过F作FN丄AB交准线I于N,连结AN、BN,
贝U Rt△APM也Rt△AMF, •••|PN|=|FN|,同理,|QN|=|FN|,从而|QN|=|PN|,于是有,M与N重合, 说明:F点在以PQ为直径的圆上,故/
过点M(2,-2J2),所以可设它的标准方程为
2
y2px(p 0).2源自P2,因此所求方程是y 4x.
F面列表、描点、作图:
x
0
1
2
3
4
•…
y
0
2
2.8
3.5
4
说明:①利用抛物线的对称性可以简化作图步骤;
②抛物线没有渐近线;
2
③抛物线的标准方程y2px( p 0)中2 p的几何意义:抛物线的通径,
过焦点而垂直于x轴直线与抛物线两交点的线段.
课堂小结
通过本节学习,要求大家掌握抛物线的几何性质,并在具体应用时注意区分抛物线标 准方程的四种形式及求解抛物线标准方程的方法,进一步掌握坐标法的应用,并了解抛物
线知识在生产生活实际中的应用.
课后作业:习题8.61,2,3,4, 5,6.
2p(X 2p)•••直线AB过定点(2p,0).yiy2
③
即(yiy2)2 2yiy22P(xix?),设m(x,y)则yi
抛物线的几何性质
教学目标:
1.掌握抛物线的几何性质;能根据几何性质确定抛物线的标准方程
2.能利用工具作出抛物线的图形.提高综合解题能力 教学重点及难点:
1.抛物线的几何性质,抛物线定义,性质应用
2.几何性质的应用,解题思路分析 教学过程:
第一课时抛物线的几何性质
I.复习回顾
简要回顾抛物线定义及标准方程的四种形式(要求学生回答)
设抛物线的标准方程是y22px( p 0).由已知条件可得
点A的坐标是(40,30),代入方程得:
30
说明:这个题目对学生来说,求边长不困难,但是他们往往直观上承认抛物线与三角形 的对称轴是公共的,而忽略了它的证明.教学时,要提醒学生注意这一点,通过这一例题,可 以帮助学生进一步掌握坐标法.
川.课堂练习:课本Pi231,2. 3,4.
3抛物线没有渐近线.④垂直于对称轴的焦点弦叫抛物线的通径,其长为2p。
下面,大家通过问题来进一步熟悉抛物线的几何性质.
例1.已知抛物线关于x轴对称,它的顶点在原点,并且经过点
方程,并用描点法画出图形.
由已知条件求抛物线的标准方程时,首先要根据已知
条件确定抛物线标准方程的类型,再求出方程中的参数P解:因为抛物线关于x轴对称,它的顶点在原点,并且经
例2.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处
圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点的位置
分析:此题是根据已知条件求抛物线的标准方程,关键是选择
建立恰当的坐标系,并由此使学生进一步认识坐标法.
解:如图8—25,在探照灯的轴截面所在平面内建立直角坐标 系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口 直径.
动,|PM|=di,p到准线的距离为d2,求当 注:连MF,与抛物线交点即为所求。
究它的几何性质
n•讲授新课
1.范围
当x的值增大时,y也增大,这说明抛物线向右上方和右下方无限延伸
意与双曲线一支的区别,无渐近线).
2.对称性
抛物线关于x轴对称.我们把抛物线的对称轴叫抛物线的轴.
3.顶点
抛物线和它的轴的交点叫抛物线的顶点.即坐标原点.
4.离心率
抛物线上的点M与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e表示.
由抛物线定义可知,e=1.
说明:①对于其余三种形式的抛物线方程要求自己得出它们的几何性质,这样,有助于
学生掌握抛物线四种标准方程.
2根据一次项的变量确定对称轴和焦点位置,根据一次项系数的符号确定开口方向。
根据焦参数P的值确定抛物线开口的大小,P越大,抛物线开口越开阔。