Simulink仿真绘图大全

合集下载

matlab-SIMULINK仿真实例

matlab-SIMULINK仿真实例

二并联杆数控螺旋面钻头尖刃磨机的机构仿真一、仿真原理图1二并联杆数控螺旋面钻头尖刃磨机床示意图图2 二并联杆数控螺旋面钻头尖刃磨机床刃磨原理图重要假设条件:1、二并联杆数控螺旋面钻头尖刃磨机床是通过两组并联杆(2,a和3,b)保证动平台4只在空间中做水平运动,而没有翻转运动。

每一组并联杆是由空间相互平行的4根杆件组成,由于组内各杆件受力相同,所以将其简化成平面机构如图2。

构件a,b是保证动平台4只做水平运动的辅助平行杆,所以可以假设将机构中杆件a,b省略,而动平台4只做水平移动,没有翻转运动,也就是4相对于地面的夹角θ4恒等于0。

2、直线电机的次子有两个(1和5)但是在加工过程中并不是两者同时运动,所以假设5与导轨固联。

3、假设机床在工作过程中动平台4只受到树直向上的恒力作用,且作用在其中心位置。

基于以上假设机床平面结构示意图如图3。

图3二并联杆数控螺旋面钻头尖刃磨机床简化机构平面结构示意图二、建立仿真方程C2=cos(θ2) S2=sin(θ2) C3=cos(θ3) S3=sin(θ3)一)力方程(分别对各个杆件进行受力分析)对动平台4:受力分析如图4F24x+F43x=m4*Ac4x (1)F24y+F43y=m4*Ac4y (2)F24y*rc4-F43y*rc4=0 (3)图4动平台4的受力分析对并联杆2:受力分析如图5F12x+F24x=-m2*Ac2x (4)F12y+F24y=-m2*Ac2y (5)F12x*rc2*S2+F12y*rc2*C2-F24x*rc2*S2-F24y*rc2*C2=I2*α2 (6)图5并联杆2的受力分析对直线电机滑块1:受力分析如图6Fm+F12x=m1*r1_dot_dot (7)Fy=F12y (8)图6直线电机滑块1的受力分析对并联杆3:受力分析如图7图7并联杆3的受力分析二)闭环矢量运动方程(矢量图如图8)图8 闭环矢量图矢量方程为:R1+R2=R3+R4将上述矢量方程分解为x和y方向,并分别对方程两边对时间t求两次导数得:r1_dot_dot+r2*α2*S2+r2*w2^2*C2=r3*α3*S3+r3*w3^2*C3 (12)r2*α2*C2-r2*w2^2*S2=r3*α3*C3-r3*w3^2*S3 (13)三)质心加速度的矢量方程F13x+F43x=-m3*Ac3x (9)F13y+F43y=-m3*Ac3y (10)F43x*r3*C3+F43y*r3*S3= I3*α3 (11)图9质心加速度的矢量示意图矢量关系:Ac3=Rc3_dot_dotAc4=R3_dot_dot+ Rc4_dot_dotAc2=R3_dot_dot+ R4_dot_dot+ Rc2_dot_dot (_dot_dot 表示对时间求两次导数)将上述三个矢量方程分别分解为x 和y 方向,则它们等效为以下六个方程;Ac3x=-rc3*w3^2*C3-rc3*α3*S3 (14) Ac3y=-rc3*w3^2*S3+rc3*α3*C3 (15) Ac4x=-r3*w3^2*C3-r3*α3*S3 (16) Ac4y=-r3*w3^2*S3+r3*α3*C3 (17) Ac2x=-r3*w3^2*C3-r3*α3*S3-rc2*w2^2*C2-rc2*α2*S2 (18) Ac2y=-r3*w3^2*S3+r3*α3*C3-rc2*w2^2*S2+rc2*α2*C2 (19) 力未知量为:F12x,F12y,F24x,F24y,F43x,F43y,F13x,F13y,Fy,Fm 引入的加速度有:α2,α3,r1_dot_dot ,Ac3x ,Ac3y ,Ac4x ,Ac4y ,Ac2x ,Ac2y三、系统方程的组装将所有19个方程组装成矩阵形式1010000000000200000010100000000002002222222200000020000000000101000000000000400001010000000000004000101000000000000010000000010010000000100000010000000000000010100000000m m rc S rc C rc S rc C I m m m ⋅⋅-⋅-⋅-----300000000101000000003000000333300003000000000000000002233100000000000000002233000000000000000002233010000000000000002233001000000000000000330001000000000000m m r C r S I r S r S r C r C rc S r S rc C r C rc S ⋅⋅-⋅-⋅⋅-⋅⋅⋅⋅⋅-⋅003300001000000000000033000001000000000000330001rc C r S r C ⎛⎫⎪ ⎪⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⋅-⎪⋅ ⎪⎪ ⎪⋅-⎝⎭120120240240434301301300020333^2322^2222^2233^2322^222233441F x F y F x F y F x p F y F x F y Fy Fm r w C r w C r w S r w S rc w C Ac x Ac y Ac x Ac y Ac x Ac y r αα••⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⨯= ⎪ ⎪ ⎪⋅⋅-⋅⋅ ⎪ ⎪⋅⋅-⋅⋅ ⎪-⋅⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭33^2322^2233^2333^2333^2333^2333^23r w S rc w S r w S rc w C rc w S r w C r w S ⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪-⋅⋅ ⎪⋅⋅+⋅⋅ ⎪ ⎪-⋅⋅ ⎪ ⎪⋅⋅ ⎪-⋅⋅ ⎪⎪ ⎪⋅⋅⎝⎭ 四、初始条件的设定假设图3位置就是初始位置。

Simulink仿真绘图大全

Simulink仿真绘图大全
simulink仿真绘图总结scope观察结果altprintscreen抓取图形ctrlv粘贴到word
Simulink 仿真绘图总结
1. 运行仿真模型,用 Scope 观察结果,用 ALT+PrintScreen 抓取图形,Ctrl+V 粘贴到 Word。 2. 使用 Scope 打印功能,在 Word 中插入图形来自文件。
3.在 Scope 中参数设置如下:
在 MATLAB 命令窗口输入:plot(x(:,1),x(:,2:4));%%%%此处有三个输出。 在 figure/Edit 菜单下选择 Copy Options…,在打开得对话框中设置如下:
然后在 figure/Edit 菜单下选择 Copy Figure,Ctrl+V 粘贴到 Word。
这时还可再用绘图命令修改完善,如下:
4.用 out 模块替代 Scope 模块,仿真结束后用绘图命令:plot(tout,yout); 在 figure/Edit 菜单下 选择 Copy Figure,Ctrl+V 粘贴到 Word。
5.使用 plot(tout,yout); saveas(gcf,'myfigure','emf');在 Word 中插入图片来自文件 myfigure.emf。 70
60
50
40
30
20
10
0
0
0.5
1
1.5
2
2.5
3
3

Simulink仿真教程(共77张)

Simulink仿真教程(共77张)

仿真技术
第8页,共77页。
第九章 Simulink动态仿真
指令窗
该窗是进行各种 MATLAB 操作的最主要窗口。在该窗内,可键入各种送给(sònɡ ɡěi)MATLAB 运作的指令、函数、表达式;显示除图形外的所有运算结果;运行错误时,给出相关的出错提示。
仿真技术
第9页,共77页。
第九章 Simulink动态仿真
仿真技术
第6页,共77页。
第九章 Simulink动态仿真
5、 Simulink与建模仿真 (1) Simulink
Simulink是一种用来实现计算机仿真的软件工具。它是MATLAB 的 一个(yī ɡè)附加组件,可用于实现各种动态系统(包括连续系统、 离散系统和混合系统)的建模、分析和仿真。
第九章 Simulink动态仿真
Simulink动态(dòngtài)仿真
1 Simulink 基本操作 利用Simulink进行系统仿真的步骤是: ① 启动Simulink,打开Simulink模块库 ② 打开空白模型窗口; ③ 建立Smulink仿真模型; ④ 设置仿真参数,进行仿真; ⑤ 输出仿真结果。
仿真技术
第5页,共77页。
4、 仿真的三要素
第九章 Simulink动态仿真
计算机仿真的三个基本要素是系统、模型和计算机,联系着它 们的三项基本活动是模型建立、仿真模型建立(又称二次建模 )和仿真试验。
数学仿真采用数学模型,用数学语言(yǔyán)对系统的特性进行描述, 其工作过程是:
1、建立系统的数学模型; 2、建立系统仿真模型,即设计算法,并转化为计算机程序,使 系统的数学模型能为计算机所接受并能在计算机上运行; 3、运行仿真模型,进行仿真试验,再根据仿真试验的结果进一 步修正系统的数学模型和仿真模型。

几个简单的simulink仿真模型

几个简单的simulink仿真模型

一频分复用和超外差接收机仿真目的1熟悉Simulink模型仿真设计方法2掌握频分复用技术在实际通信系统中的应用3理解超外差收音机的接收原理内容设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。

要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。

原理超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示:图1-1超外差收音机基本原理框图从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下:混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号与本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。

其频谱搬移过程如下图所示:图1-2 超外差接收机混频器输入输出频谱中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。

解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。

步骤1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示:图1-2 信源子系统模型图2、为了模拟接收机距离两发射机距离不同引起的传输衰减,分别以Gain1和Gain2模块分别对传输信号进行衰减,衰减参数分别为0.1和0.2。

最后在信道中加入均值为0,方差为0.01的随机白噪声,送入接收机。

3、接收机将收到的信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,其中压控振荡器由输入电压进行控制,设置Slider Gain模块,使输入参数在500至1605可调,从而实现本振的频率可控。

几个简单的simulink仿真模型

几个简单的simulink仿真模型

一频分复用和超外差接收机仿真目的1熟悉Simulink模型仿真设计方法2掌握频分复用技术在实际通信系统中的使用3理解超外差收音机的接收原理内容设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。

要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。

原理超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示:图1-1超外差收音机基本原理框图从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下:混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号和本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。

其频谱搬移过程如下图所示:图1-2 超外差接收机混频器输入输出频谱中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。

解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。

步骤1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示:图1-2 信源子系统模型图2、为了模拟接收机距离两发射机距离不同引起的传输衰减,分别以Gain1和Gain2模块分别对传输信号进行衰减,衰减参数分别为0.1和0.2。

最后在信道中加入均值为0,方差为0.01的随机白噪声,送入接收机。

3、接收机将收到的信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,其中压控振荡器由输入电压进行控制,设置Slider Gain模块,使输入参数在500至1605可调,从而实现本振的频率可控。

《SIMULINK仿真》PPT课件

《SIMULINK仿真》PPT课件

• • • • • • • • • • • • •
(4)Discrete(离散系统模块库) 模块包括描述离散时间系统的模块,其中主要模块有: Difference(差分); Discrete Derivative(离散微分); Discrete Filter(离散滤波器); Discrete State-Space(离散状态空间模型); Discrete Transfer Fcn(离散传递函数); Discrete Zero-Pole(以零极点表示的离散传递函数模型); Discrete Time Integrator(离散时间积分器); First-Order Hold(一阶采样和保持器) Integer Delay(整数延迟); Zero-Order Hold(零阶采样和保持器); Unit Delay(单位延迟);
4.1.3 SIMULINK界面窗口介绍
SIMULINK模型创建窗口
Simulink的工作原理
• • • • • 仿真包括以下几个步骤。 (1)模型编译 (2)连接 (3)仿真执行 一般仿真模型都采用数值积分来仿真 的,相邻两个时间点的长度为步长,步长 的大小取决于求解器的类型。
4.1.4 SIMULINK的常用模块库
• • • • • • • • • •
(11)Sources(输入源模块库) Band-Limited White Noise(带宽限制的白噪声); Clock(时钟信号); Constant(常数信号); Pulse Generator(脉冲发生器); Repeating Sequence(重复序列信号); Signal Generator(信号发生器); Sine Wave(正弦波信号); Random Number(随机数); Step(阶跃波信号);

Simulink汽车仿真实例PPT课件

Simulink汽车仿真实例PPT课件

13
作业
完成各个子系统的建模.下节课将这些子系统组 装成一个完整的发动机模型.
14
实战1:一个发动机模型
Simulink 模型:
15
实战1:一个发动机模型
仿真结果分析:
1. 负载减小,发动机转速升高并趋于稳定; 2. 节气门开度增加,发动机转速升高并趋于稳定; 3. 负载增大,发动机转速下降并趋于稳定.
front force
front suspension
Ff
Fr
9.81
Mb Mass
pitch torque theta dottheta z dotz
rear force
rear suspension
1 s z
road height
dottheta h
dotz
40
实战4:半车模型悬架系统
前悬架作用力和扭矩数学模型:
1、对半车模型悬架系统进行建模仿真.
46
dot mao
Pm
p a rt4
Te rmin a to r2
N
dot mao
Pm
mao
p a rt5
Te rmin a to r3
1 s
In te g ra to r
Te rmin a to r
T_load p a rt2
T_eng N
T_load
p a rt7
N
edge180
valve timing
33
实战3:防抱死制动系统ABS
基本模块介绍:
1. 传递函数
Transfer Fcn
Continuous
2. 查找表
Lookup TableLoopup Tables

《Simulink仿真》PPT课件

《Simulink仿真》PPT课件
选中模块,模块四角将出现小方块;单击一个角上的小方块 并按住鼠标左键,拖曳鼠标到合理大小位置
单击模块,拖曳模块到合适的位置,松开鼠标按键
旋转模块
适应实际系统的方向,调 整整个模型的布置
方法1:选中模块,选择菜单命令[Diagram>Rotate &
Flip>Clockwise/Counterclockwise],模块&标签顺/逆时针旋转 90°;选择菜单命令[Diagram>Rotate & Flip>Flip Block],
启动Simulink有如下3种方式:
在MATLAB的命令窗口直接键入 命令simulink;
用鼠标左键单击MATLAB工具条 上的按钮;
在MATLAB菜单上选择【File】| 【New】|【Model】选项
精选课件ppt
8
7.2.2 Simulink的工作环境
精选课件ppt
9
7.3 模型的创建
精选课件ppt
3
7.1 初识Simulink
典型的Simulink模型包括:
元素1:信号源(Source) 元素2:被模拟的系统模块 元素3:信号输出(Sink)
仿真步骤
建立系统仿真模型
包括添加模块、 设置模块参数、 进行模块连接等操作
设置仿真参数 启动仿真 分析仿真结果
精选课件ppt
discrete 针对非连续系统(离散系统)的特殊算法
ode5
采用 Dormand-Prince 的算法,即固定步长的 ode45 算法
ode4 固定
ode3 步长类
ode2 算法
ode1
采用固定步长的 4 阶 Runge-Kutta 算法 采用固定步长的 Bogacki-Shampine 算法 采用固定步长的 2 阶 Runge-Kutta 算法,也称 Heun 算法 固定步长的 Eular 算法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.使用 plot(tout,yout); saveas(gcf,'myfigure','emf');在 Word 中插入图片来自文件 myfigure.emf。 70
60
50
40
30
20
10
0
0
0.5
11.52Fra bibliotek2.53
3.5
4
4.5
Simulink 仿真绘图总结
1. 运行仿真模型,用 Scope 观察结果,用 ALT+PrintScreen 抓取图形,Ctrl+V 粘贴到 Word。 2. 使用 Scope 打印功能,在 Word 中插入图形来自文件。
3.在 Scope 中参数设置如下:
在 MATLAB 命令窗口输入:plot(x(:,1),x(:,2:4));%%%%此处有三个输出。 在 figure/Edit 菜单下选择 Copy Options…,在打开得对话框中设置如下:
然后在 figure/Edit 菜单下选择 Copy Figure,Ctrl+V 粘贴到 Word。
这时还可再用绘图命令修改完善,如下:
4.用 out 模块替代 Scope 模块,仿真结束后用绘图命令:plot(tout,yout); 在 figure/Edit 菜单下 选择 Copy Figure,Ctrl+V 粘贴到 Word。
相关文档
最新文档