离子聚合包括阴离子聚合
合集下载
高分子科学-第6章 阴阳离子聚合详解

(iii)有机金属化合物:
ቤተ መጻሕፍቲ ባይዱ
有机金属化合物是最常用的阴离子聚合引发剂。多为 碱金属的有机金属化合物(如丁基锂),Ca和Ba的有机金 属化合物也具引发活性,但不常用。
BuLi + H2C CH X
Bu CH2 CH Li+ X
有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 活性次序: RK>RNa>Rli>RMg>RAl (iv)格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 的单体聚合。
3
离子聚合的特点
单体选择性高;
聚合条件苛刻;
聚合速率快,需在低温下进行;
反应介质对聚合有很大影响。
聚合机理和动力学研究不够成熟
一些重要的聚合物,如丁基橡胶、异戊橡胶、聚甲 醛、聚氯醚等只能通过离子聚合得到。
4
离子聚合的应用:
理论上,有较强的控制大分子链结构的能力, 通过离子聚合可获得“活性聚合物”,可以有目 的的分子设计,合成具有预想结构和性能的聚合 物;
以KNH2 -液氨体系为例:
自由阴离子方式引 发聚合反应
形成单阴离子
14
(ii)醇盐、酚盐:
醇(酚)盐一般先让金属与醇(酚)反应制得醇(酚) 盐,然后再加入聚合体系引发聚合反应。如:
2 Na + 2 CH3OH → 2 CH3ONa + H2
CH3O-Na+ + H2C CH X H3CO CH2 CH Na+ X
第六章
离子聚合
1
6.1 引言
高分子化学6-离子聚合-阴离子聚合

二、阴离子聚合引发剂
对于吸电子取代基的烯类单体,按其反应能力, 可以排为四组:
CN A 组 CH2 C(CN)2 > CH2 C COOC2H5 > CH2 CHNO2 >>
B 组 CH2 CHCN > CH2 C(CH3)CN > CH2 CHCCH3 >>
CH3
O
C 组 CH2 CH
> CH2 C
Na + CH2 CH
CH2 CH
CH2 CH Na+
自由基末端偶合二聚后形成双阴离子:
2 CH2 CH
CH2 CH Na+
Na+
CH CH2 CH2 CH Na+
双向引发聚合
1.链引发(3)碱金属络合引发--电子间接转移引发
钠—萘体系:利用碱金属在某些溶剂中能够生成 有机络合物并降低其电子转移活化能的特点。
>>
COOCH3 D 组 CH2 CHCH CH2
COOCH3 > CH2 CH
CH3 > CH2 C
C6H5
C6H5
二、阴离子聚合引发剂
表 常见阴离子聚合单体和引发剂的反应活性
单体活性类别
单体
高活性A 次高活性B 中活性C 低活性D
硝基乙烯 偏二氰基乙烯
丙烯腈 甲基丙烯腈
丙烯酸甲酯 甲基丙烯酸甲酯
A
苯乙烯
非极性共轭烯烃
丁二烯
B
甲基丙烯酸甲酯 丙烯酸甲酯
丙烯腈
C 甲基丙烯腈
极性单体
活 性
甲基乙烯酮
硝基乙烯
高活性单体
亚甲基丙二酸二乙酯 D - 氰基丙烯酸乙酯
高分子化学第三章

阳离子聚合的特点: 快引发,快增长,难终止和易转移。
(二)阴离子聚合
在链式聚合反应中,活性中心为阴离子的聚 合反应。常用的引发剂有碱金属、丁基锂等亲核 试剂。
阴离子聚合反应的通式可表示如下:
A B M BM A M M n
其中B-为阴离子活性中心,A+为反离子,一般 为金属离子。与阳离子聚合不同,阴离子聚合中 ,活性中心可以是自由离子、离子对,以及处于 缔合状态的阴离子。
酸根的亲核性不能太强,否则会与活性中心结合成 共价键而终止,如HCl
CH3 CH A X
A CH3 CH
X
不同质子酸的酸根的亲核性不同
氢卤酸的X-亲核性太强,不能作为阳离子聚合引发剂, 如HCl引发异丁烯
(CH3)3C Cl
(CH3)3C Cl
HSO4- H2PO4-的亲核性稍差,可得到低聚体。 HClO4,CF3COOH,CCl3COOH的酸根较弱,可生成高聚 物。
Lewis酸引 发
傅-克(俗称Friedel-Grafts催化剂)反应中的各种
金属卤化物,都是电子的接受体,称为Lewis酸。
从工业角度看,是阳离子聚合最重要的引发剂。
Lewis酸包括: 金属卤化物:
BF3 , AlCl3, SnCl4 , TiCl4, SbCl5, PCl5, ZnCl2 金属卤氧化物:
离子聚合:活性中心是离子的聚合。
根据中心离子电荷性质的不同 阳离子聚合 阴离子聚合
离子聚合的理论研究开始于五十年代:
1953年,Ziegler在常温低压下制得PE 1956年,Szwarc发现了“活性聚合物”
多数烯烃单体都能进行自由基聚合,但是 离子聚合却有极高的选择性。 原因: 离子聚合对阳离子和阴离子的稳定性要求 比较严格。
(二)阴离子聚合
在链式聚合反应中,活性中心为阴离子的聚 合反应。常用的引发剂有碱金属、丁基锂等亲核 试剂。
阴离子聚合反应的通式可表示如下:
A B M BM A M M n
其中B-为阴离子活性中心,A+为反离子,一般 为金属离子。与阳离子聚合不同,阴离子聚合中 ,活性中心可以是自由离子、离子对,以及处于 缔合状态的阴离子。
酸根的亲核性不能太强,否则会与活性中心结合成 共价键而终止,如HCl
CH3 CH A X
A CH3 CH
X
不同质子酸的酸根的亲核性不同
氢卤酸的X-亲核性太强,不能作为阳离子聚合引发剂, 如HCl引发异丁烯
(CH3)3C Cl
(CH3)3C Cl
HSO4- H2PO4-的亲核性稍差,可得到低聚体。 HClO4,CF3COOH,CCl3COOH的酸根较弱,可生成高聚 物。
Lewis酸引 发
傅-克(俗称Friedel-Grafts催化剂)反应中的各种
金属卤化物,都是电子的接受体,称为Lewis酸。
从工业角度看,是阳离子聚合最重要的引发剂。
Lewis酸包括: 金属卤化物:
BF3 , AlCl3, SnCl4 , TiCl4, SbCl5, PCl5, ZnCl2 金属卤氧化物:
离子聚合:活性中心是离子的聚合。
根据中心离子电荷性质的不同 阳离子聚合 阴离子聚合
离子聚合的理论研究开始于五十年代:
1953年,Ziegler在常温低压下制得PE 1956年,Szwarc发现了“活性聚合物”
多数烯烃单体都能进行自由基聚合,但是 离子聚合却有极高的选择性。 原因: 离子聚合对阳离子和阴离子的稳定性要求 比较严格。
阴离子聚合

丙烯腈 甲基丙烯腈 甲基丙烯酮
偏二氰乙烯
a-氰基丙烯酸乙酯
硝基乙烯
单体活性
低
中
较高
高
苯乙烯在自由基聚合是活性单体,在阴离子聚合成低活性单体?
四. 阴离子聚合机理
1.机理:引发、增长、終止。
链引发:I
链增长: 链終止:
极快
M-
慢 M nM M n1M
M n1M 难終止
烷基卤化镁RMgX由于其C-Mg键极性弱,不能直 接引发阴离子聚合,但制成格氏试剂后使C-Mg键的 极性增大,可以引发活性较大的单体聚合。
以丁基锂和萘钠最为重要也最为常用的引用剂。
三. 阴离子聚合引发剂和单体的匹配
阴离子聚合与自由基聚合相比,单体对引发剂 有较强的选择性,只有当引发剂与单体活性相 匹配才能得到所需的聚合物。
甲基丙烯酸甲酯
CH3
H2C CH CH CH2
H2C C
CH CH2
苯乙烯
甲基苯乙烯
丁二烯
异戊二烯
乙烯基单体,取代基的吸电子能力越强,双键上的电子云密度 越低,越易与阴离子活性中心加成,聚合反应活性越高。
二. 阴离子聚合引发体系和引发 阴离子聚合引发剂——电子给体,即亲核 试剂,属于碱类。
直接转移引发
一. 阴离子聚合的单体 (1)带吸电子取代基的乙烯基单体
一方面,吸电子性能能使双基上电子云密度降低,有利 于阴离子的进攻,另一方面,形成的碳阴离子活性中心由于 取代基的共轭效应而稳定,因而易阴离子聚合:
H2C CH X
降低电子云密度,易 与富电性活性种结合
H2C CH X
H R CH2 C X
分散负电性,稳定活性中心
强碱性高活性引发剂能引发各种活性的单体,而弱碱 性低活性引发剂只能引发高活性的单体。
离子聚合

CH3 CH2 CH CH CH3 CH2 CH CH CH3 CH3
二级碳阳离子(仲碳阳离子) 三级碳阳离子(叔碳阳离子)
CH3 CH2 CH2 C CH3
阳离子聚合
3. 链转移和链终止
离子聚合的活性种带有电荷,无法双基终止,因此只能 通过单基终止和链转移终止,也可人为添加终止剂终止。 自由基聚合的链转移一般不终止动力学链,而阳离子聚 合的链转移则有可能终止动力学链。因此阳离子聚合的链终 止只可分为动力学链不终止的链终止反应和动力学链终止的 链终止反应两类。
+ XA
ktr,s kp
HMnMA + XCR HMnM NR3(CR)
+
NR3
阳离子聚合
CH3 CH3 (BF3OH) + H2O CH3 CH3 OH + H (BF3OH) H 2O H [ CH2 C ] n CH2 C CH3 CH3 H [ CH2 C ] n CH2 C CH3 CH3
离子聚合
引言
离子聚合是又一类连锁聚合。它的活性中心为离子。根 据活性中心的电荷性质,可分为阳离子聚合和阴离子聚合。 多数烯烃单体都能进行自由基聚合,但是离子聚合却有 极高的选择性。原因是离子聚合对阳离子和阴离子的稳定性 要求比较严格。例如只有带有1,1—二烷基、烷氧基等强推 电子的单体才能进行阳离子聚合;带有腈基、羰基等强吸电 子基的单体才能进行阴离子聚合。但含有共轭体系的单体, 如苯乙烯、丁二烯等,则由于电子流动性大,既可进行阳离 子聚合,也能进行阴离子聚合。
离子聚合
离子聚合的发展导致了活性聚合的诞生。这是高分子发 展史上的重大转折点。通过阴离子活性聚合,可实现高分子 的分子设计,制备预定结构和分子量的聚合物。 阴离子活性聚合在制备特殊结构的嵌段共聚物、接枝共 聚物、星状聚合物等方面有十分重要的作用。 目前,活性聚合领域已扩展到阳离子聚合、自由基聚合 和基团转移聚合。 配位聚合在本质上属于阴离子聚合。
二级碳阳离子(仲碳阳离子) 三级碳阳离子(叔碳阳离子)
CH3 CH2 CH2 C CH3
阳离子聚合
3. 链转移和链终止
离子聚合的活性种带有电荷,无法双基终止,因此只能 通过单基终止和链转移终止,也可人为添加终止剂终止。 自由基聚合的链转移一般不终止动力学链,而阳离子聚 合的链转移则有可能终止动力学链。因此阳离子聚合的链终 止只可分为动力学链不终止的链终止反应和动力学链终止的 链终止反应两类。
+ XA
ktr,s kp
HMnMA + XCR HMnM NR3(CR)
+
NR3
阳离子聚合
CH3 CH3 (BF3OH) + H2O CH3 CH3 OH + H (BF3OH) H 2O H [ CH2 C ] n CH2 C CH3 CH3 H [ CH2 C ] n CH2 C CH3 CH3
离子聚合
引言
离子聚合是又一类连锁聚合。它的活性中心为离子。根 据活性中心的电荷性质,可分为阳离子聚合和阴离子聚合。 多数烯烃单体都能进行自由基聚合,但是离子聚合却有 极高的选择性。原因是离子聚合对阳离子和阴离子的稳定性 要求比较严格。例如只有带有1,1—二烷基、烷氧基等强推 电子的单体才能进行阳离子聚合;带有腈基、羰基等强吸电 子基的单体才能进行阴离子聚合。但含有共轭体系的单体, 如苯乙烯、丁二烯等,则由于电子流动性大,既可进行阳离 子聚合,也能进行阴离子聚合。
离子聚合
离子聚合的发展导致了活性聚合的诞生。这是高分子发 展史上的重大转折点。通过阴离子活性聚合,可实现高分子 的分子设计,制备预定结构和分子量的聚合物。 阴离子活性聚合在制备特殊结构的嵌段共聚物、接枝共 聚物、星状聚合物等方面有十分重要的作用。 目前,活性聚合领域已扩展到阳离子聚合、自由基聚合 和基团转移聚合。 配位聚合在本质上属于阴离子聚合。
高分子化学—离子聚合

- Na + Na+ 苯 乙烯 ? + H2C CH Na+
H2C CH Na+ 2
Na+ - HC CH2 CH2 CH - Na+
引 发聚 合
电子间接转移引发
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
实施聚合反应时,先将金属钠与萘在惰性溶剂中反应后 实施聚合反应时, 再加入聚合体系引发聚合反应,属均相引发体系。 再加入聚合体系引发聚合反应,属均相引发体系。 (2)阴离子加成引发: )阴离子加成引发: 引发剂离解产生的阴离子与单体加成引发聚合反应: 引发剂离解产生的阴离子与单体加成引发聚合反应:
O
Na+ - HC CH2 CH2 CH - Na+ + CO2
+ Na+ OOC HC CH2 CH2 CH COO Na
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
4.2 链转移与链终止 链转移:阴离子聚合从增长链上脱去氢阴离子 链转移:阴离子聚合从增长链上脱去氢阴离子H-发生链 转移的活化能相当高,一般难以进行; 转移的活化能相当高,一般难以进行;
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
Bu CH2 CH Li+ X
O
BuLi + H2C CH X
有机金属化合物的活性与其金属的电负性有关, 有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 负性越小,活性越高。
(iv)格氏试剂: )格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 键极性弱,不能直接引发阴离子聚合, 烷基镁由于其 键极性弱 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 但制成格氏试剂后使 键的极性增大, 键的极性增大 的单体聚合。 的单体聚合。
H2C CH Na+ 2
Na+ - HC CH2 CH2 CH - Na+
引 发聚 合
电子间接转移引发
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
实施聚合反应时,先将金属钠与萘在惰性溶剂中反应后 实施聚合反应时, 再加入聚合体系引发聚合反应,属均相引发体系。 再加入聚合体系引发聚合反应,属均相引发体系。 (2)阴离子加成引发: )阴离子加成引发: 引发剂离解产生的阴离子与单体加成引发聚合反应: 引发剂离解产生的阴离子与单体加成引发聚合反应:
O
Na+ - HC CH2 CH2 CH - Na+ + CO2
+ Na+ OOC HC CH2 CH2 CH COO Na
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
4.2 链转移与链终止 链转移:阴离子聚合从增长链上脱去氢阴离子 链转移:阴离子聚合从增长链上脱去氢阴离子H-发生链 转移的活化能相当高,一般难以进行; 转移的活化能相当高,一般难以进行;
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
Bu CH2 CH Li+ X
O
BuLi + H2C CH X
有机金属化合物的活性与其金属的电负性有关, 有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 负性越小,活性越高。
(iv)格氏试剂: )格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 键极性弱,不能直接引发阴离子聚合, 烷基镁由于其 键极性弱 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 但制成格氏试剂后使 键的极性增大, 键的极性增大 的单体聚合。 的单体聚合。
高分子化学第四章(离子聚合)

(2)Lewis酸
这类引发剂包括AlCl3、BF3、SnCl4、SnCl5、ZnCl2和TiCl4 等金属卤化物,以及 RAlCl2,R2AlCl 等有机金属化合物,其中 以铝、硼 、钛、锡的卤化物应用最广。
Lewis 酸引发阳离子聚合时,可在高收率下获得较高分子量 的聚合物,因此从工业上看,它们是阳离子聚合的主要引发剂。
(5)聚合方法
自由基聚合可以在水介质中进行,但水对离子聚合的引发剂和 链增长活性中心有失活作用,因此离子聚合一般采用溶液聚合, 偶有本体聚合,而不能进行乳液聚合和悬浮聚合。
4.2 阳 离 子 聚 合
4.2.1 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的亲核性烯类单体,包 括以下三大类:
(1)带给电子取代基的烯烃如:
Lewis 酸引发时常需要在质子给体(又称质子源)或正碳离 子给体(又称正碳离子源)的存在下才能有效。
质子给体或正碳离子给体是引发剂,而 Lewis 酸是助引发剂 (或称活化剂),二者一起称为引发体系。
质子给体 一类在 Lewis 酸存在下能析出质子的物质,如水、卤 化氢、醇、有机酸等;以 BF3 和 H2O引发体系为例:
阳离子聚合反应过程中的异构化反应
碳阳离子可进行重排形成更稳定的碳阳离子,在阳离子聚合 中也存在这种重排反应,如 β-蒎烯的阳离子聚合:
4.2.2.3 链转移和链终止 链转移反应 链转移反应是阳离子聚合中常见的副反应,有以下几种形式:
(1)向单体链转移: 增长链碳阳离子以 H+ 形式脱去 β-氢给单体,这是阳离子聚
(Ph)3C+ClO4- + OR
Ph Ph
Ph
CH2 CH ClO4OR
(4)卤素 卤素 I2 也可引发乙烯基醚、苯乙烯等的聚合,其引发反应被认
高分子化学第四版6-离子聚合

6.2.6 活性阴离子聚合动力学
阴离子聚合的特征:聚合前引发剂全部转变成
活性中心,各活性中心活性相同,以相同的
速度同时引发单体增长,增长过程中无引发
反应和终止反应,活性中心数保持不变。 活性阴离子聚合是: 快引发、慢增长、无终止和无转移。
⑴. 聚合速率
测定t 时的 残留[M], 可求kp
⑵. 聚合度和聚合度分布
6.3.3 阳离子聚合机理
阳离子聚合机理:
快引发、快增长、易转移、难终止。
1. 链引发
其它络合物离子对: BF3 H 2O H BF3OH SnCl4 RCl R SnCl5
AlCl3 HCl H AlCl4
BF3 C2 H 5 2 O C2 H 5 BF3OC2 H 5
6.2.4 活性阴离子聚合的机理和应用 1. 活性阴离子聚合机理
2. 活性聚合的应用
①合成均一分子量的聚合物
②制备嵌段聚合物
在利用阴离子聚合,先制得一种单体的活的聚合物,然 后加入另一种单体聚合时,并非所有活的聚合物都可 以引发另一种单体聚合,反应能否进行,取决于 M1
和 M2 的相对碱性,即 M1 的给电子能力和 M 2的亲电
2. 链增长
阳离子聚合增长反应的特点:
⑴. 离子与分子间的反应,速度快,活化能低,几乎与引发同时完成;
⑵. 单体按头尾结构插入离子对,对构型有一定控制能力; ⑶. 增长过程中有时伴有分子内重排反应。
例如:3甲基1丁 烯的阳离子聚 合产物。
3. 链转移
离子聚合的增长活性中心带有相同的电荷,不能
4 9 4 9
C H Mn Li K C H Mn Li
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体系变为两相:聚合物和溶液。 溶液中包括:溶剂正己烷、引发剂、未反应的单体、无 规聚丙烯。 ② 无规PP的去除 无规PP溶于正己烷中,聚合物与溶剂分离时,无规PP被 分离出来。再将溶有无规PP的正己烷精馏,无规PP从塔底流 出。 ③ 未反应的单体的去除
AlC2H5Cl2 K2TiF6 己烷
Z合成
TiCl3
己 烷
Z液体
己 烷
正烯 丁丙 醚基
B引发剂 A引发剂
Z固体
水
烧碱
分解槽
第一聚合釜
废料排出 己烷不合格槽
图5.9 引发剂制备示意图
❖ 四、丁二烯均相溶液聚合——溶液法聚丁二烯橡胶PBR的 生产 ❖ 聚丁二烯橡胶是丁二烯-1,3在Ziegler-Natta引发剂作用下 经配位阴离子聚合而得。
❖ ⒉ 溶剂精制 ❖ 聚合用的溶剂己烷也必须精制后使用。 ❖ ⒊ 引发剂的配制 ❖ 丙烯聚合采用的Ziegler-Natta络合引发剂,由四组分组成:
❖ TiCl3 / AlC2H5Cl2 / K2TiF6 / CH2 = CH-CH2OC4H9
❖ 引发剂、配制引发剂的系统和聚合反应系统也必须严格防止
❖ 二、乙烯气相本体聚合—— 低压法HDPE的生产
❖ 乙烯的气相本体聚合法首先由美国的U.C.C公司开发,年 产量为10×104 t 。目前,世界上已有六个国家采用这一新工艺, HDPE的总产量可达50 ×104 t 。 ❖ ⒈ 单体 ❖ 离子聚合对原料纯度要求很高。单体必须精制,以除去有 害杂质,乙烯的纯度>99%。杂质允许含量以10-6计。 ❖ 杂质的存在会使引发剂失活,易发生链转移反应或链终止 反应,使聚合物的相对分子质量降低,或结构发生变化。 ❖ 单体精制的方法工业上一般采用精馏。 ❖ 也可以采用净化剂如活性炭、硅胶、活性氧化铝或分子筛 来除去杂质和水分。 ❖ ⒉ 引发剂 ❖ HDPE的生产其引发剂采用特制的铬化合物: ❖ 比利时索尔维公司开发的高效Ziegler-Natta引发剂: ❖ CrO3载于脱水硅胶上或其它载体如MgO或MgCl2载体上。
❖ 三、丙烯非均相溶液聚合——淤浆法生产PP ❖ ⒈ 单体 ❖ 极性杂质,尤其是水会破坏引发剂的活性,极性杂质都必须从 系统中除去。 ❖ 此外,象丙二烯、丁二烯、甲基乙炔等对聚合反应和聚合 物的立构规整性都是有害的; ❖ 饱和烃如乙烷和丙烷如含量高会降低单体的分压,影响聚 合速率,如有积累需定期排除。 ❖ 因此,聚合用原料和助剂中杂质的含量必须减少到允许的 范围以下。 ❖ 聚合用丙烯的纯度>99.6% , 其它杂质允许含量以10-6计。
代的烯类单体和某些环状化合物。 ❖ 凡是可以进行聚合的烯类单体都可以在配位阴离子引发剂
的作用下进行配位聚合,形成立构规整性聚合物。
❖ ⒊ 离子聚合实施方法 ❖ 离子聚合所用的引发剂对水极为敏感。 ❖ 因此,离子聚合的实施方法中不能用以水为介质的聚合方
法,即不能采用悬浮聚合和乳液聚合,只能采用本体聚合和溶 液聚合。并且单体和其它原料中含水量应严格控制,其含水量 以10-6计。 ❖ 在离子聚合中溶液聚合方法为主。 ❖ 本体聚合法中只有低压法 HDPE的生产。 ❖ 在溶液聚合方法中常根据聚合物在溶剂中的溶解情况不同 分为均相溶液聚合(常称为溶液法)和非均相溶液聚合(常称 为淤浆法)。 ❖ 溶 液 聚 合 法 主 要 用 于 中 压 聚 乙 烯 PE 、 聚 丁 二 烯 橡 胶 (PBR)、聚异戊二烯橡胶(PIPR)、乙-丙橡胶(E-PR)和 溶液丁-苯橡胶(SSBR)等的生产。 ❖ 淤浆法主要用于聚丙烯(PP)和丁基橡胶(PIBR)的生产
⒊ 相对分子质量调节剂
❖ 相对分子质量调节剂采用氢气。 ❖ ⒋工艺条件 ❖ 操作压力:2MPa, ❖ 聚合温度:85℃~100℃ ❖ 转化率:2% 。 ❖ ⒌ 乙烯气相本体聚合优缺点 ❖ ⑴ 乙烯气相本体聚合所用的引发剂活性很高,产率很高 (60×104gPE/1gCr) ,所得PE的密度为0.94~0.96(g/cm3)。 ❖ PE相对分子质量大小可由H2调节。 ❖ ⑵ 乙烯气相本体聚合温度控制在85℃~100℃,在此温度 下PE粉末不会粘结,也不会粘附在聚合反应器壁上 。 ❖ ⑶ 气相本体聚合存在的主要问题是反应热的导出较困难。 ❖ 乙烯的单程转化率很低,只有2% 。 ❖ 98%的单体需循环,于是增加了乙烯循环、压缩的费用; ❖ 此外,引发剂的毒性也较大。
5.6 离子型聚合实施方法
❖ 一、 引言
❖ ⒈ 离子聚合 ❖ 增长活性中心为离子的连锁聚合。 ❖ 离子聚合包括阴离子聚合、阳离子聚合和配位阴离子聚合。 ❖ ⒉ 离子聚合的单体 ❖ ⑴ 阳离子聚合的单体 ❖ 含有强的推电子取代基或共轭取代基单取代、同碳二元取
代的烯类单体和某些环状化合物。 ❖ ⑵ 阴离子聚合的单体 ❖ 含有强的吸电子取代基或共轭取代基单取代、同碳二元取
❖ TiCl3的粒径愈小,聚合速率愈高。 ❖ ⑵ 聚合物的相对分子质量
❖ 聚合物的相对分子质量与反应温度和Al/Ti的比例有关。
❖ 聚合物的相对分子质量随反应温度的升高而降低,随引发剂
AlC2H5Cl2的用量的增加而降低。
⑶ 聚合物的立构规整性 PP的立构规整度与引发剂性质有关,当引发剂的组成相 同时,随反应温度的提高立构规整度降低。 要得到立构规整度80%~85%的PP一般聚合温度控制在 70℃以下。 立构规整度用X-射线谱或红外谱测定,或用在沸腾的己烷 或庚烷中不溶解的分数表示。 ⑷ 分离 丙烯聚合后产物的分离包括清除溶剂、未反应的单体、引 发剂和无规聚丙烯。 ① 清除引发剂 去除方法是加水、醇或酸等极性物质破坏引发剂,使引发 剂变为可溶性物质。
水和氧气的进入。
❖ 引发剂需现用现配,配制引发剂需经Z-合成、B引发剂的配
制和A引发剂的配制。
⒋ 丙烯淤浆法聚合的特点
❖ ⑴ 聚合速率
❖ 聚合反应的速率与引发剂用例、
❖ 丙烯的分压愈大、反应温度愈高聚合速率愈快;
❖用量聚无合关速;率还与引发剂TiCl3的用量成正比,而与AlC2H5Cl2的