第二章控制系统的动态数学模型

合集下载

《控制工程基础》课程作业习题(含解答)

《控制工程基础》课程作业习题(含解答)

第一章概论本章要求学生了解控制系统的基本概念、研究对象及任务,了解系统的信息传递、反馈和反馈控制的概念及控制系统的分类,开环控制与闭环控制的区别;闭环控制系统的基本原理和组成环节。

学会将简单系统原理图抽象成职能方块图。

例1 例图1-1a 为晶体管直流稳压电源电路图。

试画出其系统方块图。

例图1-1a 晶体管稳压电源电路图解:在抽象出闭环系统方块图时,首先要抓住比较点,搞清比较的是什么量;对于恒值系统,要明确基准是什么量;还应当清楚输入和输出量是什么。

对于本题,可画出方块图如例图1-1b。

例图1-1b 晶体管稳压电源方块图本题直流稳压电源的基准是稳压管的电压,输出电压通过R和4R分压后与稳压管的电3压U比较,如果输出电压偏高,则经3R和4R分压后电压也偏高,使与之相连的晶体管基极w电流增大,集电极电流随之增大,降在R两端的电压也相应增加,于是输出电压相应减小。

c反之,如果输出电压偏低,则通过类似的过程使输出电压增大,以达到稳压的作用。

例2 例图1-2a为一种简单液压系统工作原理图。

其中,X为输入位移,Y为输出位移,试画出该系统的职能方块图。

解:该系统是一种阀控液压油缸。

当阀向左移动时,高压油从左端进入动力油缸,推动动力活塞向右移动;当阀向右移动时,高压油则从右端进入动力油缸,推动动力活塞向左移动;当阀的位置居中时,动力活塞也就停止移动。

因此,阀的位移,即B点的位移是该系统的比较点。

当X向左时,B点亦向左,而高压油使Y向右,将B点拉回到原来的中点,堵住了高压油,Y的运动也随之停下;当X向右时,其运动完全类似,只是运动方向相反。

由此可画出如例图1-2b的职能方块图。

例图1-2a 简单液压系统例图1-2b 职能方块图1.在给出的几种答案里,选择出正确的答案。

(1)以同等精度元件组成的开环系统和闭环系统,其精度比较为_______ (A )开环高; (B )闭环高; (C )相差不多; (D )一样高。

(2)系统的输出信号对控制作用的影响 (A )开环有; (B )闭环有; (C )都没有; (D )都有。

第2章_控制系统的动态数学模型_2.4传递函数以及典型环节的传递函数

第2章_控制系统的动态数学模型_2.4传递函数以及典型环节的传递函数
X o ( s) 1 G( s) Fi ( s ) Ms 2 Ds K
【例】R-L-C无源电路网络的传递函数
已知系统的微分方程为:
d2 d LC 2 uc (t ) RC uc (t ) uc (t ) ur (t ) dt dt
所有初始条件均为零时,其拉氏变换为:
LCs 2U c (s) RCsU c (s) U c (s) U r (s)
n
m n bm K =K * (-Zi ) / ( p j ) an i 1 j 1
为传递函数的增益
b0 K a0
*
为根轨迹增益
Ti和 i 为时间常数
零、极点分布图:
G ( s) b0 (s z1 )(s z2 )(s zm ) M (s) a0 (s p1 )(s p2 )(s pn ) D(s)
r (t ) 1(t )
零状态响应分别为: c1 (t ) 1 2et 3e2t
c2 (t ) 1 0.5et 0.5e2t
各个模态在两个系统输出响应中所占的比重不同,
取决于零点相对于极点的距离。
j
z2
z1
0

(5)关于传递函数的几点说明
传递函数是一种以系统参数表示的线性定常系统输 入量与输出量之间的关系式。传递函数的概念通常只 适用于线性定常系统。 传递函数是复数自变量s的复变函数。传递函数中 的各项系数和相应微分方程中的各项系数对应相等, 完全取决于系统结构参数。
D(s)=0 称为系统的特征方程,其根称为系统的 特征根。特征方程决定着系统的动态特性。
D(s) 中s 的最高阶次等于系统的阶次。
将传递函数的分子和分母多项式进行因式分解可得

第二章控制系统的数学模型.

第二章控制系统的数学模型.

2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9

基本要求-控制系统数学模型

基本要求-控制系统数学模型
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
线性连续系统微分方程的一般形式
d c (t ) d c (t ) dc (t ) an an 1 ... a1 a0 c ( t ) n n 1 dt dt dt d m r (t ) d m 1r (t ) dr (t ) bm bm 1 ... b1 b0 r (t ) m m 1 dt dt dt
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
• 3.表示形式 a.时域:微分﹑差分﹑状态方程 b.复域:传递函数﹑结构图 c.频域:频率特性
三种数学模型之间的关系 线性系统
拉氏 傅氏 传递函数 微分方程 频率特性 变换 变换
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
自动控制原理
第二章控制系统的数学模型
题目变种3,寻求新解法
1 R1 cs I ( s) U ( s) U r ( s) c 1 R1 cs
Uc( s ) I (s) R2
联立,可解得: 微分方程为:
U c ( s) R2 (1 R1Cs) U r (s) R1 R2 R1 R2 Cs
微分方程的标准形式: 1、与输入量有关的项写在方程的右端; 2、与输出量有关的项写在方程的左端; 3、方成两端变量的导数项均按降幂排列
mx(t ) fx(t ) kx(t ) F (t )
航空
第二章控制系统的数学模型
电气系统三元件(知识补充)
电阻
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型

2.为什么要建立数学模型: 只是定性地了解系统的工作原理和大致的 运动过程是不够的,还要从理论上对系统 性能进行定量的分析和计算。 另一个原因:许多表面上看毫无共同之处 的控制系统,其运动规律具有相似性,可 以用相同形式的数学模型表示。

自动控制原理:第二章--控制系统数学模型全

自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系

T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)

第二章_控制系统的数学模型

第二章_控制系统的数学模型
+
R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s

控制工程基础 清华大学 董景新 第二章 控制系统的动态数学模型

控制工程基础 清华大学 董景新 第二章 控制系统的动态数学模型

2.1 基本环节数学模型
数学模型是描述物理系统的运动规律、特性 和输入输出关系的一个或一组方程式。 系统的数学模型可分为静态和动态数学模型。 静态数学模型:反映系统处于平衡点(稳态) 时,系统状态有关属性变量之间关系的数学模型。 即只考虑同一时刻实际系统各物理量之间的数学 关系,不管各变量随时间的演化,输出信号与过 去的工作状态(历史)无关。因此静态模型都是 代数式,数学表达式中不含有时间变量。
控制工程基础
(第二章)
清华大学
第二章
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
控制系统的动态数学模型
基本环节数学模型 数学模型的线性化 拉氏变换及反变换 传递函数以及典型环节的传递函数 系统函数方块图及其简化 系统信号流图及梅逊公式 受控机械对象数学模型 绘制实际机电系统的函数方块图 状态空间方程
式中, a1 , a2 是常值,可由以下步骤求得 将上式两边乘 s j s j , 两边同 时令s j(或同时令s j ), 得
a1s a2 s j X s s j s j s j
s3 例 试求 X s 2 s 3s 2
的拉氏反变换。
s 3 解: X s 2 s 3s 2 s3 s 1s 2 a1 a2 s 1 s 2
s3 a1 s 1 2 s 1s 2 s 1 s3 a2 s 2 1 s 1s 2 s 2 2 1 X s s 1 s 2 t 2t xt 2e e 1t
T st
2T T

xt e
st
n 1T dt

第二章 自动控制系统原理的数学模型分析

第二章 自动控制系统原理的数学模型分析

c(t ) a n1
d n1
c(t ) ... a1
d c (t ) a 0 c (t ) dt d r (t ) ... b1 r (t ) b0 r (t ) dt
在初始条件为零时,对方程两边进行拉氏变换并整理得
C ( s) bm s m bm 1 s m 1 b1 s b0 M ( s) G ( s) (2-25) n n 1 R( s ) N ( s) a n s a n 1 s a1 s a 0
一阶常系数线性微分方程
RC
duc uc ur dt
(2-4)
微分方程建立举例(2)
【例2-2】机械位移系统 (1)确定输入、输出量
设外作用力F (t ) 为输入量,质量 物体的位移 y (t )为输出量。
(2)建立微分方程组
根据牛顿第二定律可得:
F (t ) FB (t ) FK (t ) ma
初始条件为零,一般是指输入量在t=0时刻以后才 作用于系统,系统的输入量和输出量及其各阶导数在 t≤时的值也均为零。
传递函数的一般表达式
如果系统的输入量为 r (t ) ,输出量为 c(t ) ,并 由下列微分方程描述
an
bm
dn dt n dm
dt m
dt n1 d m 1 r (t ) bm 1d m 1 dt
c (t ) 1
式中
<1时
(2-44)
1 2
e n t 1 2
4.应用实例 例2-2机械位 移系统等。
sin( d t )

arctan
d n 1 2
R 将 R1 1 K 、 2 1 K 代入上式得: 2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程 (时间域)
拉氏变换
拉氏反变换
代数方程 (复数域)
方块图 传递函数 信号流图
数学模型的形式 ➢ 时间域:微分方程(连续系统)
差分方程(离散系统) 状态方程
➢ 复数域:传递函数(连续系统) 脉冲传递函数(离散系统)
➢ 频率域:频率特性
§2-1 基本环节数学模型
例1 质量-弹簧-阻尼系统
牛顿 yo(t) 第二定 F律 M: a工件
其 — 正 中实
则 可 定 xt的 义拉 氏 变 XS换
XSLxt
e xt stdt 0
象函数
原函数
复变量 量纲 t 1
二、简单函数的拉氏变换
1. 单位阶跃函数 1t
1
1t
0 1
t0 t 0
0
t
L1t0 1tesd t t1 sest 01 s
动 力滑 台FitkyotfyotFM i(t) y ot
即: M y otfyotkyotFit
yo(t)
k
M
Fi(t)
f
例2 电路网络
ui
u C i1t
R1
i 2 t
it R 2
根 据 基 尔 霍 夫 定 律 和 欧姆 定 律 , 有
o
i1t i2 t it
1
ui t uo t R1i2 t 2
对于一个控制系统,在一定的输 入作用下有些什么运动规律,我们不 仅希望了解其稳态情况,更重要的是 了解其动态过程。如果能将物理系统 在信号传递过程中的这一动态特性用 数学表达式描述出来,就得到了组成 物理系统的数学模型。
建立控制系统的数学模型,并
在此基础上对控制系统进行分析、 综合,是控制工程的基本方法。
当 o很小时,可忽略高阶小 量,则
sin o o 可近似为线性方程 :
m 2d l2 d o 2 tt m og t lT it
线性化步骤:
1. 找出静态工作点(工作点不同, 所得方程系数也不同)
2. 在工作点附近展开成台劳级数 3. 略去高阶项,得到关于增量的线
性化方程
§2-3 拉氏变换及反变换
机械控制工程基础
主讲教师:王国荣
第二章 控制系统的动态数学模型
2-1、基本环节数学模型 2-2、数学模型的线性化 2-3、拉氏变换和拉氏反变换 2-4、传递函数以及典型环节的传递函数 2-5、系统函数方框图及其简化 2-6、系统信号流图及梅逊公式 2-8、绘制实际物理系统的函数方框图
第二章 控制系统的数学模型
过切线法进行线性化,求其增量 方程
根据牛顿第: 二定律,有
Titmsginotlm2ld2do 2tt
这是一个非线性微分方 程,
o ( t ) 将 sin o在 o 0 附近用
l
台劳级数展开,得:
m T i( t )
P 1 5 单图 摆2 - 5 单 摆
sin o
o
o3
3!
o5
5!
—一种解线性微分方程的简便方法
是分析工程控制系统的基本数学方法
微分方程 (时间域)
拉氏变换 拉氏反变换
代数方程 (复数域)
传递函数
复习复变量和复变函数
复数有实部和虚部,两部分都是常数。
如: 2 j5 复变量指复数的实部或虚部中含有变量。
如: s j
复变函数 Fs 是 s 的函数,也有实部和虚 部。如:F s F x jF y F s F s
即:
RCduo(t) dt
ui(t)
例3 电枢控制式直流电动机
Ra
La
f
ei(t)
em
o (t)
T
J
ia if= 常 数
根据电磁感应定律,有
其中根 其 根,eKP中 据 据 m1e3e—TtK图根 i, 磁 — 2基 t-tT4— 电K反 据 场 枢— 尔 KR Te电 控d牛 制对 aTt电 势霍 idio直ata顿 常 载 tt流机 ft夫 电数d第 流 动力 Ld机o作 定 at二 t线 d矩 d用 a律 i定 圈 ttJ常 , 定 d律 , 的 2ed数 有 律 m to定 2有 tt, 律有
e it R a ia t L a d d a ti te m t T t K T ia t emtKeddott
Ttfdd ottJd2 d o 2 tt
将上面四个方程联立,可得
L a J d 3 d o 3 t tL a f R a J d 2 d o 2 t tR a f K T K e d d o t K tT e i t
1 c
i1 t
dt
R1i2
t
3
uo t R2it
4
将2、 3、 4分 别 代 1, 入并 整 理 得
R1CdduottR1R 2R2 uotR1Cdduittuit
i2(t)
ui(t) i1(t)
C
a
uo(t)
R
+
u i1
a (t (t)
)0 i2 (t
)
ui(t) Cduo(t)
R
dt
其中:Fs
F F 2 2
xyFs源自arctan FFxy例如:
G ss2 其:中 sjr s2r2 2
j
S平面
jGy G(s)平面
2
4
0
0
Gx
一、拉氏变换定义:
对于函数 xt ,满足下列条件
1、当 t 0时, xt0; 当t 0时, xt在每个有限区 续间
e 2、 xt td t , 0
3. 将各环节方程式联立,消去中间变量, 最后得到只含有输入、输出变量以及 参量的系统方程式。
单输入、单输出系统微分方程的
一般形式:
ax ax a a 0 ont 1 on1t n1x ot nxot
bx bx b b 0
imt 1
im1t m1x it mxit
其中n: m
§2-2 数学模型的线性化
若 忽 略 电化 枢为 电: 感 , 可 简
RaJd2 do 2ttRafKTKeddottKTeit
若电枢电感、都 电忽 枢略 电, 阻可进为 一: 步简化
Keddotteit
列写系统微分方程的一般步骤:
1. 将系统划分环节,确定各环节的输入 及输出信号,每个环节列写一个方程;
2. 根据物理定律或通过实验得出的物理 规律列写各环节的原始方程,并适当 简化,线性化;
严格讲: 所有系统都是非线性的
尽管线性系统的理论已经相当 成熟,但非线性系统的理论还远不 完善。另外,迭加原理不适用于非 线性系统,这给解非线性系统带来 很大不便。故我们尽量对所研究的 系统进行线性化处理,然后用线性 理论进行分析。
线性化条件:
1. 非线性因素对系统影响很小 2. 系统变量只发生微小偏移,可通
相关文档
最新文档