(文科)高中数学选修1-1、1-2、4-4重要知识点

合集下载

(文科)高中数学选修1-1、1-2、4-4重要知识点

(文科)高中数学选修1-1、1-2、4-4重要知识点

选修 1-1、1-2 数学知识点第一部分 简单逻辑用语1、命题: 用语言、符号或式子表达的,可以判断真假的陈述句 .真命题: 判断为真的语句 . 假命题: 判断为假的语句 .2、“若 p ,则 q ”形式的命题中的 p 称为命题的 条件 , q 称为命题的 结论 .3、原命题:“若 p ,则 q” 逆命题: “若 q,则 p”否命题:“若 p ,则 q” 逆否命题: “若 q,则 p” 4、四种命题的真假性之间的关系: ( 1)两个命题互为逆否命题,它们有相同的真假性;( 2)两个命题为互逆命题或互否命题,它们的真假性没有关系.5、若 p q ,则 p 是 q 的充分条件 , q 是 p 的必要条件 .若 pq ,则 p 是 q 的充要条件 (充分必要条件) .利用集合间的包含关系:例如:若 AB ,则 A 是 B 的充分条件或B 是 A 的必要条件;若A=B ,则 A 是B 的充要条件;6、逻辑联结词: ⑴且 (and) :命题形式 p q ;⑵或( or ):命题形式 p q ;⑶非( not ):命题形式p .p qpqp qp真 真 真 真 假 真 假 假 真 假 假 真 假 真 真假假假假真7、⑴全称量词——“所有的” 、“任意一个”等,用“”表示;全称命题 p : xM , p(x) ; 全称命题 p 的否定 p : xM , p(x) 。

⑵存在量词——“存在一个” 、“至少有一个”等,用“”表示;特称命题 p : x M , p(x) ; 特称命题 p 的否定p :x M , p( x) ;第二部分圆锥曲线1、平面内与两个定点F 1 , F 2 的距离之和等于常数(大于F 1 F 2 )的点的轨迹称为椭圆 .即: | MF 1 | | MF 2 | 2a, (2a | F 1F 2 |) 。

这两个定点称为 椭圆的焦点 ,两焦点的距离称为椭圆的焦距 .2、椭圆的几何性质 :焦点的位置焦点在 x 轴上焦点在 y 轴上图形标准方程x 2 y 2 1 a b 0y 2 x 2 1 a b 0a2b2a2b2范围a x a 且b y b b x b 且 a y a1a,0、2a,010,a、20,a 顶点10, b 、20,b1b,0、2b,0轴长短轴的长2b长轴的长2a焦点F1c,0、 F2c,0F10,c、 F20,c 焦距F1 F22c c2a2b2对称性关于 x 轴、y轴、原点对称离心率c b2e a1a2 0e13 、平面内与两个定点F1, F 2的距离之差的绝对值等于常数(小于F1 F 2)的点的轨迹称为双曲线.即:|| MF1 | | MF 2 || 2a, (2a | F1F2 |) 。

一轮复习 选修1-1、1-2知识点总结

一轮复习 选修1-1、1-2知识点总结

第 1 页 共 4页 第 2页共4页【使用说明和学法指导】1.依据导学案,认真阅读选修1-1、1-2教材的基础知识;思考并自主探究问题,深化对教材内容的理解,找出自己的疑惑和需要讨论的问题,用红笔做好标记。

2.通过预习,A、B层同学能够全部掌握基本知识并能应用,完成学案中所有题目,C层同学注重理解性质,可以尝试完成拓展提升题目.第 3 页共 4页第 4页共4页第5页 共6页 第6页 共6页()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.8、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.9、导数在实际问题中的应用:最优化问题。

选修1-2数学知识点 第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

高中数学文科选修1-2知识点总结优选版

高中数学文科选修1-2知识点总结优选版

高中数学文科选修1-2知识点总结优选版高中数学选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立. (2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B = 通过观察得到右表所示数据: 并将形如此表的表格称为2×2列联表.(2)独立性检验 根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第四章 复数必背结论1.(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔z=z ⇔ z 2≥0; (2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0; (4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R ); 2.复数的代数形式及其运算设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则: (1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1·z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ; (3) z 1÷z 2 ==-+-+))(())((di c di c di c bi a id c ad bc d c bd ac 2222+-+++ (z 2≠0) ; 3.几个重要的结论(1) i i 2)1(2±=±; ;11;11i ii i i i -=+-=-+(2) i 性质:T=4;i i i i i i n n n n -=-===+++3424144,1,,1;;03424144=++++++n n n i i i i(3) zz z z z 111=⇔=⇔=。

(完整版)高中数学选修1—1知识点总结,推荐文档

(完整版)高中数学选修1—1知识点总结,推荐文档

y p 2
范围
x0
x0
y0
y0
导数及其应用
1. 导数的物理意义:
瞬时速率。一般的,函数
y
f (x) 在
x
x0 处的瞬时变化率是 lim x0
f
( x0
x) x
f
(x0 )

-3- /4
高中数学选修 1—1 知识点总结
我们称它为函数 y
f (x) 在 x
x0 处的导数,记作
f (x0 ) 或 y |xx0 ,即
定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。 MF1 MF2 2a 2a 2c
3、椭圆的几何性质:
焦点的位置
焦点在 x 轴上
焦点在 y 轴上
图形
标准方程 范围 顶点 轴长 焦点 焦距
x2 a2
y2 b2
1a b 0
a x a 且 b y b
y2 a2
x2 b2
1a
b
0
b x b 且 a y a
3 若 f (x) sin x ,则 f (x) cos x
短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.含有存在量词的命题称为特称
命题.特称命题“存在 中的一个 x ,使 p x成立”,记作“ x , p x”. 10、全称命题 p : x , p x,它的否定 p : x , p x。全称命题的否定是特称命题。 特称命题 p : x , p x,它的否定 p : x , p x。特称命题的否定是全称命题。
y a2 c
yax b
7、实轴和虚轴等长的双曲线称为等轴双曲线。
9、平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹称为抛物线.定点 F 称为抛物

【整理】高中数学选修1-1、1-2知识点

【整理】高中数学选修1-1、1-2知识点

第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨;⑶非(not ):命题形式p ⌝. p q p q ∧ p q ∨ p ⌝真 真 真 真 假真 假 假 真 假假 真 假 真 真假 假 假 假 真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示; 全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示; 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 复数1.概念:(1) z =a +bi∈R ⇔b =0 (a,b∈R )⇔z=z ⇔ z 2≥0;(2) z =a +bi 是虚数⇔b ≠0(a ,b∈R ); (3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b∈R )⇔z +z =0(z≠0)⇔z 2<0;(4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d∈R );2.复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di (a,b,c,d∈R ),则:(1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1.z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ;(3) z 1÷z 2 ==-+-+))(())((di c di c di c bi a i dc ad bc d c bd ac 2222+-+++ (z 2≠0) ; 3.几个重要的结论:(1) i i 2)1(2±=±;⑷;11;11i ii i i i -=+-=-+(2) i 性质:T=4;i i i i i i n n n n -=-===+++3424144,1,,1;;03424144=++++++n n n i i i i (3) zz z z z 111=⇔=⇔=。

高中数学选修1-1&1-2知识点

高中数学选修1-1&1-2知识点

选修1-1,1-2知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤ 顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

高二数学选修1-1、1-2数学知识点

高二数学选修1-1、1-2数学知识点

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 23、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

高中数学-11-24-4知识点归纳

高中数学-11-24-4知识点归纳

② R2 越接近于 1,,则回归效果越好。
4.独立性检验(分类变量关系) :
随机变量 K 2 越大,说明两个分类变量,关系越强,反之,越弱。
第六部分 推理与证明
一.推理:
⑴合情推理:归纳推理 和类比推理 都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后 提出猜想的推理,我们把它们称为合情推理。

焦点在 y 轴上
图形
标准方程 范围
x2 y2 a2 b2 1 a 0, b 0 x a或 x a, y R
y2 x2 a2 b2 1 a 0, b 0 y a或 y a , x R
顶点
1 a,0 、 2 a,0
1 0, a 、 2 0,a
轴长
虚轴的长 2b 实轴的长 2a
焦点
F1 c,0 、 F2 c,0
选修 1- 1、1-2 数学知识点
第一部分 简单逻辑用语
1、 命题: 用语言、符号或式子表达的,可以判断真假的陈述句
.
真命题: 判断为真的语句 . 假命题: 判断为假的语句 .
2、“若 p ,则 q ”形式的命题中的 p 称为命题的 条件 , q 称为命题的 结论 .
3、 原命题:“若 p ,则 q ” 逆命题: “若 q ,则 p ” 否命题:“若 p ,则 q ” 逆否命题: “若 q ,则 p ”
注: 类比推理是特殊到特殊的推理。 ⑵演绎推理: 从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。 注:演绎推理是由一般到特殊的推理。
“三段论” 是演绎推理的一般模式, 包括:⑴大前提 --------- 已知的一般结论; ⑵小前提 --------- 所研究的特殊情况; ⑶结 论 --------- 根据一般原理,对特殊情况得出的判断。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(文科)高中数学选修1-1、1-2、4-4重要知识点选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝” 4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系.5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p qp q ∧ p q ∨ p ⌝ 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>>()222210,0y x a b a b-=>>范围 x a≤-或x a ≥,y R ∈ y a≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 ()2211c b e e a a==+>渐近线方程b y x a=±ay x b=±5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、抛物线的几何性质: 标准方程22y px = ()0p > 22y px =-()0p > 22x py=()0p > 22x py=-()0p >图形顶点 ()0,0对称轴 x轴y轴焦点 ,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭ 0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围x ≥x ≤y ≥y ≤8、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 9、焦半径公式:若点()0,x y P 在抛物线()220ypx p =>上,焦点为F ,则02pF xP =+; 若点()0,x y P 在抛物线()220xpy p =>上,焦点为F ,则02p F yP =+;第三部分 导数及其应用1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x-- 2、导数定义:()f x 在点x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000;.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式:①'C=;②1')(-=n n nx x; ③xx cos )(sin '=;④xx sin )(cos '-=;⑤aa ax x ln )('=;⑥xx e e=')(; ⑦ax x aln 1)(log'=;⑧xx 1)(ln '=5、导数运算法则:()1 ()()()()f xg x f x g x '''±=±⎡⎤⎣⎦;()2()()()()()()f xg x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.8、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.9、导数在实际问题中的应用:最优化问题。

第四部分 复数1.概念:(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔z=z ⇔ z 2≥0; (2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0; (4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R );2.复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则:(1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1.z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ; (3) z 1÷z 2 ==-+-+))(())((di c di c di c bi a i dc ad bc d c bd ac 2222+-+++ (z 2≠0) ; 3.几个重要的结论:(1) i i 2)1(2±=±;⑷;11;11i ii i i i -=+-=-+ (2) i性质:T=4;ii i i i in n n n-=-===+++3424144,1,,1;;03424144=++++++n n ni i i i(3) zz z z z 111=⇔=⇔=。

4.运算律:(1));,())(3(;))(2(;2121N n m z z z z z z z z zmm m mn n m n m n m∈=⋅==⋅+5.共轭的性质:⑴2121)(z z z z ±=± ;⑵2121z z zz ⋅= ;⑶2121)(z z zz=;⑷zz =。

6.模的性质:⑴||||||||||||212121z z z z z z+≤±≤-;⑵||||||2121z z zz =;⑶||||||2121z z z z =;⑷nnz z||||=;第五部分 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定: ⑴总偏差平方和:∑=-ni iy y12)(⑵残差:∧∧-=ii iy y e;⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-n i iy y 12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R12122)()(1 。

注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R越接近于1,,则回归效果越好。

4.独立性检验(分类变量关系):随机变量2K越大,说明两个分类变量,关系越强,反之,越弱。

第六部分推理与证明一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

相关文档
最新文档