圆锥曲线的概念与解题常见思路总结

合集下载

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。

如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。

〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

圆锥曲线解题口诀

圆锥曲线解题口诀

解题口诀:
1. 确定曲线类型:圆锥曲线包括椭圆、双曲线和抛物线,首先要确定给定曲线的类型。

2. 根据方程确定基本信息:根据给定的方程确定曲线的中心、焦点、顶点、半轴长度等基本信息。

3. 绘制坐标系:根据基本信息在平面上绘制坐标系,并标出曲线的关键点。

4. 分析对称性:判断曲线是否具有对称性,如椭圆的长短轴是否相等,双曲线的两支是否对称等。

5. 求解特殊点:求解曲线与坐标轴交点的坐标,如椭圆的顶点、焦点,双曲线的渐近线等。

6. 求解参数:如果方程中含有参数,需要求解参数的取值范围,以及特定取值时的曲线形态。

7. 判断曲线性质:根据曲线的基本信息和性质进行判断,如椭圆的离心率、焦距,双曲线的渐近线方程等。

8. 解答问题:根据题目要求,利用已知信息进行计算或推导,得出最终的答案。

以上口诀可根据具体题目的要求进行调整和扩展,但基本思路是先确定曲线类型和基本信息,然后在坐标系上绘制曲线,并利用已知信息求解特殊点和参数,最后根据性质和题目要求解答问题。

1。

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题圆锥曲线是数学中的重要概念之一,在几何学和代数学领域都有广泛的应用。

通过直角坐标系解析法,我们可以用简洁而准确的方式解决与圆锥曲线相关的问题。

本文将介绍圆锥曲线的基本知识,并以解析法为重点,总结圆锥曲线解题的技巧与方法。

一、圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而形成的曲线。

常见的圆锥曲线包括椭圆、双曲线和抛物线。

这些曲线在直角坐标系中有各自的特点和方程。

1. 椭圆椭圆是圆锥和平面相交所形成的曲线。

在直角坐标系中,椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)为椭圆的中心坐标,a为椭圆长轴的一半长度,b为椭圆短轴的一半长度。

2. 双曲线双曲线同样是由圆锥和平面相交所形成的曲线。

在直角坐标系中,双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,(h, k)为双曲线的中心坐标,a为双曲线长轴的一半长度,b为双曲线短轴的一半长度。

3. 抛物线抛物线是由圆锥和平面相交所形成的曲线。

在直角坐标系中,抛物线的标准方程为:y = ax² + bx + c其中,a、b、c为常数,决定了抛物线的形状和位置。

二、通过直角坐标系解析法解决圆锥曲线问题的技巧与方法通过直角坐标系解析法,我们可以通过曲线的方程和几何特征来解决与圆锥曲线相关的问题。

以下是一些解题的常用技巧与方法:1. 求解曲线的方程通过已知的几何信息,我们可以得到曲线的方程。

根据曲线的类型,选择合适的标准方程,并通过已知点或其他条件来确定方程中的参数。

2. 求解曲线的焦点和准线对于椭圆和双曲线,焦点和准线是重要的几何特征。

通过方程中的参数,我们可以计算焦点和准线的坐标。

3. 求解曲线的顶点和开口方向抛物线的顶点和开口方向也是重要的几何特征。

圆锥曲线的解题方法

圆锥曲线的解题方法

圆锥曲线的解题方法圆锥曲线是解析几何中的重要概念,它涵盖了圆、椭圆、双曲线和抛物线等形态。

在解题时,我们需要了解每种圆锥曲线的特点,并熟悉解析几何中的基本公式和性质。

本文将详细介绍圆锥曲线的解题方法,包括定义、方程形式、基本性质和解题技巧等内容,希望能对读者的学习和应用提供帮助。

一、圆锥曲线的概念和方程形式圆锥曲线是由一个平面与一个固定点(焦点)和一个固定直线(准线)相交所得到的曲线。

它根据平面与准线的位置关系可以分为四种形态:圆、椭圆、双曲线和抛物线。

1.圆:当平面与准线相交于准线上的一个点时,所得到的曲线为圆。

2.椭圆:当平面与准线相交于两个不同点时,所得到的曲线为椭圆。

椭圆的一个特点是焦点到准线上任意一点的距离之和是一个常数,称为椭圆的半长轴;而焦点到准线的垂直距离之和是一个常数,称为椭圆的半短轴。

3.双曲线:当平面与准线相交于两个相异实点或两个虚点时,所得到的曲线为双曲线。

双曲线的一个特点是焦点到准线上任意一点的距离之差是一个常数,称为双曲线的焦距;而焦点到准线的垂直距离之差是一个常数,称为双曲线的准线间距。

4.抛物线:当平面与准线相交于一个点且平行于焦准线时,所得到的曲线为抛物线。

抛物线的一个特点是焦点到准线上任意一点的距离等于焦点到焦准线的垂直距离。

根据圆锥曲线的定义和形态特点,我们可以得到其标准方程形式如下:1.圆的方程:(x-h)²+(y-k)²=r²,其中(h,k)为圆心坐标,r为半径。

2.椭圆的方程:(x-h)²/a²+(y-k)²/b²=1,当椭圆的长轴平行于x轴时;(x-h)²/b²+(y-k)²/a²=1,当椭圆的长轴平行于y轴时。

3.双曲线的方程:(x-h)²/a²-(y-k)²/b²=1,当双曲线的准线平行于x轴时;(y-k)²/b²-(x-h)²/a²=1,当双曲线的准线平行于y轴时。

高考圆锥曲线大题题型及解题技巧

高考圆锥曲线大题题型及解题技巧

高考圆锥曲线大题题型及解题技巧x高考圆锥曲线大题题型及解题技巧一、基本概念圆锥曲线是椭圆、双曲线与圆锥体的综合体,它说明物体穿过三种物理媒质,如水、气体和固体物质,以及它们之间的相互转换性。

二、圆锥曲线的基本特点1、圆锥曲线具有规律性:它的主要特征是抛物线的函数形式呈现出以对称中心为中心的规律性,在此基础上拓展形成了螺旋状的曲线;2、圆锥曲线与旋转有关:圆锥曲线的曲线形状可以用某种旋转的路径进行描述;3、圆锥曲线的曲线表示有多种变化:圆锥曲线可以表示为二维图形或三维图形,可以表示为数学方程式,也可以表示为一组矢量。

三、圆锥曲线大题解题技巧1、分析题干:根据题干内容,在解题之前要细致地分析题干,弄清楚问题的范围,是对一组数据进行分析,还是对某种形式的函数进行分析,要把握好范围和类型,以便选择正确的解题方法;2、画出曲线图:如果是需要求曲线的半径、圆心坐标和焦点等信息,可以先画出曲线图,有助于理清思路;3、推导出数学公式:如果是要分析曲线的性质,可以根据曲线的特性,推导出相应的数学公式,以便求解;4、运用矩阵的相关理论:在计算曲线的性质时,可以运用矩阵的相关理论,根据相关的矩阵的乘法,求出所求的值。

五、练习1、(XX年某省某市高考)已知圆锥曲线的参数方程为:$$left{begin{array}{l} x^{2} + y^{2}=a^{2} z^{2} a>0, a eq 1 end{array}ight.$$(1)求出曲线的中心坐标;(2)求出曲线的渐近线方程和焦点坐标。

解:(1)令参数方程中的参数$a=frac{1}{m}$,代入参数方程可得:$$left{begin{array}{l} x^{2} + y^{2}=frac{1}{m^{2}} z^{2} m>0, meq 1 end{array}ight.$$令$z=0$,得到$x^{2} + y^{2}=0$,由此可知曲线的中心坐标为:$(0, 0)$。

高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全一、圆锥曲线的基本概念圆锥曲线包括椭圆、双曲线和抛物线,它们是高中数学中重要的知识点之一。

圆锥曲线是由平面与圆锥的交线所形成的曲线,其基本概念包括焦点、准线和离心率等。

1. 焦点:圆锥曲线的焦点是到曲线的两个顶点距离相等的点,焦点到曲线的顶点的距离称为焦距。

椭圆和双曲线的焦点位于其对称轴上,而抛物线的焦点则位于其准轴上。

2. 准线:圆锥曲线的准线是与焦点垂直的直线,准线与曲线有两个交点。

在椭圆和双曲线中,准线是与主轴垂直的直线,而在抛物线中,准线是与主轴平行的直线。

3. 离心率:圆锥曲线的离心率是焦点到顶点的距离与准线到顶点的距离之比,离心率的大小可以反映曲线的形状。

椭圆的离心率在0和1之间,双曲线的离心率大于1,抛物线的离心率等于1。

二、圆锥曲线的公式1. 椭圆的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ (a>b>0)性质:椭圆的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

2. 双曲线的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =1$ (a>0, b>0)性质:双曲线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

3. 抛物线的标准方程及性质标准方程:$y^{2} = 2px$ ($p > 0$)或$x^{2} = 2py$ ($p > 0$) 性质:抛物线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

三、圆锥曲线的应用1. 椭圆的应用:椭圆在光学、机械、工程等领域有着广泛的应用。

例如,椭圆镜片可以纠正近视和远视,椭圆形状的机械零件可以减少振动和提高稳定性。

2. 双曲线应用:双曲线在热学、光学、工程等领域有着广泛的应用。

例如,双曲线冷却塔可以优化散热效果,双曲线形状的桥梁可以增强承受能力。

高中数学圆锥曲线知识点梳理+例题解析

高中数学圆锥曲线知识点梳理+例题解析

高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。

点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。

两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。

二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。

圆锥曲线的概念与解题常见思路总结

圆锥曲线的概念与解题常见思路总结
( 为 中点)
★ 在 的垂直平分线上
( 为 中点)
★ 、 关于 对称
是 的垂直平分线
★注意对称变换下的几何不变量
★有关斜率的问题→体系三
★注意取中点构造中位线
★斜率的比值计算可以平方后用圆锥曲线的方程进行整理
★利用相关直线设直线斜率
★化齐次联立
★注意“姐妹圆”
关键词
与定点的两连线垂直
向量的运算
成锐角(直角、钝角)
★极限思想,利用切线方程得到定点或定值的具体数据
★利用仿射变换
改造椭圆为圆
改造斜交直线为垂直直线
光学性质
切线方程
从圆心射出的光线的反射光线仍经过圆心
切线方程
从一个焦点射出的光线的反射光线过另一个焦点
切线方程
从一个焦点射出的光线的反射光线的反向延长线经过另一个焦点
切线方程
从焦点射出的光线的反射光线与对称轴平行
体系二
等张角线
对线段 张角相同的点的轨迹
极坐标方程
通径长
通径长
通径长
体系三
定义
直线与圆锥曲线
圆锥曲线的定义与性质
曲线名称
圆(Circle)
椭圆 (Ellipse)
双曲线(Hyperbola)
抛物线(Parabola)
标准方程
( )
( )
( )
( )
体系一
定义
( 且 )
( )
焦点三角形面积
( )
焦点三角形面积
抛物线的切点弦性质
抛物线的切点弦中点与极点连线的中点在抛物线上;
特别地,若切点弦过抛物线焦点 ,则 为直角且
过…与…交点的曲线
其他
提示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的定义与性质
曲线名称
圆(Circle)
椭圆 (Ellipse)
双曲线(Hyperbola)
抛物线(Parabola)
标准方程
( )
( )
( )
( )
体系一
定义
( 且 )
( )
焦点三角形面积
( )
焦点三角形面积
抛物线的切点弦性质
抛物线的切点弦中点与极点连线的中点在抛物线上;
特别地,若切点弦过抛物线焦点 ,则 为直角且
★极限思想,利用切线方程得到定点或定值的具体数据
★利用仿射变换
改造椭圆为圆
改造斜交直线为垂直直线
★面积比往往转化为共线线段比
★将点代入圆锥曲线方程中再将方程改写为不等式
关键词
直线与圆锥曲线的位置关系
焦点
中点
定比分点
共线、平行、垂直
提示
★联立直线与曲线方程后通过判别式判断
★直接利用等效判别式判断
★两个焦点→体系一
★一个焦点
→补焦点→体系一
→补准线→体系二
★注意利用极坐标方程
★注意取中点构造中位线
★中点坐标公式

★弦所在直线过焦点时,可补对应准线后构造相似三角形
★利用定比分点坐标公式或利用直线的参数方程转化.
★“ ( )”

★利用斜率或向量表示
★共线也可以利用点在另外两点所确定的直线上表示
关键词
以 为直径的圆过
垂直平分线
关于直线…对称
关于原点对称的两点
与原点连线相互垂直
中点)
★ 在 的垂直平分线上
( 为 中点)
★ 、 关于 对称
是 的垂直平分线
★注意对称变换下的几何不变量
★有关斜率的问题→体系三
★注意取中点构造中位线
★斜率的比值计算可以平方后用圆锥曲线的方程进行整理
★利用相关直线设直线斜率
★化齐次联立
★注意“姐妹圆”
关键词
与定点的两连线垂直
向量的运算
成锐角(直角、钝角)
有时也直接求解坐标
定点在 轴上时用斜截式表示
定点在 轴上时用倒斜横截式表示
定点不在轴上时用参数方程表示
★弦长公式
★两点间距离公式
★若方程 的两根时,两根之差为
★注意参数的取值范围,需要保证直线与圆锥曲线相交
★利用共线或平行条件进行等积变换
★三角形面积公式
★四边形的面积公式
★四边形的对角线往往是相关的
光学性质
切线方程
从圆心射出的光线的反射光线仍经过圆心
切线方程
从一个焦点射出的光线的反射光线过另一个焦点
切线方程
从一个焦点射出的光线的反射光线的反向延长线经过另一个焦点
切线方程
从焦点射出的光线的反射光线与对称轴平行
体系二
等张角线
对线段 张角相同的点的轨迹
极坐标方程
通径长
通径长
通径长
体系三
定义
直线与圆锥曲线
弦长公式
面积公式
底×高 水平宽×铅直高
位置关系
椭圆的等效判别式
双曲线的等效判别式
垂径定理
圆锥曲线的解题常见思路
关键词
一般情况
过定点的直线
弦长
面积
点与曲线的位置关系
提示
★引入参数控制运动,以交点坐标为中间变量表示其他所有几何量
★利用直线方程消去纵(横)坐标
→将直线方程代入曲线方程(联立)→通过韦达定理消去另一坐标
过…与…交点的曲线
其他
提示
★利用相关直线设直线斜率
★平移坐标系转化为与原点的连线相互垂直的问题
★向量数乘→共线
向量和差→平行四边形法则
向量相等→形成平行四边形
向量数量积→投影长度
★在求形如 的值时,可以将方程整理为形如
的形式
★转化为向量夹角
借助向量数量积的符号判断
★利用交点曲线系得到曲线方程
★当运动由圆锥曲线上的单点驱动时注意利用圆锥曲线的参数方程
相关文档
最新文档