2020年高考数学三角函数与解三角形大题精做
2020版高考数学一轮复习第3章三角函数、解三角形3.5两角和与差的正弦、余弦与正切公式课后作业理

3.5 两角和与差的正弦、余弦与正切公式[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( ) A.12 B.33 C.22 D.32 答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32 B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( ) A .-73 B.73 C.57 D .1答案 D解析 由题意知tan α=2,tan β=-13.∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(2017·云南一检)cos π9·c os 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9 =cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(2017·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4 答案 D 解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin 20°12sin20°=-4.故选D.6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝⎛ π4-⎭⎪⎫β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,由0<α<π2,得π4<α+π4<3π4,则sin ⎝ ⎛⎭⎪⎫π4+α=223. 由-π2<β<0,得π4<π4-β2<π2,则sin ⎝ ⎛⎭⎪⎫π4-β2=63,代入上式,得cos ⎝⎛⎭⎪⎫α+β2=539,故选C.7.(2018·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3 答案 A 解析 sin2αsin2β=sin[α+β+α-β]sin[α+β-α-β]=sin α+βcos α-β+cos α+βsin α-βsin α+βcos α-β-cos α+βsin α-β=tan α+β+tan α-βtan α+β-tan α-β=13.故选A.8.(2017·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( )A .-12B .-32 C.22 D.12答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin ( 2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z . ∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6,∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3,∴cos ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D.9.(2018·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(2018·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32 答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.故选D.二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.13.(2017·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π.由π3<α<π2,知2π3<α+β<π, 所以cos(α+β)=-1-sin2α+β=-1114,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12,又0<β<π,所以β=π3.14.已知sin α=12+cos α,且α∈⎝⎛⎭⎪⎫0,π2,则cos2αsin ⎝⎛⎭⎪⎫α-π4的值为________. 答案 -142解析 ∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α = 1+34=72, ∴cos2αsin ⎝ ⎛⎭⎪⎫α-π4=cos α+sin αcos α-sin α22sin α-cos α =-2(sin α+cos α)=-142. B 级三、解答题15.(2017·合肥质检)已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a ·b +32. (1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=a ·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin2x -32cos2x =sin ⎝⎛⎭⎪⎫2x -π3.令2x -π3=k π+π2(k ∈Z ),得x =5π12+k π2(k ∈Z ),即函数y =f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z ).(2)由条件知sin ⎝ ⎛⎭⎪⎫2x 1-π3=sin ⎝⎛⎭⎪⎫2x 2-π3=13>0,设x 1<x 2,则0<x 1<5π12<x 2<2π3,易知(x 1,f (x 1))与(x 2,f (x 2))关于直线x =5π12对称,则x 1+x 2=5π6, ∴cos(x 1-x 2)=cos ⎣⎢⎡⎦⎥⎤x 1-⎝ ⎛⎭⎪⎫5π6-x 1=cos ⎝ ⎛⎭⎪⎫2x 1-5π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 1-π3-π2=sin ⎝⎛⎭⎪⎫2x 1-π3=13.16.(2017·黄冈质检)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a的取值范围.解 (1)f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6=(1+cos2x )-⎝ ⎛⎭⎪⎫sin2x cos 7π6-cos2x sin 7π6 =1+32sin2x +12cos2x =1+sin ⎝⎛⎭⎪⎫2x +π6.∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2(k ∈Z ),即x =k π+π6,k ∈Z 时取到.∴函数f (x )的最大值为2时x 的取值集合为x ⎪⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12.∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,根据余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22=1,即a 2≥1.∴当且仅当b =c =1时,取等号.又由b +c >a 得a <2.所以a 的取值范围是[1,2).17.(2017·青岛诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B +3a cos B =3c .(1)求角A 的大小;(2)已知函数f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +A 2-3(λ>0,ω>0)的最大值为2,将y =f (x )的图象的纵坐标不变,横坐标伸长到原来的32倍后便得到函数y =g (x )的图象,若函数y =g (x )的最小正周期为π.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.解 (1)∵a sin B +3a cos B =3c , ∴sin A sin B +3sin A cos B =3sin C . ∵C =π-(A +B ),∴sin A sin B +3sin A cos B =3sin(A +B ) =3(sin A cos B +cos A sin B ). 即sin A sin B =3cos A sin B .∵sin B ≠0,∴tan A =3,∵0<A <π,∴A =π3.(2)由A =π3,得f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +π6-3=λ·1+cos ⎝ ⎛⎭⎪⎫2ωx +π32-3=λ2cos ⎝⎛⎭⎪⎫2ωx +π3+λ2-3,∴λ-3=2,λ=5.∴f (x )=5cos 2⎝ ⎛⎭⎪⎫ωx +π6-3=52cos ⎝ ⎛⎭⎪⎫2ωx +π3-12,从而g (x )=52cos ⎝ ⎛⎭⎪⎫43ωx +π3-12,∴2π43ω=π,得ω=32, ∴f (x )=52cos ⎝⎛⎭⎪⎫3x +π3-12.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,π3≤3x +π3≤11π6,∴-1≤cos ⎝ ⎛⎭⎪⎫3x +π3≤32,从而-3≤f (x )≤53-24,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,53-24.18.(2017·江西南昌三校模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝⎛⎭⎪⎫x +3π4.(1)求函数f (x )的最小正周期和单调递增区间; (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π3,且F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3的最小值是-32,求实数λ的值. 解 (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +3π4=12cos2x +32sin2x +(sin x-cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝⎛⎭⎪⎫2x -π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3 =-4λsin ⎝ ⎛⎭⎪⎫2x -π6-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫2x -π6=2sin 2⎝ ⎛⎭⎪⎫2x -π6-4λsin ⎝ ⎛⎭⎪⎫2x -π6-1 =2⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6-λ2-1-2λ2.∵x ∈⎣⎢⎡⎦⎥⎤π12,π3,∴0≤2x -π6≤π2, ∴0≤sin ⎝⎛⎭⎪⎫2x -π6≤1. ①当λ<0时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.。
2020届山东省新高考高三优质数学试卷分项解析 专题05 三角函数与解三角形(原卷版)

专题5 三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.预测2020年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-2.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A .10B .10C .2 D .104.(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-20195.(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭…恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A .π6 B .π3C .2π3D .5π66.(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .787.(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数8.(2020届山东省九校高三上学期联考)如图是一个近似扇形的鱼塘,其中OA OB r ==,弧AB 长为l (l r <).为方便投放饲料,欲在如图位置修建简易廊桥CD ,其中34OC OA =,34OD OB =.已知1(0,)2x ∈时,3sin 3!x x x ≈-,则廊桥CD 的长度大约为( )A .323432r r l - B .323432l l r - C .32324l l r-D .32324r r l-9.(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为() A .-7B .7C .1D .-110.(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位11.(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .12.(2020届山东省济宁市高三上期末)在ABC ∆中,1,3,1AB AC AB AC ==⋅=-u u u r u u u r,则ABC ∆的面积为( )A .12B .1CD .213.(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π2414.(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( ) A .13B .16C .43D .5615.(2020届山东省潍坊市高三上学期统考)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则△ABC 面积的最大值是A .1B C .2D .416.(2020届山东省烟台市高三上期末)若x α=时,函数()3sin 4cos f x x x =+取得最小值,则sin α=( )A .35B .35-C .45D .45-17.(2020届山东实验中学高三上期中)在ABC △中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .418.(2020届山东实验中学高三上期中)已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7B .7C .1D .-119.(2020届山东省济宁市高三上期末)函数22cos cos 1y x x =-++,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .20.(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( ) A .50 mB .100 mC .120 mD .150 m21.(2020届山东实验中学高三上期中)已知函数()sin 23f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π22.(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 二、多选题23.(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 24.(2020届山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+25.(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为26.(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点27.(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称28.(2020届山东省潍坊市高三上期末)已知()()22210f x cos x x ωωω=->的最小正周期为π,则下列说法正确的有( ) A .2ω= B .函数()f x 在[0,]6π上为增函数C .直线3x π=是函数()y f x =图象的一条对称轴D .5π,012骣琪琪桫是函数()y f x =图象的一个对称中心29.(2020届山东省潍坊市高三上学期统考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列30.(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( )A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 31.(2020届山东实验中学高三上期中)己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是( ) A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增32.(2019·山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+33.(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 三、填空题34.(2020届山东省枣庄市高三上学期统考)已知1sin 4x =,x 为第二象限角,则sin 2x =______. 35.(2020届山东省日照市高三上期末联考)已知tan 3α=,则sin cos sin cos αααα-+的值为______.36.(2020届山东师范大学附中高三月考)已知1tan 3α=,则2sin 2sin 1cos 2ααα-+的值为________.37.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点1tan,1tan1212P ππ⎛⎫+- ⎪⎝⎭是α终边上一点,则α的值是________. 38.(2020·全国高三专题练习(文))已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.39.(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 40.(2020届山东省日照市高三上期末联考)已知函数()9sin 26f x x π⎛⎫=-⎪⎝⎭,当[]0,10x π∈时,把函数()()6F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且123n x x x x <<<⋅⋅⋅<,记数列{}n x 的前n 项和为n S ,则()12n n S x x -+=______.41.(2020届山东省德州市高三上期末)已知函数()()sin f x A x =+ωϕ0,0,||2A πωϕ⎛⎫>><⎪⎝⎭的最大值2π,且()f x 的图象关于直线3x π=-对称,则当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为______.42.(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 四、解答题43.(2020届山东省临沂市高三上期末)在①3cos 5A =,cos C =,②sin sin sin c C A b B =+,60B =o,③2c =,1cos 8A =三个条件中任选一个补充在下面问题中,并加以解答. 已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,______,求ABC V 的面积S . 44.(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x图象关于原点对称;②向量),cos 2m x x ωω=u r,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭r u r r ;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若02πθ<<,且sin θ=()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.45.(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.46.(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫ ⎪⎝⎭.(1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x πÎ函数()f x 的最大值和最小值.47.(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值.48.(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ∆中,角,,A B C 的对边分别为,,a bc ,6b c +=,a =, . 求ABC ∆的面积.49.(2020届山东省泰安市高三上期末)如图所示,有一块等腰直角三角形地块ABC ,90A ∠=o ,BC 长2千米,现对这块地进行绿化改造,计划从BC 的中点D 引出两条成45°的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种植花卉,其余区域种植草坪;设BDE α∠=,试求花卉种植面积()S α的取值范围.50.(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .51.(2020届山东省滨州市三校高三上学期联考)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,23sin 2cos02A CB +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为3ABC ∆的周长.52.(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①2633()b a ac c a b -+=+;②2cos 22cos 12A A +=;③6a =④2b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)53.(20203(cos )sin b C a c B -=;②22cos a c b C +=;③sin 3sin2A Cb A a += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,23,b =4a c +=,求ABC ∆的面积.54.(2020届山东师范大学附中高三月考)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos cos 2c A a C a +=.(1)求a b的值; (2)若1a =,7c =,求ABC V 的面积. 55.(2020·蒙阴县实验中学高三期末)在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=u u u r u u u r ,求:(1)tan tan tan tan A A B C+的值; (2)BC 边上的中线AD 的长.56.(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值;(2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值. 57.(2020届山东省潍坊市高三上期末)在①34asinC ccosA =;②252B C bsinasinB +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知 ,32a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积58.(2020·山东省淄博实验中学高三上期末)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知4cos cos cos a A c B b C =+.(1)若4a =,ABC ∆的面积为15,求b ,c 的值; (2)若()sin sin 0B k C k =>,且角C 为钝角,求实数k 的取值范围.59.(2020届山东省潍坊市高三上学期统考)已知函数()()23sin cos sin 10f x x x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且6AC =,31CD =-,求三角形ABC 的面积.60.(2020届山东省济宁市高三上期末)已知()()23sin sin cos 2f x x x x ππ⎛⎫=-+- ⎪⎝⎭. (1)若1210f α⎛⎫= ⎪⎝⎭,求2cos 23πα⎛⎫+ ⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.61.(2020届山东省济宁市高三上期末)如图,某市三地A ,B ,C 有直道互通.现甲交警沿路线AB 、乙交警沿路线ACB 同时从A 地出发,匀速前往B 地进行巡逻,并在B 地会合后再去执行其他任务.已知AB =10km ,AC =6km ,BC =8km ,甲的巡逻速度为5km /h ,乙的巡逻速度为10km /h .(1)求乙到达C 地这一时刻的甲、乙两交警之间的距离;(2)已知交警的对讲机的有效通话距离不大于3km ,从乙到达C 地这一时刻算起,求经过多长时间,甲、乙方可通过对讲机取得联系.62.(2020·全国高三专题练习(文))在ABC V 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )(3sin sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③3=c b 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积.63.(2020届山东实验中学高三上期中)己知函数()23sin cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.64.(2020届山东实验中学高三上期中)“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形ABCD 的麦田里成为守望者,如图所示,为了分割麦田,他将BD 连接,设ABD ∆中边BD 所对的角为A ,BCD ∆中边BD 所对的角为C ,经测量已知2AB BC CD ===,23AD =.(1)霍尔顿发现无论BD 3cos A C -为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记ABD ∆与BCD ∆的面积分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出2212S S +的最大值.。
2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1

(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。
2020高考数学专项复习《三角函数10道大题》(带答案)

4 2 ) 三角函数1.已知函数 f (x ) = 4 c os x s in(x +(Ⅰ)求 f (x ) 的最小正周期;) -1.6(Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值.6 42、已知函数 f (x ) = sin(2x + ) 3+ sin(2x - 3 + 2 cos 2 x - 1, x ∈ R .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值.4 43、已知函数 f (x ) = tan(2x +),4(Ⅰ)求 f (x ) 的定义域与最小正周期;⎛ ⎫(II )设∈ 0, ⎪ ,若 f ( ) = 2 cos 2, 求的大小⎝ ⎭4、已知函数 f (x ) =(sin x - cos x ) sin 2x.sin x(1) 求 f (x ) 的定义域及最小正周期;(2) 求 f (x ) 的单调递减区间.5、 设函数 f (x ) = cos(2x + + sin 2x .24(I )求函数 f (x ) 的最小正周期;( II ) 设 函 数 1g (x ) 对 任 意 x ∈ R , 有g (x + 2 = g (x ) , 且 当x ∈[0, ] 时 , 2g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式.22 ) )3 + = 6、函数 f (x ) = A sin(x -称轴之间的距离为 ,2) +1(A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6(1)求函数 f (x ) 的解析式;(2)设∈(0, ) ,则 f ( ) = 2 ,求的值.2 27、设 f ( x ) = 4cos( ωx -π)sin ωx + cos 2ωx ,其中> 0.6(Ⅰ)求函数 y = f ( x ) 的值域(Ⅱ)若 y = f ( x ) 在区间⎡- 3π ,π⎤上为增函数,求 的最大值.⎣⎢ 2 2 ⎥⎦8、函数 f (x ) = 6 cos 2x + 23 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且∆ABC 为正三角形.(Ⅰ)求的值及函数 f (x ) 的值域;8 3 (Ⅱ)若 f (x 0 ) 5,且 x 0 ∈(- 10 2, ) ,求 f (x 0 1) 的值.3 39、已知 a , b , c 分别为∆ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0(1)求 A ;(2)若 a = 2 , ∆ABC 的面积为 ;求b , c .10、在 ∆ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C .= 2,sin B = 53(Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求∆ ABC 的面积.3 2 2 ) max+ = - (x )答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为 f (x ) = 4 cos x sin(x + 1) -1 = 4 cos x ( sin x + cos x ) -1622= 3 sin 2x + 2 cos 2 x -1 = 3 sin 2x + cos 2x = 2 s in(2x +,所以 f (x ) 的最小正周期为.62(Ⅱ)因为- ≤ x ≤ 6 4 ,所以- ≤ 2x + ≤ 6 6 3 .于是,当2x + = 6 2 ,即 x =6时, f (x ) 取得最大值 2;当2x + = - 6 6 ,即 x = - 时, f (x ) 取得最小值-1.62、【解析】 (1)2f (x )= sin (2x + )+sin(2x - )+2cos x -1 = 2 s in 2x cos + cos 2x = 2 sin(2x + )3 3 3 42函数 f (x ) 的最小正周期为T = =23 (2) - ≤ x ≤ ⇒ - ≤ 2x + ≤ ⇒ - ≤ sin(2x +4 4 4 4 4 2 4) ≤ 1 ⇔ -1 ≤ f (x ) ≤当 2x + = (x = ) 时 , 4 2 8 f (x )min = -1f (x ) = , 当 2x = - 时 , 4 4 4【点评】该试题关键在于将已知的函数表达式化为 y =A sin (x +) 的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.k【精讲精析】(I)【解析】由2x +≠ + k , k ∈ Z , 得 x ≠ + , k ∈ Z . 4 2 8 2k为 .2所以 f (x ) 的定义域为{x ∈ R | x ≠ + 8 2, k ∈ Z } , f (x ) 的最小正周期(II)【解析】由 f ( ) = 2 cos 2, 得tan(+2) = 2 cos 2,42) ) )1 sin(+ 4 = 2(cos2 - s in 2 ), cos(+整理得4 sin + coscos - sin= 2(cos + sin )(cos - sin ). 21 1 因为∈(0, ) ,所以sin + cos ≠ 0.因此(cos - s in ) 4= ,即sin 2= .2 2由∈(0, ) ,得2∈(0, ) .所以2= ,即= .4 2 6 124、解(1): sin x ≠ 0 ⇔ x ≠ k(k ∈ Z ) 得:函数 f (x ) 的定义域为{x x ≠ k , k ∈ Z }f (x ) =(sin x - cos x ) sin 2x= (sin x - cos x ) ⨯ 2 cos xsin x= sin 2x - (1+ cos 2x ) = 2 sin(2x --14 2得: f (x ) 的最小正周期为T = = ;2(2)函数 y = sin x 的单调递增区间为[2k - , 2k + 2 2](k ∈ Z )3则2k - ≤ 2x - ≤ 2k + ⇔ k - ≤ x ≤ k +2 4 2 8 8得: f (x ) 的单调递增区间为[k - , k ),(k , k + 3](k ∈ Z )8 85、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【 解 析 】1 1f (x ) = cos(2x + + sin 2 x = 1 cos 2x - 1 sin 2x + 1 (1- cos 2x )2 4 2 2 2= - sin 2x , 2 22(I )函数 f (x ) 的最小正周期T = =21 1(II )当 x ∈[0, ] 时, g (x ) = - f (x ) = sin 2x2 当 x ∈[-2 21 1 sin 2x 当 x ∈[-, - ) 时, (x +) ∈[0, )2 2 g (x ) = g (x +) = sin 2(x +) = 2 2sin 2x⎧- 1 sin 2x (x ≤ 0) - ≤ ⎪ 22 得函数 g (x ) 在[-, 0] 上的解析式为 g (x ) = ⎨ .⎪ sin 2x (-≤ x <⎩⎪ 2 22 ) ) , 0] 时, (x + ) ∈[0, ] g (x ) = g (x + ) = 1 sin 2(x + ) = - 1 2 2 2 2 2 2 23 ⎢ ⎥ 6、【解析】(1)∵函数 f ( x ) 的最大值是 3,∴ A +1 = 3,即 A = 2 .∵函数图像的相邻两条对称轴之间的距离为 ,∴最小正周期T =,∴= 2 .2故函数 f ( x ) 的解析式为 f (x ) = 2 s in(2x -) +1.61(2)∵ f ( ) = 2 s in(- 2) +1 = 2 ,即sin(- 6 ) = ,6 2∵ 0 << ,∴ - <- < ,∴- = ,故= .2 6 63 6 6 3⎛ 3 1⎫ 7、解:(1) f ( x ) = 4 2 cos x + 2 sin x ⎪⎪s in x + cos 2x ⎝ ⎭= 2 3 sin x cos x + 2 sin 2 x + cos 2 x - sin 2 x =3 sin 2x +1因-1 ≤ sin 2x ≤ 1,所以函数 y = f ( x ) 的值域为⎡1- 3,1+ 3⎤⎣⎦⎡ ⎤(2)因 y = sin x 在每个闭区间 ⎢⎣2k - 2 , 2k + 2 ⎥⎦ (k ∈ Z ) 上为增函数,故 f ( x ) = 3 sin 2x +1 (> 0) 在每个闭区间⎡ k - 4 , k + ⎤(k ∈ Z ) 上 4为增函数.⎡ 3 ⎤⎡ kk ⎤⎣⎦依题意知⎢- , ⎥ ⊆ ⎢ -, + ⎥ 对某个 k ∈ Z 成立,此时必有 k = 0 ,于是 ⎣ 2 2 ⎦ ⎣ 4 4⎦⎧- 3≥ -⎪ 2 41 1⎨⎪ ≤⎩ 2 4,解得≤ ,故的最大值为 . 6 6 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得: f (x ) = 6 cos2x+ 23 cos x - 3(> 0)=3cosωx+ 3 sin x = 2 3 s in(x + )3又由于正三角形 ABC 的高为 2 ,则 BC=42 所以,函数 f (x )的周期T = 4 ⨯ 2 = 8,即= 8,得= 4所以,函数 f (x )的值域为[-2 3,2 3] .......................... 6 分 (Ⅱ)因为 f (x 0 ) =853,由(Ⅰ)有1 - ( 4)2 57 6 53 1 c os 2A5 561f (x ) = x 08 3x 0 42 3sin( 4 + ) =3 , 即sin( 54 + ) = 35 由 x 0∈(- 10 2x 0 + ∈ (-,),得( ) , )3 34 3 2 2所以,即 x 0 3 cos( 4 + ) = =3 5 故 f (x + 1) = x 0= x 0 + + 02 3sin( = 4 x 0 + + ) 2 4 33sin[( ) ] 4 3 4x 0 2 3[sin( 4 + ) cos 3 4 + cos( 4 + ) s in3 4 = 2 3( 4⨯ 2 + 3 ⨯ 2 )5 2 5 2=12 分9..解:(1)由正弦定理得:a cos C + 3a sin C -b -c = 0 ⇔ sin A c os C - 3 sin A sin C = sin B + sin C⇔ sin A cos C + 3 sin A sin C = sin(a + C ) + sin C⇔ 3 sin A - cos A = 1 ⇔ sin( A - 30︒ ) = 12⇔ A - 30︒ = 30︒ ⇔ A = 60︒(2) S = bc sin A = ⇔ bc = 4 , 2a 2 =b 2 +c 2 - 2bc cos A ⇔ b + c = 410. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A 2 0,∴sin A = ,= >33又2 sin C .35 cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5 cos C +3整理得:tan C = 5 .(Ⅱ) 由图辅助三角形知: sin C =. 又由正弦定理知:a sin A c ,sin C故c 3 . (1)b 2c 2 a 2 2对角 A 运用余弦定理:cos A =2bc . (2) 3 解(1) (2)得: b 3 or b = 3 (舍去). ∴∆ ABC 的面积为:S = 5. 3 2。
2020版高考数学(理)新增分大一轮人教通用版讲义:第四章 三角函数、解三角形 4.6 含解析

§4.6 正弦定理和余弦定理最新考纲考情考向分析掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容(1)a sin A =b sin B =c sin C=2R(2)a2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(3)a =2R sin A ,b =2R sin B ,c =2R sin C ; (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(5)a ∶b ∶c =sin A ∶sin B ∶sin C ;(6)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A(7)cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.在△ABC 中,已知a ,b 和A 时,解的情况A 为锐角 A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解3.三角形常用面积公式(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).概念方法微思考1.在△ABC 中,∠A >∠B 是否可推出sin A >sin B ? 提示 在△ABC 中,由∠A >∠B 可推出sin A >sin B .2.如图,在△ABC 中,有如下结论:b cos C +c cos B =a .试类比写出另外两个式子. 提示 a cos B +b cos A =c ; a cos C +c cos A =b .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × ) (3)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( √ )(4)在三角形中,已知两边和一角就能求三角形的面积.( √ ) 题组二 教材改编2.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为 . 答案 等腰三角形或直角三角形解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形.3.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为 . 答案 2 3解析 ∵23sin 60°=4sin B ,∴sin B =1,∴B =90°,∴AB =2,∴S △ABC =12×2×23=2 3.题组三 易错自纠4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c <b cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形答案 A解析 由已知及正弦定理得sin C <sin B cos A , ∴sin(A +B )<sin B cos A ,∴sin A cos B +cos A sin B <sin B cos A , 又sin A >0,∴cos B <0,∴B 为钝角, 故△ABC 为钝角三角形.5.(2018·大连质检)在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理得b sin B =c sin C ,∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.6.(2018·包头模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则C = . 答案2π3解析 由3sin A =5sin B 及正弦定理,得3a =5b .又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c22ab=⎝⎛⎭⎫53b 2+b 2-⎝⎛⎭⎫73b 22×53b ×b =-12.因为C ∈(0,π),所以C =2π3.题型一 利用正弦、余弦定理解三角形例1 (2018·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解 (1)在△ABC 中,由正弦定理a sin A =b sin B,可得 b sin A =a sin B .又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6, 即sin B =cos ⎝⎛⎭⎫B -π6,所以tan B = 3. 又因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =217. 因为a <c ,所以cos A =277.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.思维升华 (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素;(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.跟踪训练1 (1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( ) A.3π4 B.π3 C.π4 D.π6 答案 C解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , ∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.(2)如图所示,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为 .答案66解析 设AB =a ,∵AB =AD ,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC 中,BD sin C =BCsin ∠BDC ,∴sin C =BD ·sin ∠BDC BC =66.题型二 和三角形面积有关的问题例2 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.跟踪训练2 (1)(2018·沈阳质检)若AB =2,AC =2BC ,则S △ABC 的最大值为( ) A .2 2 B.32 C.23D .3 2 答案 A解析 设BC =x ,则AC =2x .根据三角形的面积公式, 得S △ABC =12·AB ·BC sin B =x 1-cos 2B .①根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x .②将②代入①,得 S △ABC =x1-⎝⎛⎭⎫4-x 24x 2=128-(x 2-12)216.由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 . 答案332解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的应用命题点1 判断三角形的形状例3 (1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰三角形或直角三角形答案 C解析 方法一 由余弦定理可得a =2b ·a 2+b 2-c 22ab ,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c ,从而△ABC 为等腰三角形.方法二 由正弦定理可得sin A =2sin B cos C , 因此sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C , 于是sin(B -C )=0,因此B -C =0,即B =C , 故△ABC 为等腰三角形.(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.引申探究1.本例(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 解 ∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos A sin B , ∴sin(A -B )=0.又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.本例(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状. 解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形. 命题点2 求解几何计算问题例4 如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.解 (1)因为AD ∶AB =2∶3,所以可设AD =2k , AB =3k .又BD =7,∠DAB =π3,所以由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,所以AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)因为AB ⊥BC ,所以cos ∠DBC =sin ∠ABD =217, 所以sin ∠DBC =277,所以BD sin ∠BCD =CDsin ∠DBC,所以CD =7×27732=433.思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.跟踪训练3 (1)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形答案 B解析 ∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a ,∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2, ∴△ABC 为直角三角形.(2)(2018·铁岭统考)在△ABC 中,B =30°,AC =25,D 是AB 边上的一点,CD =2,若∠ACD 为锐角,△ACD 的面积为4,则BC = . 答案 4解析 依题意得S △ACD =12CD ·AC ·sin ∠ACD =25·sin ∠ACD =4,sin ∠ACD =25.又∠ACD 是锐角,因此cos ∠ACD =1-sin 2 ∠ACD =15.在△ACD 中,AD =CD 2+AC 2-2CD ·AC ·cos ∠ACD =4,AD sin ∠ACD =CDsin A ,sin A =CD ·sin ∠ACD AD =15 .在△ABC 中,AC sin B =BC sin A ,BC =AC ·sin Asin B=4.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( ) A .1 B .2 C .4 D .6 答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°, 即c 2-3c -4=0,解得c =4或c =-1(舍去).2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =23,C =30°,则B 等于( ) A .30° B .60° C .30°或60° D .60°或120°答案 D解析 ∵c =2,b =23,C =30°,∴由正弦定理可得 sin B =b sin C c =23×122=32,由b >c ,可得30°<B <180°,∴B =60°或B =120°.3.(2018·丹东模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( ) A.12 B.14 C .1 D .2 答案 A解析 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B 2,p =⎝⎛⎭⎫c ,cos C2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 A解析 ∵向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B2共线, ∴a cos B 2=b cos A2.由正弦定理得sin A cos B 2=sin B cos A2.∴2sin A 2cos A 2 cos B 2=2sin B 2cos B 2cos A2.则sin A 2=sin B 2.∵0<A 2<π2,0<B 2<π2,∴A 2=B2,即A =B .同理可得B =C .∴△ABC 的形状为等边三角形.故选A.5.(2018·本溪质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( ) A .4π B .8π C .9π D .36π 答案 C解析 c =b cos A +a cos B =2,由cos C =223,得sin C =13,再由正弦定理可得2R =csin C =6,R =3,所以△ABC 的外接圆面积为πR 2=9π,故选C.6.(2018·乌海模拟)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于( )A .27B .4C .2 3D .3 3 答案 C解析 ∵a cos B +b cos Ac =2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C , ∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,解得⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12, ∴c =23,故选C.7.(2018·通辽模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,又0<B <π,∴B =π3或2π3. 8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b = .答案 1解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即332=b 12, 解得b =1.9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为 .答案3+1解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-⎝⎛⎭⎫π6+π4=7π12, ∴sin A =sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3 =6+24. 则S △ABC =12bc sin A =12×2×22×6+24=3+1.10.(2018·锦州质检)若E ,F 是等腰直角三角形ABC 斜边AB 上的三等分点,则tan ∠ECF = . 答案 34解析 如图,设AB =6,则AE =EF =FB =2.因为△ABC 为等腰直角三角形, 所以AC =BC =3 2.在△ACE 中,A =π4,AE =2,AC =32,由余弦定理可得CE =10. 同理,在△BCF 中可得CF =10. 在△CEF 中,由余弦定理得 cos ∠ECF =10+10-42×10×10=45,sin ∠ECF =1-cos 2∠ECF =35,所以tan ∠ECF =34.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎫2A -π6的值. 解 (1)在△ABC 中,由b sin B =csin C 及sin B =6sin C ,可得b =6c , 又由a -c =66b ,得a =2c ,所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64, 可得sin A =104. 于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6 =cos 2A cos π6+sin 2A sin π6=⎝⎛⎭⎫-14×32+154×12 =15-38. 12.(2018·北京)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2,所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.13.在△ABC 中,a 2+b 2+c 2=23ab sin C ,则△ABC 的形状是( ) A .不等腰的直角三角形 B .等腰直角三角形C .钝角三角形D .正三角形 答案 D解析 易知a 2+b 2+c 2=a 2+b 2+a 2+b 2-2ab cos C =23ab sin C ,即a 2+b 2=2ab sin ⎝⎛⎭⎫C +π6,由于a 2+b 2≥2ab ,当且仅当a =b 时取等号,所以2ab sin ⎝⎛⎭⎫C +π6≥2ab ,sin ⎝⎛⎭⎫C +π6≥1,故只能a =b 且C +π6=π2,所以△ABC 为正三角形.14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,a =3,则△ABC 的周长的最大值为( ) A .2 3 B .6 C. 3 D .9 答案 D解析 ∵a 2=b 2+c 2-bc ,∴bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵A ∈(0,π),∴A =π3.∵a=3,∴由正弦定理得a sin A =b sin B =c sin C =332=23,∴b =2 3 sin B ,c =2 3 sin C ,则a +b +c=3+23sin B +2 3 sin C =3+23sin B +23sin ⎝⎛⎭⎫2π3-B =3+33sin B +3cos B =3+6sin ⎝⎛⎭⎫B +π6,∵B ∈⎝⎛⎭⎫0,2π3,∴当B =π3时周长取得最大值9.15.在△ABC 中,C =60°,且a sin A =2,则△ABC 面积S 的最大值为 .答案334解析 由C =60°及c sin C =a sin A=2,可得c = 3. 由余弦定理得3=b 2+a 2-ab ≥ab (当且仅当a =b 时取等号), ∴S =12ab sin C ≤12×3×32=334,∴△ABC 的面积S 的最大值为334.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a 2-(b -c )2=(2-3)bc ,且sin B =1+cos C ,BC 边上的中线AM 的长为7. (1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc ,得a 2-b 2-c 2=-3bc ,即b 2+c 2-a 2=3bc , ∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.又sin B =1+cos C,0<sin B <1, ∴cos C <0,即C 为钝角, ∴B 为锐角,且B +C =5π6,则sin ⎝⎛⎭⎫5π6-C =1+cos C ,化简得cos ⎝⎛⎭⎫C +π3=-1, 解得C =2π3,∴B =π6.(2)由(1)知,a =b ,sin C =32,cos C =-12, 在△ACM 中,由余弦定理得 AM 2=b 2+⎝⎛⎭⎫a 22-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。
专题13 结构不良题(三角函数与解三角形)-高考数学微专题复习(新高考地区专用)

专题13 结构不良题(三角函数与解三角形)结构不良题型是新课改地区新增加的题型,所谓结构不良题型就是给出一些条件,另外的条件题目中给出三个,学生可以从中选择1个或者2个作为条件,进行解题。
一、题型选讲题型一 、研究三角形是否存在的问题例1、【2020年新高考全国Ⅰ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c = 方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.例2、(2021年徐州联考)在①cos cos 2c B b C +=,②πcos()cos 2b Cc B -=,③sin cos B B +条件中任选一个,补充在下面问题中,若问题中的三角形存在,求ABC △的面积;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为a ,b ,c ,且π6A =,______________,4b =?注:如果选择多个条件分别解答,按第一个解答计分. 【解析】选择①:由余弦定理可知,222222cos cos 222a c b a b c c B b B c b a ac ab+-+-+=⋅+⋅==,……4分由正弦定理得,sin sin 1b A B a ==,又(0,π)B ∈,所以π2B =,…………………6分所以ABC △是直角三角形,则c =ABC △的面积12S ac ==…10分 选择②:由正弦定理得,πsin cos()sin cos 2B C C B -=,即sin sin sin cos B C C B =, 又(0,π)C ∈,所以sin 0C ≠,所以sin cos B B =,即tan 1B =, 又(0,π)B ∈,所以π4B =.……………………………………………………………4分由正弦定理得,sin sin b Aa B==,…………………………………………………6分所以ABC △的面积1ππsin )sin()2246S ab C A B ==+=+=+.…10分 选择③:因为πsin cos )4B B B ++=πsin()14B +=, 又(0,π)B ∈,所以ππ5π(,)444B +∈,所以ππ42B +=,即π4B =.…………………4分由正弦定理得,sin sin b Aa B==,…………………………………………………6分所以ABC △的面积1ππsin )sin()2246S ab C A B ==+=+=+.…10分 题型二、运用正余弦定理研究边、角及面积例3、【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 77A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 7a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin 816A B ∴====由正弦定理得:6sin sin a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+⨯=11sin (116)622S ba C ==-⨯=例4、(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .【解析】 选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC = 由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC ==选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC ABABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC πθ=⎛⎫- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD=∠∠,即4sin sin 6AC πθ=所以2sin AC θ=.所以2sin sin 4πθθ=⎛⎫- ⎪⎝⎭,解得2sin cos θθ=, 又04πθ<<,所以sin 5θ=,所以2sin AC θ==例5、(湖北黄冈高三联考)在①,②,③这三个条件中任选一个,补充在下面的横线上,并加以解答.已知的内角,,所对的边分别是,,,若______.(1)求角;(2)若,求周长的最小值,并求出此时的面积.【解析】(1)选①,由正弦定理得,∵,即,∵,∴,∴,∴. ··········································5分选②,∵,,由正弦定理可得,∵,∴,∵,∴. ·················································5分 选③,∵,由已知结合正弦定理可得, ∴,∴,∵,∴. ·················································5分 (2)∵,即,∴,解得,当且仅当时取等号,b a =2sin tan b A a B =()()sin sin sin ac A c A B b B -++=ABC A B C a b c B 4a c +=ABC ABC sin sin B A =sin 0A ≠cos 1B B -=π1sin 62B ⎛⎫-= ⎪⎝⎭0πB <<ππ5π666B -<-<ππ66B -=π3B =2sin tan b A a B =sin 2sin cos a Bb A B =sin 2sin sin sin cos BB A A B=⋅sin 0A ≠1cos 2B =()0,πB ∈π3B =()()sin sin πsin A BC C +=-=()22a c a cb -+=222a cb ac +-=2221cos 222a cb ac B ac ac +-===()0,πB ∈π3B =()22222cos 3163ba c ac B a c ac ac =+-=+-=-2316acb =-221632a c b +⎛⎫-≤ ⎪⎝⎭2b ≥2a c ==∴,周长的最小值为6,此时的面积. ··········10分 例6、(2021年南京金陵中学联考)现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.【解析】若选择条件①2c -3b =2a cos B .(1)由余弦定理可得2c -3b =2a cos B =2a ·a 2+c 2-b 22ac ,整理得c 2+b 2-a 2=3bc ,………2分可得cos A =b 2+c 2-a 22bc =3bc 2bc =32.…………………………………………………3分 因为A ∈(0,π),所以A =π6. …………………………………………………………5分 (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得(3-1)2=b 2+c 2-2bc ·32,………6分即4-23=b 2+c 2-3bc =(b +c )2-(2+3)bc ,亦即(2+3)bc =(b +c )2-(4-23), 因为bc ≤(b +c )24,当且仅当b =c 时取等号, 所以(b +c )2-(4-23)≤(2+3)×(b +c )24,解得b +c ≤22,…………………………………………………………8分 当且仅当b =c =2时取等号. 所以a +b +c ≤22+3-1,即△ABC周长的最大值为22+3-1.…………………………………………………10分 若选择条件②(2b -3c )cos A =3a cos C . (1)由条件得2b cos A =3a cos C +3c cos A ,由正弦定理得2sin B cos A =3(sin A cos C +sin C cos A )=3sin(A +C )=3sin B .………2分 因为sin B ≠0,所以cos A =32,…………………………………………………3分 因为A ∈(0,π),所以A =π6. (2)同上例7、(2020·全国高三专题练习(文))在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小; (2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC 的面积.min 2b =ABCABC 1sin 2S ac B ==【答案】(1)6A π=;(2)见解析【解析】(1)因为()(sin sin )sin )b a B A c B C -+=-, 又由正弦定理sin sin sin a b cA B C==,得()())b a b a c c -+=-,即222b c a +-=,所以222cos 222b c A bc bc a +===-, 因为0A π<<, 所以6A π=.(2)方案一:选条件①和②.由正弦定理sin sin a b A B=,得sin sin ab B A ==由余弦定理2222cos b a c ac B =+-,得222222cos4c c π=+-⨯,解得c =所以ABC 的面积11sin 2122S ac B ==⨯⨯=. 方案二:选条件①和③.由余弦定理2222cos a b c bc A =+-,得222433b b b =+-,则24b =,所以2b =.所以c =,所以ABC 的面积111sin 2222S bc A ==⨯⨯=题型三、考查三角函数的图像与性质例8、(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间. 【解析】解:方案一:选条件① 由题意可知,22T ππω==,1ω∴= ()()1sin 22f x x ϕ∴=+,()1sin 226g x x πϕ⎛⎫∴=+- ⎪⎝⎭,又函数()g x 图象关于原点对称,,6k k Z πϕπ∴=+∈,2πϕ<,6πϕ∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π=4=; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤,∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.方案二:选条件②()113sin ,cos 2,cos ,24m x x n x ωωω⎛⎫== ⎪⎝⎭,()f x m n ∴=⋅1cos cos 24x x x ωωω=+112cos 222x x ωω⎫=+⎪⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π=4=; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤,∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.方案三:选条件③()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭1cos sin cos cos sin 664x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 24x x x ωω=+-12cos 24x x ωω=+112cos 2222x x ωω⎛⎫=+ ⎪ ⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 22πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤.∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.二、达标训练1、(2021年江苏连云港联考)已知有条件①(2)cos cos b c A a C -=, 条件②45cos 2cos 2=+⎪⎭⎫⎝⎛+A A π;请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的题目.在锐角△ABC 中,内角 A , B , C 所对的边分别为a , b,c , a =7, b +c =5, 且满足.(1) 求角A 的大小; (2) 求△ABC 的面积.(注:如果选择多个条件分别解答,按第一个解答计分.)【解析】(1)选择条件①()2cos cos b c A a C -=,…………………………………1分 法1:由正弦定理得()2sin sin cos sin cos B C A A C -=, ………2分所以()2sin cos sin sin B A A C B =+=,………………………3分 因为sin 0B ≠, 所以1cos 2A =………………………………4分 又π0,2A ⎛⎫∈ ⎪⎝⎭,…………………5分 所以3A π=. ………………………………………………………6分法2:由余弦定理得()222222222b c a a b c b c abc ab+-+--=,……2分 化简得222b c a bc +-=………………………………………3分则2221cos 22b c a A bc +-==, ………………………………4分又π0,2A ⎛⎫∈ ⎪⎝⎭,……………………5分 所以3A π=. ………………………………………………6分(1)选择条件②25cos cos 24A A π⎛⎫++= ⎪⎝⎭………………………………………1分 法3:因为cos sin 2A A π⎛⎫+=-⎪⎝⎭,所以25sin cos 4A A += ……………2分因为22sin cos 1A A +=,所以251cos cos 4A A -+=…………3分化简得21cos 02A ⎛⎫-= ⎪⎝⎭,解得1cos 2A =, ………………………4分 又()0,A π∈,………………………5分 所以3A π=. ……………………………………………………6分 (2)由余弦定理2222cos3a b c bc π=+-, ……………………………7分 得()273b c bc =+-,…………………………………………………8分所以()2763b c bc bc +-=⇒=, ……………………………10分于是ABC ∆的面积11sin 62222S bc A ==⨯⨯=.………12分 2、(2021年泰州高三期中)在①a=√2,②S=C 2 cosB , ③C=π3这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在∆A BC 中,内角A, B,C 的对边分别为a,b,c,面积为S ,√3bcosA=acosC+ccosA ,b=1,____________,求 c 的值.注:如果选择多个条件分别解答,按第一个解答计分。
2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)

专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。
2024年高考数学一轮复习课件(新高考版) 第4章 必刷大题9 解三角形

(2)若c=6,△ABC的面积S=6bsin B,求S.
123456
由 S=6bsin B,根据面积公式得 6bsin B=12acsin B=3asin B, 所以a=2b. 由余弦定理得 cos C=a2+2ba2b-c2=12, 整理得a2+b2-ab=36,即3b2=36, 所以 b=2 3,a=4 3. 所以△ABC 的面积 S=12absin C=12×4 3×2 3sin π3=6 3.
123456
(2)若△ABC是锐角三角形,且AB=4 km,求养殖区△ABC面积(单位: km2)的取值范围.
123456
因为AB=4,∠BAC=60°, 所以△ABC 的面积 S=12AB·ACsin∠BAC= 3AC. 在△ABC 中,由正弦定理可得sin∠ABACB=sin∠ACABC, 则 AC=ABsisni∠n∠ACABBC=4sin1si2n0∠°-AC∠BACB=tan∠ 2 A3CB+2. 因为△ABC 是锐角三角形,所以00°°<<∠ 12A0°C-B<∠9A0°C,B<90°,
1-2
5
52=
55,
sin∠ADC=sin∠ACB-4π
= 22(sin∠ACB-cos∠ACB)= 22×255- 55= 1100,
在△ACD 中,由正弦定理得sin∠CDDAC=sinπ-A∠D ACB=sin∠ACADC,
123456
即CD2 = A1C0=2105=5 5,解得 CD=5 210,AC=522, 2 10 5
123456
2.(2023·唐山模拟)如图,在锐角△ABC中,内角A,B,C所对的边分别为 a,b,c,4 5 a=bsin 2C+2c(sin A-sin Bcos C).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学三角函数与解三角形大题精做例题一:在△
ABC中,内角A , B , C所对的边分别为a , b , c,已知m n cosC,cos A,且m n .
(1)求角A的大小;
(2 )若b c 5 , △ ABC的面积为3,求a .
n,AB 4 , BC .17,点D 在AC 边上,且cos
(1 )求BD的长;
(2)求△ BCD的面积.
例题三:△ ABC的内角A , B , C的对边分别为a , b , c,已知a 2c cosB bcosA 0 .a,c 2b ,
例题二:如图,在厶ABC中,
(1 )求B ;
(2)若b 3 , △ ABC的周长为3 2 3,求△ ABC的面积.
例题四:已知函数f x cos2 x 2 3 sin xcosx sin2 x .
(1)求函数y f x的最小正周期以及单调递增区间;
(2)已知△ ABC的内角A、B、C所对的边分别为a、b、c,若fC 1,c 2,sinC sin B A 2sin 2A,求△ ABC 的面积.
例题一:【答案】(1) A -; (2) a .13 .
3
【解析】(1)由m n ,可得 m n 0 ,艮卩2b cos A acosC ccosA , 即 2sin B cos A sin AcosC sin C
cosA ,即 2sin BcosA sin A C ,
•/
sin
A C
sin n B
sin B , / • 2sin B cosA sin B ,即 sin B
2cos A 1
0 ,
•/ 0 B n,
• sin B 0 , • cosA
1 2
•/ 0 A n,
• A n .
3
(2) 由S A ABC J
/3,可得 S A ABC
1 -
bcsin A
3 , • bc
4 ,
2
又b c 5 , 由余弦定理得 2 .2
a b
2 2
c 2bccosA b c 3bc
13
• a 13 .
例题二:【答案】(1) 3; ( 2) 4 2 . 【解析】(1)在△ ABD 中,
■/ cos ADB
1 ,• sin ADB
3
22
3 , BD
AB
ABsi n BAD 4 2 -Z 3 由正弦疋理一
,• BD
sin BAD sin ADB '
sin ADB 2 2
3
(2) •/ ADB CDB n,
1
cos ADB -. 3
2 1
得 17 9 CD 2
2 3CD -,解得 CD 4或 CD 2 (舍).
3
2
例题三:【答案】(1) B 2 n; (2) S\ABC
••• △ BCD 的面积S -BD CD sin CDB 2
22 3
3.3 4
二 cos CDB cos n ADB
二 sin CDB sin n
ADB
sin ADB
CDB
在厶BCD 中,由余弦定理 BC 2 3
2
BD 2
2
CD 2
2BD CD cos CDB ,
2
3 .
3
sin A B 2cosBsinC 0 ,
••• 0
由 2k n n
2x 丄2k n 丄得
k n n
i x k n
n
2
6 2
3
6
故所求单调递增区间为
kn -
,k n n k Z
3 6
(2 )由 f C 1,得 2sin 2C
n
6
1 ,
二 2C -
n
n 2k n 或 2C —
5 n
2k n, • C k n 或 C -
6 6
6
6
3
•/ C 0, n
,• •C 二
3
又T sinC
sin B A
sin B
A sin
B A 2sin B cosA
k n,
/• 2sin B cos A 2sin2 A ,即 sinBcosA 2sin AcosA ,
n,即函数最小正周期为 n ,
T 行
■/ sin A
B sin
C .
二 cos B
(2) 由余弦定理得9
2ac 2 2
a c ac 9 ,
ac 9 ,
c 3 2.3, 3,二 a c
…S A ABC 1 acsin B 2
例题四:
(1) 函数最小正周期为
单调递增区间为
-,k n 3
S ^ ABC
2、3 3
【解析】 (1) f
2.3sin x cosx cos
sin 2
x . 3sin 2x
cos2x 2sin 2x
2
3 .
3
3
【解析】(1) ■/ a 2c cosB bcosA 0,
sin A 2sinC cosB sin BcosA 0 , sin AcosB sin BcosA 2sinCcosB 0 ,
①当 cos A 0时,即A n
,则由C n
, c 2 3
2,可得 S^ ABC
2、3 3
②当 cos A 0 时,贝U sinB 2sin A ,即 b 2a 则由 cosC a 2 b 2 c 2 2ab -absin C
2
综上:S A ABC ^-3
…S A ABC
1 2.3 ,解得a
2 3
2 3。