3.1 材料结构表征 XRD
XRD技术介绍

短波限
• 连续X射线谱在短波方向有一个波长极限,称为短 波限λ0,它是由光子一次碰撞就耗尽能量所产生的 X射线。它只与管电压有关,不受其它因素的影响。
• 相互关系为:
• 式中:ee为V 电 子h电ma荷x ,he=c0 1.662 18920×110V.-2149C;(nm)
•
V为电子通过两极时的电压降V。
1954 化学
鲍林Linus Carl Panling
1962 化学
肯德鲁John Charles Kendrew 帕鲁兹Max Ferdinand Perutz
1962 生理医学 Francis H.C.Crick、JAMES d.Watson、 Maurice h.f.Wilkins
1964 化学
• 产生K系激发要阴极电子的能量eVK至少 等于击出一个K层电子所作的功WK。VK 就是激发电压。
莫塞莱定律
• 标识X射线谱的频率和波长只取决于阳极靶 物质的原子能级结构,是物质的固有特性。 且存在如下关系:
• 莫塞莱定律:标识X射线谱的波长λ与原子 序数Z关系为:
1 CZ
• 特征X射线波长与靶材料原子序数关系
K系射线中,Kα射线相当于电子由L层跃迁到K层产生的射线,在特征X射线 中K系射线强度远远高于L、M等线系,而K系中Kα1、Kα2、Kβ1的强度比一 般为100:50:22。Kα1与Kα2非常接近,二者很难分离,所谓的Kα实际是二者 的统称,而Kβ1则通常称为Kβ。 Cu的特征谱线波长为:Kα1 =1.54056Å,Kα2 =1.54439Å,Kβ1 =1.39222Å 对于Cu靶,Kα波长取Kα1与Kα2的加权平均值为1.54184Å。
1915 物理
亨利.布拉格Henry Bragg 劳伦斯.布拉格Lawrence Bragg.
材料表征-XRD分析实验

材料表征-XRD分析实验目的1、了解X衍射的基本原理以及粉末X衍射测试的基本目的;2、掌握晶体和非晶体、单晶和多晶的区别;3、了解使用相关软件处理XRD测试结果的基本方法。
实验原理1、晶体化学基本概念晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。
②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。
③晶体结构=空间点阵+结构单元。
非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。
对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。
分子链段的排列与缠绕受结晶条件的影响易发生改变。
晶体的形成过程可分为以下几步:初级成核、分子链段的表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体生长完善。
Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。
晶体内分子的排列方式使晶体具有不同的晶型。
通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。
反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。
2、X衍射的测试基本目的与原理X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。
散射波周相一致相互加强的方向称衍射方向。
衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。
由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald球上是产生衍射必要条件。
1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。
XRD在材料分析中的应用

X射线衍射法研究聚丙烯腈原丝的晶态结构摘要用X 射线衍射法研究了成纤过程中聚丙烯腈原丝晶态结构的演变规律, 给出了各阶段聚丙烯腈的晶态结构模型。
关键词:聚丙烯腈原丝,晶态结构,X 射线衍射X-RAY DIFFRACTION STUDIES ON CRYSTALLINESTRCTURE OF PAN PRECUTSORSABSTRACTThe transformation law of crystalline structure of polyacrylonitrile precursors in the process of fiber formation was studied by means of X-ray dif fraction ( XRD) , and a new model for polyacrylonitrile precursor was presented.KEY WORDS :polyacrylonitrile precursors, crystalline structure,X-ray diffraction引言聚丙烯腈( polyacrylonitrile, PAN) 原丝在碳纤维的制备中扮演着极其重要的角色。
但对于PAN 的晶态结构却一直存在争论, 部分学者基于其具有玻璃化转变等现象提出两相准晶结构( two-phase sem-i crystalline structure) , 在这种两相模型中包含了“准晶区”(有序区) 以及非晶区(无序区)。
而另外的观点[1]则是单相仲晶结构。
Hitoshi Yamazaki等报道了一种由X-ray 辐射引发聚合得到的PAN通过稀溶液培养可以得到类单晶PAN。
X 射线衍射在PAN 晶态结构的研究上有着重要应用, PAN典型的X 射线衍射图显示有两条强烈的赤道衍射弧( 点阵面间距约0.52nm 和0.30nm) , 子午线方向则出现一个大的漫反射弧。
材料现代测试方法-XRD

布拉格定律
hkl
h1 k1 l1
h2 k2 l2
h3 k3 l3
h4 k4 l4
h5 k5 l5
.
.
.
dhkl dh1k1l1 dh2k2l2 dh3k3l3 dh4k4l4 dh5k5l5 .
X射线的产生
• 封闭式X射线管
X射线的产生
• 旋转阳极靶X射线管
其他X射线源
• 放射源 • 同步辐射
X射线与物质的相互作用
• X射线与物质相互作用时,就其能量转换而 言,可分为三部分:1)一部分被散射;2) 一部分被吸收;3)一部分透过物质继续沿 原来的方向传播。
散射
相干散射(瑞利散射) 非相干散射 (康普顿散射)
1913年,英国Bragg(布喇格父子)导出X射线 晶体结构分析的基本公式,即著名的布拉格公式。 并测定了NaCl的晶体结构。(1915年获得诺贝尔 奖)
1
X射线的本质
X射线和可见光 一样属于电磁 辐射,但其波 长比可见光短 得多,介于紫 外线与γ射线之 间,约为10-2 到102埃的范围。 与晶体中的键 长相当。
c
d 21 3
b
o
a
晶面(213)及d213
c
d300
b
o
a
晶面(300)及d300
晶面指标hkl及晶面间距dhkl
思考1:对于给定的晶胞,对于任意三个整数hkl(000除外), 我们可以画出这个(hkl)晶面吗?相邻晶面的距离可知吗?
3.1 材料结构表征 XRD

Structural analysis for materials research and crystallography
X-ray powder diffractometry (XRPD) is a valuable tool for the research and development of advanced materials. It can be used for investigation of the following properties: • Identification of the phase(s) present: is it a pure phase or does the material contain impurities as a result of the production process? • Quantification of mixtures of phases • Degree of crystallinity of the phase(s) • Crystallographic structure of the material: space group determination and indexing, structure refinement and ultimately structure solving • Degree of orientation of the crystallites: texture analysis. • Deformation of the crystallites as a result of the production process: residual stress analysis • Influence of non-ambient conditions on these properties All these investigations can be carried out on samples of varying dimensions: Powders, from bulk samples to very small amounts Solid materials of varying shapes and size, such as machined metallic or ceramic components or pills Well plates for combinatorial analysis
XRD表征原理及应用简述

(3)新材料开发需要充分了解 材料的晶格参数,使用XRD可 快捷测试出点阵参数,为新材 料开发应用提供性能验证指标。
(4)产品在使用过程中出现断裂、变 形等失效现象,可能涉及微观应力方面 影响,使用XRD可以快捷测定微观应 力。
研究背景及意义
优
1、用于检测未知物的强大而快速(<20分钟)的技术;2、提供明
03.XRD的实施方法
样品的制备 准备衍射仪用的样品试片一般包括两个步骤; 1. 需把样品研磨成适合衍射实验用的粉末; 2. 把样品粉末制成有一个十分平整平面的试片。 数据处理: 1、数据平滑:排除各种随机波动和信号干扰; 2、背底的测量与扣除;有多种原因可形成背底:如狭 缝、样品及空气的散射等;样品中所含非晶态成分会形 成大角度范围内的鼓包,也属背底,需要去除; 3、寻峰; 4、峰位及峰形参数的测定。
XRD的应用
1)当材料由多种结晶成分组成,需区分 各成分所占比例,可使用XRD物相鉴定
功能,分析各结晶相的比例。
XRD的应用
(5)纳米材料由于颗粒细小,极易形成 团粒,采用通常的粒度分析仪往往会给 出错误的数据。采用X射线衍射线线宽 法(谢乐法)可以测定纳米粒子的平均粒 径。
(2)很多材料的性能由结晶程度 决定,可使用XRD结晶度分析,确
1912年至1913年,年轻的布拉格发展了布拉格 定律,将观察到的散射与晶体内均匀间隔平面的 反射联系起来。布拉格,父亲和儿子,因其在晶 体学方面的工作而分享了1915年的诺贝尔物理学 奖。
01.XRD的基本原理
晶体是规则的原子阵列,X射线可以被认为是电磁波。 原子主要通过其电子来散射X射线。撞击电子的X射线产 生从电子激发出的次级球面波,发生弹性散射。规则的散 射体阵列产生规则的球面波阵列。虽然这些波通过破坏性 干扰在大多数方向上相互抵消,但它们在布拉格定律确定 的几个特定方向上增加,这些特定方向表现为衍射图案上 的斑点,称为反射。因此,X射线衍射由照射在规则阵列 的散射体上的电磁波产生。
SEM和XRD在粉末冶金中的应用

SEM和XRD在粉末冶金中的应用1 粉末冶金1.1 粉末冶金的概念粉末冶金(也称金属陶瓷法):制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。
1.2 粉末冶金的工艺粉末冶金工艺:(1)制取金属、合金、金属化合物粉末以及包覆粉末;(2)将原料粉末通过成形、烧结以及烧结后的处理制得成品。
1.3 粉末性能粉末性能分类:(1)单颗粒性能(质)由材质决定:点阵类型、理论密度、熔点、电磁性能等,由制粉方法决定:粒度、形状、有效密度等;(2)粉末体性能(质):单颗粒性能+粒度组成、平均粒度、比表面、振实密度、松装密度、流动性、压制性能;(3)粉末孔隙特性:总孔隙、颗粒间孔隙、颗粒内孔隙、孔隙的开闭性、孔隙大小、形状等。
最常见的性能分类体系:化学性能(成分)、物理性能、工艺性能。
1.化学成分:化学性质主要指粉末的化学组成包括主要金属的含量和杂质的含量。
主要成分(如铁粉中的Fe)含量—对粉末性能有决定影响;化学组成还包括杂质的种类和含量—对粉末性能也有重要影响。
2.物理性能:颗粒形状及结构、颗粒大小及粒度组成、比表面积、颗粒密度、颗粒硬度、熔点、热学、电学、磁学、光学性质等。
(1)颗粒形状:主要由制粉方法和制粉决定,同时也与物质的分子或原子排列的结晶几何学因素有关。
某些特定形状的粉末只能通过特定的方法生产:球形粉末-雾化法、多孔粉末-还原法、树枝状粉末-电解法、片状粉末-研磨法颗粒形状对粉末的工艺性能以及压坯和烧结体强度有显著影响。
(2)颗粒密度(3)显微硬度2 扫描电子显微镜扫描电子显微镜(简称扫描电镜,英文缩写为SEM)是一种大型的分析仪器,广泛应用在材料科学、生命科学、物理学、化学等学科领域。
近年来在扫描电镜上相继安装了许多专用附件,如:能谱仪(EDX)、波谱仪(WDX)、电子衍射仪(ED)等,使扫描电镜成为一种多功能的、快速、直观、综合的表面分析仪器。
X射线衍射(XRD)法测定Ni电极材料结构、半高宽、峰高比及其测定方法的研究

X射线衍射(XRD)法测定Ni电极材料结构、半高宽、峰高比及其测定方法的研究程群1北京普析通用仪器有限责任公司北京 100081摘要:通过衍射峰的半高宽和峰高比可以研究Ni电极材料粉末颗粒的微结构特征,本文描述了应用X射线衍射法测定Ni阳电极材料结构、计算其衍射峰的半高宽和峰高比。
求解峰高比时改进测定方法,采用定点测量的方法,减小了在密封式管条件下由于计数小而产生很大的计数统计误差1/N,使定量更准确。
从而可以更好地了解Ni电极材料的电极性能,便于建立工艺条件。
关键词:X射线衍射;Ni阳电极材料;半高宽;峰高比Study on Determining Nickel Electrode Material Structure, Half-width and the Ratio of Peak Height Including the Optimized Measurement Method byX-ray DiffractometerAbstract: The microstructure characteristic of nickel electrode materials was studied by the half-width and the ratio of peak height. In this paper, the nickel electrode material was determined by X-ray diffractometer. The half-width and the ratio of peak height were obtained. The fixed-point measurement method was studied to obtain the ratio of peak height. The optimized measurement method which reduced the statistic error for the small counts in the condition of sealed tube was studied to obtain the ratio of peak height. Then the quantity was more accurate. The electrode performance could be analyzed. The technology could be optimized.Keywords: X-ray diffractometer;Nickel electrode materials;Half-width;Ratio of peak height.1引言镍氢电池具有操作温度范围宽、对环境污染小、良好的快充性能、循环寿命长和成本低(单位容量价格与镍镉电池相近)等优点,目前已取代镍镉电池,广泛应用于笔记本电脑、摄像机、特别是汽车和航空等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
入射线 X射线 试样(晶体) 衍射线 XRD谱 I:强度
分析(结构) X射线 晶体结构 衍射规律 XRD分析
d(2):位置
1.2 X射线的本质
T1-1电磁波谱
X射线作为一种电磁波,在其传播的过程中是携带 一定的能量的,即表示其强弱的程度。通常以单位 时间内,通过垂直于X射线传播方向的单位面积上 的能量来表示。
32
0.89 D hkl Nd hkl hkl cos
• 是入射X射线的波长
• 是衍射hkl的布拉格角
• hkl是衍射hkl的半峰宽,单位为弧度。
• 使用Scherror公式测定晶粒度大小的适用范 围是5 nm 300 nm。
33
小角X射线衍射测定介孔结构
• 小角度的X射线衍射峰可以用来研究纳米介孔材 料的介孔结构。这是目前测定纳米介孔材料结构 最有效的方法之一。 • 由于介孔材料可以形成很规整的孔,所以可以把 它看做周期性结构,样品在小角区的衍射峰反映 了孔洞周期的大小。 • 对于孔排列不规整的介孔材料,此方法不能获得 其孔经周期的信息。
4. 分子结构分析 利用电磁波与分子键和原子核的作用,获得分 子结构信息。 如: 红外 (IR),拉曼 (Raman) ,荧光光谱 (PL)利用电磁 波与分子键作用时的发射效应;
核磁共振 (NMR)是利用原子核与电磁波的作用获得 分子结构信息。
1. X射线荧光分析 主 要 的 材 料 分 析 技 术
2
2
4
特征X射线产生
原子能级结构
1.5 X射线与固体物质相互作用
内层电子
外层电子、 价电子、 自由电子
真吸收
X射线衍射结构分析
• XRD 物相分析是基于多晶样品对X射线的衍射 效应,对样品中各组分的存在形态进行分析。 测定结晶情况,晶相,晶体结构及成键状态等 等。 可以确定各种晶态组分的结构和含量。 • 灵敏度较低,一般只能测定样品中含量在1%以 上的物相,同时,定量测定的准确度也不高, 一般在1%的数量级。
当X射线当作波时,根据经典物理学,其强度I与电 场强度向量的振幅E0的平方成正比。
I
c 8
E0
2
当将X射线看作光子流时,则其强度为光子密度 和每个光子的能量的乘积。
在X射线谱中某个波长处出现强度峰,峰窄而尖锐; 此波长放映了物质的原子序数特征-----特征X射线
T2-15 特征X射线谱及 管电压对特征谱的影 响
2. 电子显微分析
3. 红外光谱分析紫外
4. 紫外-可见吸收光谱分析
5. 激光拉曼光谱 6. 阴极发光仪 7. X射线衍射分析 8. 其它一些分析方法
X射线衍射分析法
• 以X射线衍射现象为基础的分析方法,称为X射线分析方法 ,它是测定晶体结构的重要手段,应用极为广泛。 • 基本原理 • 当X射线作用于晶体时,与晶体中的电子发生作用后,再向 各个方向发射X射线的现象,称为散射。由于晶体中大量原 子散射的电磁波互相干涉和互相叠加而在某一方向得到加 强或抵消的现象,称为X射线衍射。其相应的方向,称为衍 射方向。晶体衍射的方向与构成晶体的晶胞的大小、形状 及入射X射线的波长有关,衍射光的强度则与晶体内原子的 类型及晶胞内原子的位置有关,因此从衍射光束的方向和 强度来看,每种类型的晶体都有自己的衍射图,可作为晶 体定性分析和结构分析的依据。
特征X射线产生:能量阈值
En Rhc 2 ( Z ) n2 h n2 n1 En2 En1
激发--跃迁---能量降低
KL L K
辐射出来的光子能量
KL h hc /
激发所需能量--与原子核的结合能Ek
eVk =-Ek=Wk
特征X射线产生
六方孔形MCM-41 密堆积排列示意图
合成产物的XRD图谱
39
单层分散研究
图21在TiO2载体表面负载不同含量 CuO的纳米催化剂的XRD谱
图22 XRD测定CuO在TiO2载体表面的 单层分散阈值
40
一、 X射线衍射分析
X射线的本质:波长极短的电磁波,λ=0.1nm左右。
X射线的波动性:以一定的波长和频率在空间传播。 X射线的粒子性:X是由大量不连续的粒子流构成, 即光子,以光子形式辐射时具有质量、能量和动量 X射线的强度I,单位为:J/m2.s
间 隙 固 溶 体 无 序
置 换 固 溶 体
有 序
沉 淀 结 构 组织 形状 分布 位向
取 向
织 构
宏 观 应 力
微 观 应 力
介 观 应 力
单晶材料
单晶 结 构 单晶 取 向 晶体 缺 陷
阵布 类拉 型非 点
状晶 和胞 大的 小形
原子类型及在 晶胞中的位置 X-四圆衍射仪
晶 体 学 与 外 观 座 标 的 关 系
孪 生 面 贯 析 面 指 数 的 确 定
晶 体 与 晶 体 的 位 向 关 系
晶 体 点 缺 陷
晶 体 线 缺 陷
晶 体 面 缺 陷
4
5
6
现代材料分析的主要内容
1. 组织形貌分析 2. 物相分析
3. 成份和价健分析
4. 分子结构分析
1. 组织形貌分析
微观结构的分析对于理解材料的本质至关重要
• XRD物相分析所需样品量大(0.1g),才能得 到比较准确的结果,对非晶样品不能分析。
29
样品制备
• 样品的颗粒度对X射线的衍射强度以及重现性有很大的影响。 一般样品的颗粒越大,则参与衍射的晶粒数就越少,并还会 产生初级消光效应,使得强度的重现性较差。 • 要求粉体样品的颗粒度大小在0.1 ~ 10μm范围。此外,当吸 收系数大的样品,参加衍射的晶粒数减少,也会使重现性变 差。因此在选择参比物质时,尽可能选择结晶完好,晶粒小 于5μm,吸收系数小的样品。 • 一般可以采用压片,胶带粘以及石蜡分散的方法进行制样。 由于X射线的吸收与其质量密度有关,因此要求样品制备均匀 ,否则会严重影响定量结果的重现性。
37
纳米TiN/AlN薄膜样品的XRD谱
1. 对于S2样品在2θ=4.43°时出 现明锐的衍射峰,根据Braag 方程,可计算出其对应的调 制周期为1.99nm; 2. 而对于S3.5样品的2θ=2.66°, 调制周期为3.31nm; 3. 分别与其设计周期2nm和 3.5nm近似相等
38
介孔结构测定
35
物质状态的鉴别
• 不同的物质状态对X射线的衍射作用是不相同的, 因此可以利用X射线衍射谱来区别晶态和非晶态。
不同材料状态以及相应的XRD谱示意图
36
纳米材料研究中的XRD分析
• TiO2纳米材料晶粒大小测定
1. 对于TiO2纳米粉体,衍射峰2θ 为21.5 °,为101晶面。 2. 当采用CuKα,波长为0.154nm, 衍射角的2θ为25.30 °,半高宽 为0.375 °,一般Sherrer常数取 0.89。 3. 根据Scherrer公式,可以计算获 得晶粒的尺寸。 4. D101=Kλ/B1/2cosθ= 0.89×0.154×57.3、 (0.375×0.976)=21.5 nm。
30
ห้องสมุดไป่ตู้ X射线衍射分析
• XRD物相定性分析
• 物相定量分析
• 晶粒大小的测定原理
• 介孔结构测定;
• 多层膜分析
• 物质状态鉴别
31
晶粒大小的测定原理
• 用XRD测量纳米材料晶粒大小的原理是基于衍 射线的宽度与材料晶粒大小有关这一现象。
• 利用XRD测定晶粒度的大小是有一定的限制条 件的,一般当晶粒大于100nm以上,其衍射峰 的宽度随晶粒大小的变化就不敏感了;而当晶 粒小于10nm时,其衍射峰随晶粒尺寸的变小而 显著宽化 ; • 试样中晶粒大小可采用Scherrer公式进行计算
光学显微镜 (OM)
电子显微镜 (SEM、TEM)
扫描探针显微镜 (SPM)
9
2. 物相分析
是指利用衍射的方法探测晶格类型和晶胞常数,
确定物质的相结构。
X-射线衍射 (XRD)
电子衍射 (ED)
中子衍射 (ND)
利用电磁波或运动电子束、中子束,与材料内部 规则排列的原子作用产生相干散射,获得携带材料内 部原子排列信息的衍射斑点,重组处物质内部结构。
34
多层膜的研究
• 在纳米多层膜材料中,两薄膜层材料反复重叠,形成调制 界面。当X射线入射时,周期良好的调制界面会与平行于 薄膜表面的晶面一样,在满足布拉格方程时,产生相干衍 射。 • 由于多层膜的调制周期比一般金属和小分子化合物的最大 晶面间距大得多,所以只有小周期多层膜调制界面产生的 X射线衍射峰可以在小角度区域中观察到。 • 对制备良好的小周期纳米多层膜可以用小角度XRD方法 测定其调制周期。
X射线衍射分析(XRD)
• X-射线的发现:
1895年,德国物理学家伦琴在研究真空管高压放电现 象时偶然发现,也叫伦琴射线。因此,1901年成为世 界上第一位诺贝尔奖获得者。
16
底片显影后的手指骨 世界上第一位诺贝尔奖获得者
X射线衍射(XRD)的应用
• 单晶材料:晶体结构;对称性和取向方位 • 金属、陶瓷:物相分析(定性、定量) • 测定相图或固溶度(定量、晶格常数随固溶 度的变化) • 多晶试样中晶粒大小、应力和应变情况
Structural analysis for materials research and crystallography
X-ray powder diffractometry (XRPD) is a valuable tool for the research and development of advanced materials. It can be used for investigation of the following properties: • Identification of the phase(s) present: is it a pure phase or does the material contain impurities as a result of the production process? • Quantification of mixtures of phases • Degree of crystallinity of the phase(s) • Crystallographic structure of the material: space group determination and indexing, structure refinement and ultimately structure solving • Degree of orientation of the crystallites: texture analysis. • Deformation of the crystallites as a result of the production process: residual stress analysis • Influence of non-ambient conditions on these properties All these investigations can be carried out on samples of varying dimensions: Powders, from bulk samples to very small amounts Solid materials of varying shapes and size, such as machined metallic or ceramic components or pills Well plates for combinatorial analysis