2017最新小升初数学专项题--牛吃草问题
小升初数学牛吃草问题及答案 (15)

小升初数学牛吃草问题
1.牧场上长满了牧草,牧草每天都在匀速生长,这片牧草可供18头牛吃30天,或者可供24头牛吃20天,有若干头牛在牧场上方牧,6天后,卖了4头牛,余下的牛再吃两天将牧草全部吃完,那么牧场上原来共有多少头牛在吃草?
【分析】根据“这片牧草可供18头牛吃30天,或者可供24头牛吃20天”条件求出:草的生长量和牧场的原有草量;再把有“卖牛”看作是“没卖牛”条件,这样就变为“原有牛都吃了8天”,只是原有牛都吃了8天草的总草量比有卖牛的情况多出了4头牛2天吃的量,确定了这些原有牛吃的草总量,进而就能求出这些牛的头数了.
【解答】解:草的生长量是(18×30﹣24×20)÷(30﹣20)=60÷10=6(份)
牧场原有草的总量是18×30﹣6×30=360(份)
这些若干牛都吃了8天的草总量是360+6×(6+2)+4×2=416(份)
416÷(6+2)=52(头)
答:牧场上原来共有52头牛在吃草.
【点评】学会改动一下条件,靠到“牛吃草问题公式”上来,就可解决这类问题了.
第1 页共1 页。
小升初数学牛吃草问题及答案 (11)

小升初数学牛吃草问题
1.一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?
【分析】根据题意,如果一头牛一天吃草量等于4只羊一天的吃草量;假设一头羊一天吃一份草,那么一头牛一天吃4份,则现在这片青草16头牛可吃15天,相当于16×4头羊可吃15天,则每天新长的草为(16×4×15﹣100×6)÷(15﹣6)=40(份),然后求出原有草的份数,即100×6﹣40×6=360(份),所以么8头牛(相当于8×4只羊)与48只羊一起吃,可以吃360÷(8×4+48﹣40)=9(天),据此解答即可.
【解答】解:(16×4×15﹣100×6)÷(15﹣6)
=360÷9
=40(份)
100×6﹣40×6
=600﹣240
=360(份)
360÷(8×4+48﹣40)
=360÷40
=9(天)
答:8头牛与48只羊一起吃,可以吃9天.
【点评】牛吃草问题的基本公式有:生长量=(较长时间×长时间牛头数﹣较短时间×短时间牛头数)÷(长时间﹣短时间);总草量=较长时间×长时间牛头数﹣较长时间×生长量.
第1 页共1 页。
牛吃草问题工程问题例题含答案版

小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度;例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天;问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少;已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天;照此计算,可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼;已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上;问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒;问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=级自动扶梯级数= 3×100-100×=150级工程问题数量关系式:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间;例4、某项工程,甲单独做需36天完成,乙单独做需45天完成;如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务;问:甲队干了多少天分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天”这样一来,问题就简单多了;答:甲队干了12天;自主训练单独干某项工程,甲队需100天完成,乙队需150天完成;甲、乙两队合干50天后,剩下的工程乙队干还需多少天分析与解:以全部工程量为单位1;甲队单独干需100天,甲的工作效例5、单独完成某工程,甲队需10天,乙队需15天,丙队需20天;开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程;问:甲队实际工作了几天分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了自主训练一批零件,张师傅独做20时完成,王师傅独做30时完成;如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件;这批零件共有多少个分析与解:这道题可以分三步;首先求出两人合作完成需要的时间,例6、一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完;如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水自主训练甲、乙二人同时从两地出发,相向而行;走完全程甲需60分钟,乙需40分钟;出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟;甲再出发后多长时间两人相遇分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答;甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟;我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间由此看出,这道题应该用工程问题的解法来解答;答:甲再出发后15分钟两人相遇;。
小升初牛吃草问题应用题及答案

小升初牛吃草问题应用题及答案小升初牛吃草问题应用题及答案“牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。
这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】草总量二原有草量+草每天生长量X天数【解题思路和方法】解这类题的关键是求出草每天的生长量。
例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。
问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量二原有草量+草每天生长量X天数。
求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1X10X20);另一方而,20天内的草总量又等于原有草量加上20 天内的生长量,所以1X10X20=原有草量+20天内生长量同理1 X 15X 10二原有草量+10天内生长量由此可知(20-10)天内草的生长量为1X10X20-1X15X10=50因此,草每天的生长量为50宁(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1X15X10-5X10=100(3)求5天内草总量5天内草总量二原有草量+5天内生长量=100+5X5二125(4)求多少头牛5天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。
因此5天吃完草需要牛的.头数125宁5=25(头)答:需要5头牛5天可以把草吃完。
例2—只船有一个漏洞,水以均匀速度进入船内,发现漏洞时己经进了一些水。
如果有12个人淘水,3小时可以淘完;如果只有5 人淘水,要10小时才能淘完。
求17人几小时可以淘完?解这是一道变相的“牛吃草”问题。
与上题不同的是,最后一问给岀了人数(相当于“牛数”),求时间。
设每人每小时淘水量为1, 按以下步骤计算:(1)求每小时进水量因为,3小时内的总水量=1X12X3=原有水量+3小时进水量10小时内的总水量二IX5X10二原有水量+10小时进水量所以,(10-3)小时内的进水量为1X5X10-1X12X3=14因此,每小时的进水量为144-(10-3)=2(2)求淘水前原有水量原有水量=1 X 12X3-3小时进水量二36-2 X 3=30(3)求17人几小时淘完17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是30—(17-2)二2(小时)答:17人2小时可以淘完水。
小升初数学牛吃草问题及答案 (97)

小升初数学牛吃草问题
1.“整片牧场上的草长的一样地密,一样地快.已知70头牛在24天里面把草吃完,而30头牛就得60天.如果要在96天内把牧场的草吃完,问牛数该是多少?”
【分析】根据1头牛一天的吃的草的量得到相应的等量关系,求得草每天长的量,进而让(96天长的草的量+原来草的量)÷一头牛一天需要的量可得牛的数量,把相关数值代入求解即可.
【解答】解:设牧场上原来的草的量是1,每天长出来的草是x,则24天共有草1+24x,60天共有草1+60x,
=
去分母得:
30(1+24x)=28(1+60x)
30+720x=28+1680x
1680x﹣720=30﹣28
960x=2
x =
则每头牛每天吃:=
96天吃完,牛应当是:(1+96×)÷(96×)
=(1+)÷
=
=20(头).
答:如果要吃96天,牛数该是20头.
【点评】本题考查了一元一次方程的应用,根据1头牛一天的吃的草的量相等得到相应的等量关系是解决本题的关键;注意必须的量没有时可设其为1.
第1 页共1 页。
小升初数学牛吃草问题及答案 (34)

小升初数学牛吃草问题
1.22头牛吃33亩草地上的草,54天可以吃完.17头牛吃28亩同样草地上的草,84天可以吃完.问:同样的牧草40亩可供多少头牛食用24天(每亩草地原有草量相等,草生长速度相等)?
【分析】设“每头牛每天吃草量为1份,每亩地原有草量为x份”,再结合“22头牛吃33亩草地上的草,54天可以吃完.17头牛吃28亩同样草地上的草,84天可以吃完“和“每亩草地草生长速度相等”列出一等式:(22×54﹣33x)÷33÷54=(17×84﹣28x)÷28÷84并解之,便可得到每亩地原有草量是9份,进而也就用(22×54﹣33x)÷33×54求得每亩每天新长的草量为0.5份;至此也就求出40亩草地24天后草地上有草为40×9+40×24×0.5=840份,然后用840÷24就可得到问题答案了.
【解答】解:每头牛每天吃草量为1份,每亩原有草量为x份,得
(22×54﹣33x)÷33÷54=(17×84﹣28x)÷28÷84
(36﹣x)×84=(51﹣x)×54
30x=270
x=9
(22×54﹣33×9)÷33÷54=0.5(份)
40×9+40×24×0.5=840(份)
840÷24=35(头)
答:同样的牧草40亩可供35头牛食用24天.
【点评】此题比一般的牛吃草问题难,关键是先求出每亩草地原有草的份数和每亩每天草生长的份数,之后即可轻松解答.
第1 页共1 页。
小升初数学牛吃草问题及答案 (26)

小升初数学牛吃草问题
1.牧场上一片青草,每天生长速度相同,可供27头牛吃6天,或供69只羊吃9天,如果1头牛的吃草量等于3只羊的吃草量,那么这片青草可供11头牛和30只羊吃几天?
【分析】假设每头牛每天吃青草1份,69只羊相当于69÷3=23头牛,先求出青草的生长速度:(23×9﹣27×6)÷(9﹣6)=15(份);然后求出草地原有的草的份数27×6﹣15×6=72(份);30只羊相当于30÷3=10头牛,再让11+10=21头牛中的15头吃生长的草,剩下的6头牛吃草地原有的72份草,可吃:72÷6=12(天).
【解答】解:假设每头牛每天吃青草1份,
69÷3=23(头)
30÷3=10(头)
青草的生长速度:
(23×9﹣27×6)÷(9﹣6)
=45÷3
=15(份)
草地原有的草的份数:
27×6﹣15×6
=162﹣90
=72(份)
11+10=21(头)
每天生长的15份草可供15头牛去吃,那么剩下的21﹣15=6头牛吃72份草:
72÷(21﹣15)
=72÷6
=12(天)
答:这片青草可供11头牛和30只羊吃12天.
【点评】此题属于典型的牛吃草的最基本类型的题目,只要设出每头牛每天吃“1”份草,求出牧场每天的长草量和牧场原有的草量,问题即可解决.
第1 页共1 页。
小升初数学牛吃草问题及答案 (56)

小升初数学牛吃草问题
1.牧场上的青草每天都在匀速生长,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?
【分析】由“这片青草可供27头牛吃6周或23头牛吃9周”这个条件,根据“牛吃草问题”的公式求出“草每周生长的速度”,之后便可求得“牧场原有的草的数量”,最后就可用“原有草的数量÷(21头牛每周吃的数量﹣每周草长的量数)”即得“21头牛所吃的周数”.
【解答】解:设每头牛每周吃“1”份草,则
23×9﹣27×6=45(份)
45÷(9﹣6)=15
23×9﹣15×9=72(份)
72÷(21×1﹣15)=12(周)
答:这片草地可供21头牛吃12周.
【点评】解此题主要是能灵活运用“牛吃草问题”的相应公式即可.
第1 页共1 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017最新小升初数学专项题--牛吃草问题
【知识梳理】
基本公式
(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数
(3)吃的天数=原有草量÷(牛头数-草的生长速度)
(4)牛头数=原有草量÷吃的天数+草的生长速度
【典例精讲1】有一牧场,已知养牛54头,6天把草吃尽;养牛46头,9天把草吃尽.如果养牛42头,那么几天能把牧场上的草吃尽呢?
思路分析:把一头牛一天所吃的牧草看作1,那么就有:牧场原有的草和6天新长的草,即54头牛6天所吃的牧草:54×6=324,再求出牧场原有的草和9天新长的草,即46头牛9天所吃的牧草:46×9=414;1天新长的草为:(414-324)÷(9-6)=30;牧场上原有的草为:54×6-30×6=144;每天新长的草足够30头牛吃,42头牛减去30头,剩下12头吃原牧场的草,即为所求.
解答:
(1)54头牛6天所吃的牧草为:54×6=324
(2)46头牛9天所吃的牧草为:46×9=414
(3)1天新长的草为:(414-324)÷(9-6)=30
(4)牧场上原有的草为:54×6-30×6=144
(5)每天新长的草足够30头牛吃,42头牛减去30头,剩下12头吃原牧场的草:
144÷(42-30)=12(天)
答:养42头牛,12天才能把牧场上的草吃尽。
小结:解决此类问题的重点是要想办法从变化中找到不变量,牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
【举一反三】1. 牧场上有一片匀速生产的草地,可供27头牛吃6周,或者供23头牛吃9周,如果把草场的面积扩大到原来的3倍,那么它可以供54头牛吃几周?
2. “希望”牧场上有一片草地,每天牧草都在匀速生长,这片牧草可供8头牛吃8周,或者9头牛吃6周,现在有17头牛,可以供这些牛吃几周?
【典例精讲2】李洋家有一牧场,草每天的生长速度相同.若14头
牛15天可将草吃完,70只羊8天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么17头牛和20只羊多少天可将草吃完?
思路分析:本题先把羊的只数转化为牛的只数,“若14头牛15天可将草吃完,70只羊(17.5头牛)8天也可将草吃完”求出草每天的生长份数和原有的草的份数;就能够进一步求出17头牛和20只羊(5头牛)多少天可将草吃完?
解答:设一头牛一天的吃草量为1份,
那么70只羊,20只羊转化成牛的头数是:70÷4=17.5(头),20÷4=5(头);
草每天的生长速度是:(14×15-17.5×8)÷(15-8)=10(份),原有的草是:14×15-15×10=60(份),
那么17头牛和20只羊也就相当于牛的头数是:17+5=22(头);那么每天生长的10份的草就够22头牛中的10头牛吃的,剩下的牛去吃60份需要的天数是:60÷(22-10),=5(天),
答:17头牛和20只羊5天可将草吃完.
小结:解决此类问题重点是要把羊的只数转化成牛的只数再解决。
【举一反三】3. 一片牧场,草每天生长地速度相同,现在,这片牧草可供10头牛吃6天,或可供30只羊吃12天.如果1头牛每天吃草量等于4只羊每天吃草量,那么,6头牛与44只羊一起可以吃几天?
4. 一个水池,如果打开17个进水管30小时可以注满,如果打开19个进水管24小时可以注满.现打开6小时后关掉4个,又用了2小时注满,这个水池原来有多少个进水管?
答案及解析:
1.【解析】假设每头牛每周吃青草1份,先求出青草的生长速度:(23×9-27×6)÷(9-6)=15(份);然后求出草地原有的草的份数27×6-15×6=72(份);如果把草场的面积扩大到原来的3倍,则草地原有的草的份数72×3=216份,青草的生长速度15×2=30份,再让54头牛中的30头吃生长的草,剩下的24头牛吃草地原有的216份草,可吃:216÷24=9(周).
【答案】:假设每头牛每周吃青草1份,
青草的生长速度:(23×9-27×6)÷(9-6)=15(份);
草地原有的草的份数:27×6-15×6=72(份);
如果把草场的面积扩大到原来的3倍,则草地原有的草的份数72×3=216份,青草的生长速度15×2=30份,
每周生长的30份草可供30头牛去吃,那么剩下的54-30=24头牛吃216份草:
216÷(54-30)=9(周);
答:可以供54头牛吃9周。
2.【解析】:假设每头牛每周吃1份草,8头牛8周吃8×8=64份,9头牛6周吃9×6=54份,少吃了64-54=10份,恰好是8-6=2周长的份数;每周就长10÷2=5份,原来牧场有64-5×8=24份,假设5头专吃新长出的草,那只要求出原先的草被剩下的牛几周吃完就可以了.
【答案】:假设1头牛吃草量为1份.
每周长出新草:(8×8-9×6)÷(8-6)=5(份)
原有草:8×8-5×8=24(份),
假设有5头牛专吃新长出的草.
原有的草被吃完周数为:24÷(17-5)=2(周);
答:可供17头牛吃2周.
3.【解析】把羊的只数转化成牛的只数再解决。
【答案】:设每头牛每天吃草1份,把羊的只数转化为牛的头数为:30÷4=7.5(头),44÷4=11(头)
草每天生长的份数:
(7.5×12-10×6)÷(12-6)=5(份)
草地原有的草的份数:
(10-5)×6=30(份)
6头牛和44只羊就相当于有牛:6+11=17(头);所吃天数为:
30÷(17-5)=2.5(天)
答:6头牛和44只羊一起能吃2.5天.
4.【解析】重点要找到不关进水管的话,需要多少进水量才能把水池
注满。
【答案】:假设每个进水管每小时进水量为1份,17×30-19×24=54(份);
54÷(30-24)=9(份);
(17-9)×30=240(份);
240+8×9=312(份);
312+(4×2)=320(份);
320÷8=40(个).
答:这群牛原来有40个.。