八下期中测试

合集下载

四川省成都市树德中学2023-2024学年八年级下学期期中考试英语试题

四川省成都市树德中学2023-2024学年八年级下学期期中考试英语试题

树德中学初2022级初二下学期期中测试英语试题A卷(共100分)第一部分听力(共30小题;计30分)一、听句子,根据所听到的内容选择正确答语。

每小题念两遍。

(共5小题,每小题1分;计5分)()1.A.OK,I will. B.I think so. C.It tastes bad.()2.A.You’re welcome. B.Idon’t agree. C.That’sOK()3.A.Good day! B.Good idea! C.Good job!()4.A.On the phone. B.It doesn’t matter. C.You’re right.()5.A.Sounds bad. B.Goodluck. C.Don’t worry.二、听句子,选择与所听句子内容相符合的图片,并将代表图片的字母填涂在答题卡的相应位置。

每小题念两遍。

(共5小题,每小题1分;计5分)6.7.8.9.10.三、听对话,根据对话内容及问题选择正确答案。

每段对话念两遮。

(共10小题,每小题1分;计10分)()11.A.Clean his room B.Play the game. C.Takeout the rubbish.()12.A.In his office. B.At a park. C.At a supermarket.()13.A.Because Alan argued with him.B.Because Alan copied his homework.C.Because he disliked doing homework.()14.A.Three times a week. B.Twice a week C.Everyday.()15.A.Listening to music.B.Cooking dinner. C.Doing homework.()16.A.By having a food festival B.By having a concert C.By having a book sale.()17.A.Rainy. B.Sunny. C.Windy.()18.A.At9:00p.m. B.At8:30p.m. C.At8:45p.m.()19.A.Father and daughter. B.Sister and brother. C.Classmates.()20.A.Helpful. B.Boring. C.Difficult.四、听短文,根据短文内容完成表格中所缺信息,并将答案填写在答题卡相应题号后。

2023年八年级语文下册期中测试卷【加答案】

2023年八年级语文下册期中测试卷【加答案】

2023年八年级语文下册期中测试卷【加答案】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列词语中加点的字,每对读音都不同的一项是( )A.勾.当/勾.勒取缔./根深蒂.固相形见绌./弄巧成拙.B.造诣./旨.意褒贬./针砭时弊如法炮.制/越俎代庖.C.拮.据/诘.难号.令/奔走呼号.臭.味相投/乳臭.未干D.创.伤/创.造怄.气/呕.心沥血哄.堂大笑/一哄.而散3、下列加点成语使用恰当的一项是()A.多读文学作品能在潜移默化....中提高人们的品德修养和审美情趣。

B.山上鸟语花香,各种树木鳞次栉比....;湖上波光粼粼,大小游船来来往往。

C.事情似乎到此就戛然而止....了,可是许多人还在追问着结局。

D.为了在科技比赛中体现创新精神,许多同学处心积虑....,设计了各种造型的航空模型。

4、下列句子没有语病的一项是()A.有关领导在会议上明确要求,各部门必须尽快提高传染病防控工作。

B.曹文轩获“国际安徒生奖”,实现了中国作家在该奖项上零的突破。

C.随着部分地区高大树木的减少,使某些珍稀鸟类只能选择在高压电塔上筑巢。

D.在巡检排查过程中,天津市供电部门解决并发现了居民用电方面的问题。

5、下列说法不正确的一项是()A.“他身材高大。

”这个句子的主语是“身材”,谓语是“高大”。

B.“两岸猿声啼不住,轻舟已过万重山。

”这句诗运用夸张的修辞手法,表现了小船行驶之快。

C.“我有这么笨吗?”这是一个反问句,说话者在强调自己并不笨。

D.“家父、舍弟、鄙人、臣、愚、拙著、寒舍、见教”等,这些在古代都是谦辞。

6、给下列句子排序,最恰当的一项是()①马、鹿、野骆驼、鹅喉羚、鹭鸶等百余种野生动物在林中繁衍生息②胡杨林是牲畜天然的庇护所和栖息地③它们共同组成了一个特殊的生态系统④林中还伴着甘草、骆驼刺等多种沙生植物⑤养育着南疆750余万各民族儿女⑥营造了一个个绿洲A.①②④③⑤⑥ B.②①④⑥⑤③C.②①④③⑥⑤ D.①②④⑥③⑤7、默写古诗文名句(1)_____,志在千里。

2023年八年级语文(下册期中)水平测试卷及答案

2023年八年级语文(下册期中)水平测试卷及答案

2023年八年级语文(下册期中)水平测试卷及答案满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列词语的字形和加点字的注音全部正确的一项是()A.溃.退(kuì)颔.首(hàn)解剖.(pō)抑扬顿错B.广袤.(mào)匿.名(nì)炽.热(zhì ) 藏污纳垢C.要塞.(sài)悄.然(qiāo)诘.责(jié) 惨绝人寰D.黝.黑(yŏu)滞.留(zhì)东皋.(gāo)为富不仁3、下列句子中加点的成语使用不正确的一项是( )A.王老师讲故事声情并茂,故事情节抑扬顿挫....,大伙都被吸引住了。

B.法庭上人人正襟危坐....,都在等待那个庄严宣判的时刻。

C.春天山花烂漫,开得漫山遍野,使人眼花缭乱....。

D.如果支付宝的圈子里藏污纳垢....,就可能吸引不法分子将“病毒”植入其中,对用户权益构成伤害。

4、下列句子中没有语病的一项是()A.老年人发生心力衰竭的主要原因是由劳累、用脑过度、精神紧张、食盐过多等造成的。

B.为了防止这类事故不再发生,我们加强了交通安全教育。

C.每天傍晚时分,身体瘦弱的张教授的父亲,总喜欢在这条幽静的小道上散步。

D.在信息时代,一个人是否具有快速阅读能力决定着一个人成就的大小。

5、下列各项解说正确的一项是()A.小表妹长得很萌,经常向我们卖萌,我们都被她萌翻了。

解说:这句话中有三个“萌”,第一个是形容词,第二个是名词,第三个是动词。

B.他时而朗读;时而默读;时而抄写笔记。

解说:这句话中的标点符号使用很规范。

C.克隆羊的诞生,在全世界引起了轰动。

解说:这个句子提取主干为——克隆羊引起了轰动。

D.这思绪如同一片白云,飘浮在我心灵的上空。

解说:这个句子运用了比喻的修辞手法,本体是“白云”,喻体是“思绪”。

6、给下列句子排序,最合理的一项是( )①但是自卑的人永远会失去本来就属于他的机会。

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。

2023年八年级语文(下册期中)测试及答案

2023年八年级语文(下册期中)测试及答案

2023年八年级语文(下册期中)测试及答案满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列加点字注音和词语字形完全正确的一项是()A.撺.掇(cuān)行.辈(háng)乌蓬船戛然而止B.羁绊.(bàn)冗.杂(róng)马前卒人情世故C.腐蚀.(shí)砂砾.(nì)暖融融不修边辐D.萦.绕(yíng)拙.劣(zhuō)苦行僧自圆其说3、下列加点的成语使用有误的一项是()A.老一辈科学家苦心孤诣获得的科研成果,足以作为我们的前车之鉴....。

B.读屏和读书两种阅读方式并存,相得益彰....,共同构成了多元化的阅读时代。

C.智力雾霾没有捷径可走,没有特效药,不可能一招制敌,一蹴而就....。

D.“一带一路”把40多亿人联结成休戚..与共的利益共同体和命运共同体。

4、下列句子没有语病的一项是()A.在全省长江经济带发展工作推进会上,对我省保护长江生态作出专题部署。

B.淮剧,原名江淮戏,是一种古老的地方戏曲剧种,流行于盐城、淮安等地。

C.霍金是科学界耀眼的明星,他创立了现代宇宙学,激发了数百万人的眼球。

D.我国第二艘航母能否早日加入海军编队,取决于科研人员和广大官兵的共同努力。

5、下列句子没有使用修辞手法的一项是( )A.我那时真是聪明过分,总觉他说话不大漂亮,非自己插嘴不可。

B.夜空中繁密的星,如同海水里漾起的小火花,闪闪烁烁的,跳动着细小的光点。

C.这个故事给我们的启示是人要懂得感恩。

D.突然,客人惊奇地屏住了呼吸,只见面前的小个子那对浓似灌木丛的眉毛下面,一对灰色的眼睛射出一道黑豹似的目光。

6、给下列句子排序,最恰当的一项是( )幸福的尺寸本是无所谓大,也无所谓小的。

______,______,______,________!这样,我们才能把握住属于自己的每一寸幸福。

①在此之后,你的脚丫已经不再长大,你的鞋子尺码已经固定②所以,请学会丈量幸福,拥有一颗充满爱、充满自由、充满创造的心吧③这正像脚上的鞋,穿着合适也就可以了④童年的尺寸是一颗糖果的甜蜜,少年的尺寸是一次收获的快乐,青年的尺寸是一份创造的惊喜A.③①④② B.④③②① C.③④①② D.②①④③7、名句默写。

人教版八年级下册数学《期中检测题》及答案

人教版八年级下册数学《期中检测题》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.使二次根式3a -有意义的的取值范围是( ) A. 3a > B. 3a < C. 3a ≥ D. 3a ≤2.下列各式中,是最简二次根式是( )A. 12 B. 5 C. 18 D. 2a3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为()A. 1B. 3C. 5D. 34.下列运算正确的是( )A. 325+=B. 326⨯=C. 2(31)31-=-D. 225353-=-5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 46.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =,则AB 长为( )A. 2B. 3C. 4D. 438.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A 278cmB. ()24330cm + C. 21210cm D. 22410cm 10.如图,在□ABCD 中,ABAC ,若AB=4,AC=6,则BD 的长是( )A. 11B. 10C. 9D. 811.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A. B. C. D.13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 210D. 814.将四根长度相等细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22二、填空题15.若23a =-,则241a a -+的值为__________.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC 经过两次折叠,得到边AB ,BC ,CA 上的点D ,E ,F .折叠方法如下:如图2,(1)AC 边向BC 边折叠,使AC 边落在BC 边上,得到折痕交AB 于D ;(2)C点向AB 边折叠,使C 点与D 点重合,得到折痕交BC 边于E ,交AC 边于F .则下列结论:①四边形DECF 一定是矩形,②四边形DECF 一定是菱形,③四边形DECF 一定是正方形.其中错误的是__________(填序号)三、解答题20.计算:(1)148(12)3-+ (2)2(221)243-+÷21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n + 2mn ;②当3m =,3n =时,m n + 2mn ;③当12m =,12n =时,m n + 2mn ; ④当4m =,1n =时,m n + 2mn ;⑤当5m =,3n =时,m n + 2mn ;⑥当13m =,12n =时,m n + 2mn ;则关于m n +与2mn 之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值. 25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH与AE的数量关系,并证明.答案与解析一、选择题1.有意义的取值范围是( )A. 3a >B. 3a <C. 3a ≥D. 3a ≤[答案]D[解析][分析]根据二次根式有意义的条件可得30a -≥,再解不等式即可.[详解]由题意得:30a -≥,解得:3a ≤,故选:D .[点睛]本题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 2.下列各式中,是最简二次根式的是( )[答案]B[解析][分析]判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.[详解](1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.[点睛]本题考查最简二次根式的定义,掌握相关知识是解题关键.3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为( )A. 1B. 3C. 5D. 3[答案]A[解析][分析] 先根据正方形的性质得出∠B =90°,BC 2=3,然后在Rt △BCE 中,利用勾股定理即可求出EB 的长.[详解]解:解:∵四边形ABCD 是正方形,∴∠B =90°,∴EB 2=EC 2-BC 2,又∵正方形ABCD 的面积=BC 2=3,2EC =, ∴2231EB =-=故选:A .[点睛]本题主要考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.4.下列运算正确的是( ) 325=326=C. 231)31-=- 225353-=-[答案]B[解析][分析]根据二次根式的性质、运算法则及完全平方公式对各选项进行分析即可.[详解]解:A 、32+无法计算,故此选项不合题意; B 、326⨯=,正确; C 、2(31)3231423-=-+=-,故此选项不合题意; D 、2253164-==,故此选项不合题意.故选:B .[点睛]此题主要考查了二次根式的性质、运算法则及完全平方公式的应用,正确化简二次根式是解题关键. 5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 4[答案]B[解析] ∵点,分别是边AB ,CB 的中点,114222DE AC ∴==⨯= .故选B. 6.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°[答案]C[解析] 试题分析:根据勾股定理即可得到AB,BC,AC 的长度,进行判断即可. 试题解析:连接AC,如图:根据勾股定理可以得到:510.∵525210)2.∴AC 2+BC 2=AB 2.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C .考点:勾股定理.7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =则AB 长为( )A. 2B. 3C. 4D. 3[答案]C[解析][分析]根据 cos AC A AB∠=计算. [详解]解:∵∠A=30°,∠C=90°,AC=3 ∴ 3cos cos30,2AC A AB ∠=︒== ∴23 4.3AB == 故选:.[点睛]本题考查了三角函数,熟练运用三角函数关系是解题的关键8.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A. 278cmB. (24330cm C. 210cm D. 22410cm [答案]D[解析][分析] 根据题意利用正方形的面积公式即可求得大正方形的边长,则可求得阴影部分的面积进而得出答案.[详解]从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,+=+,大正方形的边长是30483043留下部分(即阴影部分)的面积是:()2+--=++--=(cm2).304330483083034830482410故选:D.[点睛]本题主要考查了二次根式的应用、完全平方公式的应用,正确求出阴影部分面积是解题关键.10.如图,在□ABCD中,ABAC,若AB=4,AC=6,则BD的长是()A. 11B. 10C. 9D. 8[答案]B[解析][分析]利用平行四边形的性质可知AO=3,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=10.[详解]解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=3.在Rt△ABO中,利用勾股定理可得:22+=345∴BD=2BO=10.故选B.[点睛]本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD[答案]B[解析][分析]根据矩形的性质即可判断;[详解]解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B . [点睛]本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A.B. C. D.[答案]B[解析][分析]求出∠AFE=∠AEF ,推出AE=AF ,求出BE ,根据勾股定理求出AE ,即可求出AF ,即可求出答案[详解]∵四边形ABCD 是矩形,∴AD=BC=8,AD ∥BC ,∴∠AFE=∠FEC ,∵EF 平分∠AEC ,∴∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AE=AF ,∵E 为BC 中点,BC=8,∴BE=4,在Rt △ABE 中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD−AF=8−5=3故选:B[点睛]本题考查了矩形的性质, 等腰三角形的判定与性质, 直角三角形中利用勾股定理求边长. 13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 10D. 8[答案]A[解析][分析]连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.[详解]解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42故选:A .[点睛]本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.14.将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22[答案]A[解析][分析] 图(1)中根据有一个角是60°的等腰三角形是等边三角形即可求得BC ,图2中根据勾股定理即可求得正方形的对角线的长.[详解]如图(1)中,连接AC ,∵∠B=60°,AB=BC ,∴△ABC 为等边三角形,∴AC=AB=BC=3,如图(2)中,连接AC ,∵AB=BC=CD=DA=3,∠B=90°,∴四边形ABCD 是正方形,∴22223332AB BC ++=故选:A .[点睛]本题考查了正方形的性质和判定,菱形的性质,勾股定理以及等边三角形的判定和性质,利用等边三角形的判定确定边长是关键.二、填空题15.若23a =-,则241a a -+的值为__________.[答案]0[解析][分析]利用完全平方公式变形得:()224123a a a -+=--,再代入求值即可得到答案.[详解]解:()224123a a a -+=--, ()22323330,=---=-=故答案为:[点睛]本题考查是利用因式分解求代数式的值,同时考查了二次根式的乘法的运算,掌握完全平方公式的变形是解题的关键.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.[答案]50°[解析][分析]由平行四边形ABCD 中,易得∠C =∠A ,又因为DB =DC ,所以∠DBC =∠C ,根据三角形内角和即可求出CDB ∠.[详解]解:∵四边形ABCD 是平行四边形,∴∠C =∠A =65°,∵DB =DC ,∴∠DBC =∠C =65°,∴180218026550CDB C ∠=︒-∠=︒-⨯︒=︒,故答案为:50°.[点睛]此题是平行四边形的性质与等腰三角形的性质的综合,解题时注意特殊图形的性质应用.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.[答案]()13,0- [解析][分析]根据勾股定理求得PO 的长度,从而确定点A 的坐标.[详解]解:由题意可知:222313OP OA ==+= ∴A 点坐标为:()130-,故答案:()130-,. [点睛]本题考查实数与数轴,掌握勾股定理计算公式,利用数形结合思想解题是关键.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.[答案2[解析][分析]根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC ,从而可求∠EBC=30°,在Rt △BCE 中可求EC 值,由DE=EC 可求DE 的长.[详解]∵四边形ABCD是菱形,∴CD=BC=AB=6,∴∠EDC=∠EBC,∵DE=CE,∴∠EDC=∠ECD,∴∠BEC=2∠EDC=2∠EBC,在Rt△BCE中,∠EBC+∠BEC=90°,∴∠EBC=30°,∴3BC tan30623EC=⋅︒=⨯=,∴DE=EC=2,故答案为:2.[点睛]本题主要考查了菱形的性质、等腰三角形的判定和性质、解直角三角形的应用;熟练掌握菱形的性质,得出∠EBC=30°是解题的关键.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC经过两次折叠,得到边AB,BC,CA上的点D,E,F.折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C 点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.则下列结论:①四边形DECF一定是矩形,②四边形DECF一定是菱形,③四边形DECF一定是正方形.其中错误的是__________(填序号)[答案]①③[解析][分析]根据折叠的性质可知,CD和EF互相垂直且平分,即可得到结论.详解]解:连接DF、DE,DC、EF相交于点O,根据折叠的性质得,CD ⊥EF ,且OD=OC ,OE=OF ,∴四边形DECF 是菱形.菱形DECF 因条件不足,无法证明是正方形.故答案为:①③[点睛]本题考察了菱形的判定以及折叠的性质,灵活运用即可.三、解答题20.计算:(114812)3(2)2(221)243+[答案](153;(2)922- [解析][分析](1)先化简成最简二次根式,再根据二次根式加减法法则计算即可;(2)先利用完全平方公式展开,再根据二次根式混合运算法则计算即可得答案. [详解](1481(12)3-+=3323-=533; (2)2(221)243+=28=942+22=922-. [点睛]本题考查了二次根式的运算,熟练掌握运算法则是解题关键.21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.[答案](1)25;(2)37[解析][分析](1)根据勾股定理计算,得到答案;(2)作CD ⊥AB 交BA 的延长线于点D ,根据直角三角形的性质求出AD ,根据勾股定理求出CD ,再根据勾股定理计算即可.[详解]解:(1)在Rt △ABC 中,∠C =90°, ∴AB =222242AC BC +=+=25;(2)作CD ⊥AB 交BA 的延长线于点D ,∵∠BAC =120°,∴∠DCA =30°,∴AD =12AC =3,∴CD =22AC AD -=226333-=,∵BD =AD+AB =6,∴在Rt △CDB 中,BC =2237CD BD +=.[点睛]本题考查的是勾股定理、含30°的直角三角形的性质,解题关键在于正确做出辅助线,求线段长度. 22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.[答案]30[解析][分析]利用基本作图作BH 平分∠ABC ,则∠ABH =∠CBH ,再利用平行四边形的性质得到CD ∥AB ,AB=CD ,AD=BC=6,接着证明∠CBH =∠BHC 得到CH =BC =6,所以DH=3,然后计算平行四边形ABCD 的周长.[详解]如图,BH 为所作.∵BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 为平行四边形,∴CD ∥AB ,AB =CD ,AD =BC =6,∴∠ABH =∠BHC ,∴∠CBH =∠BHC ,∴CH =BC =6,∵DH =12CH , ∴DH =3,∴平行四边形ABCD 周长=2(BC+CD )=2×(6+9)=30.[点睛]本题考查了作图-基本作图和平行四边形的性质,等腰三角形的判定和性质.解决本题的关键是熟记平行四边形的性质.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 是平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.[答案](1)见解析;(2)3[解析][分析](1)首先利用ASA 得出△DCF ≌△EBF ,进而利用全等三角形的性质得出CD =BE ,即可得出四边形CDBE 是平行四边形;(2)由BD ⊥AC ,四边形CDBE 是平行四边形,可推出四边形CDBE 是矩形,由F 为BC 的中点,求出BC ,根据勾股定理即可求得CE ,由矩形面积公式即可求得结论.[详解](1)证明:∵BE ∥AC ,∴∠ACB =∠CBE ,在△DCF 和△EBF 中,DCF EBF FC FBCFD BFE ∠∠⎧⎪=⎨⎪∠∠⎩==, ∴△DCF ≌△EBF (ASA ),∴CD =BE ,∵BE ∥CD ,∴四边形CDBE 是平行四边形;(2)∵BD ⊥AC ,四边形CDBE 是平行四边形,∴四边形CDBE 是矩形,在Rt △CEB 中,F 为BC 的中点,∴BC=DE=2EF=10,∴CE 2=BC 2BE 2=10252=75,∴CE =∴四边形CDBE 的面积=BEEC =.[点睛]本题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定和性质,勾股定理的应用,得出△DCF ≌△EBF 是解题关键.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n +②当3m =,3n =时,m n +③当12m =,12n =时,m n +④当4m =,1n =时,m n +⑤当5m =,3n =时,m n +⑥当13m =,12n =时,m n +则关于m n +与之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.[答案](1)①=,②=,③=,④>,⑤>,⑥>, m n +≥,≥);(2)见解析;(3)4[解析][分析](1)①-⑥分别代入数据进行计算即可得解;(2)根据非负数的性质,(m n -)2≥0,再利用完全平方公式展开整理即可得证; (3)镜框为正方形时,周长最小,然后根据正方形的面积求出边长,即可得解. 探究证明:根据非负数的性质, [详解](1)①当m =2,n =2时,由于224+=,2224⨯=,所以m n +=2mn ;②当m =3,n =3时,由于336+=,2336⨯=,所以m n +=2mn ;③当m =14,n =14时,由于111442+=,1112442⨯=,所以m n +=2mn ; ④当m =4,n =1时,由于415+=,2414⨯=,所以m n +>2mn ;⑤当m =5,n =12时,由于111522+=,125102⨯=,所以m n +>2mn ; ⑥当m =13,n =6时,由于119633+=,126223⨯=,所以m n +>2mn ; 则关于2m n +与mn 之间数量关系的猜想是m n +≥2mn (≥,≥); (2)证明:根据非负数的性质(m n -)2≥0,∴m2mn +n≥0,整理得,m n +≥2mn ;(3)面积为1平方米的长方形镜框长与宽相等,即为正方形时,周长最小,所以,边长为1,周长为1×4=4.[点睛]本题考查了二次根式的应用,完全平方公式的应用,准确进行运算判断出两个算式的大小关系是解题的关键.25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.[答案](1)见解析;(2)见解析.[解析][分析](1)根据题目连接AC ,按要求分别作出BM 、CN 即可解答;(2)过点D 作DG //AB ,由平行四边形判定和性质可得CE =CE ,DG //CE ,再证明△GDF ≌△CEF (ASA )即可得出结论.[详解](1)解:如图所示:连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(2)证明:过点D 作DG //AB ,∵AD //BC ,DG //AB ,∴四边形ADGB 是平行四边形,∴AB =DG ,∵BE //AC ,AB //CE ,∴四边形BACE 是平行四边形,∴CE =AB ,DG //CE∴DG =CE ,∠GDF =∠CEF ,∵在△GDF 和△CEF 中,GDF CEF GFD CFE DG CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△GDF ≌△CEF (AAS ),∴DF =EF .[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.[答案](1)证明见解析;(2)BH=2AE ,理由见解析.[解析][分析](1)连接DF .根据对称的性质可得AD FD =.AE FE =.证明ADE FDE △≌△,根据全等三角形的性质得到DAE DFE ∠=∠.进而证明Rt DCG △≌Rt DFG △,即可证明.(2)在AD 上取点M 使得AM AE =,连接ME .证明DME ≌EBH △,根据等腰直角三角形的性质即可得到线段BH 与AE 的数量关系.[详解](1)证明:连接DF .∵,关于DE 对称.∴AD FD =.AE FE =.在ADE 和FDE 中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =. (2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴11145222EDG EDF GDF ADF CDF ADC ∠=∠+∠=∠+∠=∠=︒∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME 和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME ≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME∴BH .[点睛]本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.。

2023年八年级语文下册期中测试卷【含答案】

2023年八年级语文下册期中测试卷【含答案】

2023年八年级语文下册期中测试卷【含答案】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列各组词语中,加点字的读音全都正确的一组是()A.压榨.(zhá)羡慕.(mù)折.扣(zhé)言行相顾.(gù)B.禅.师(chán)冠冕.(miǎn)骈.进(pián)红装素裹.(guǒ)C.佛.门(fó)掺.杂(cān)勾.当(gōu)舍.身求法(shě)D.嗤.笑(chī)褴褛.(nǚ)嗔.怒(chēn)仓皇逃窜.(chuàn)3、下列语句中加点成语使用有误的一项是()A.五一期间,织金洞游人如织,摩肩接踵....。

B.蜀锦的传统技艺让许多现代工厂生产出来的锦缎黯然失色....。

C.韩国政府自出心裁....地部署“萨德”,引起周边国家的强烈不满。

D.网络是柄双刃剑,它虽然可以为我们提供丰富的学习资料,但是也会藏污纳...垢.。

4、下列句子没有语病的一项是()A.随着中国对洋垃圾实施进口禁令,使西方国家陷入集体焦虑。

B.风靡一时的电影《解忧杂货店》改编自日本作家东野圭吾的同名小说。

C.中国慕课数量已经稳居世界第一,在线学习的人数也是全世界最多的国家。

D.基层干部既要想干敢干,又要能干会干,切忌不可蛮干。

5、下列句子的说法正确的一项是()A.他从内心深处不是很喜欢《奔跑吧,兄弟》《非诚勿扰》《快乐大本营》等电视节目。

解说:这个句子中“从内心深处”充当定语。

B.翩然归来冰雪融化次第开放草木萌发。

解说:这四个短语结构各不相同。

C.多水的江南是易碎的玻璃,在那儿,打不得这样的腰鼓。

解说:这句话运用了比喻的修辞手法。

D.歌曲“最炫民族风”具有浓郁的生活气息和民族特色,深受广大青少年喜爱。

解说:这句话中的标点符号使用正确。

6、将下列句子组成一段话,排序正确的是()①“柴门闻犬吠,风雪夜归人”,是江南雪夜,更深人静后的景况。

2023年八年级语文下册期中测试卷【附答案】

2023年八年级语文下册期中测试卷【附答案】

2023年八年级语文下册期中测试卷【附答案】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列加下划线字注音全对的一项是()A.纷纷溃退(kuì)镌刻(juān)凌空(líng)殚精竭虑(dān)B.屏息敛声(bǐng)歼灭(jiān)悄然(qiǎo)鸢飞戾天(nì)C.翘首以待(qiào)缥碧(piǎo)娴熟(xián)锐不可当(dāng)D.眼花缭乱(liáo)咆哮(páo)仲裁(zhōng)摧枯拉朽(xiǚ)3、下列句子中加点成语使用不当的一项是()A.中国白手起家....,一切从零开始,终于圆了航母舰载机着舰这一强军梦。

B.航母舰载战斗机着舰的一幕真是惊心动魄....。

C.科研人员殚精竭虑....,使我国的无人战机在当代天空叱咤风云。

D.中国军人展示出震耳欲聋....、蓬勃向上的“中国力量”。

4、下列句子没有语病的一项是()A.民俗是民间流传的习俗、风尚,是由民众创造并世代传承的民间文化。

B.中餐的推广使豆腐日益受到各国的欢迎是可以预期的。

C.不仅议论要提出观点,还要有能证明观点的材料。

D.《水浒传》记述了梁山好汉们从起义到兴盛再到最终失败。

5、下列句子使用修辞手法不同于其他三项的一项是()A.在高山上,我们沉默了那么久,终于可以敞开喉咙大声喧哗。

B.在这里,尽情欢歌处,夜凉如水,他们的心像一滴水一样晶莹。

C.因此,所有的水,都在稍作徘徊时,被急匆匆的后来者推着前行。

D.太阳出来了,我怕被迅速蒸发,借一阵微风跳下花朵,正好跳回浇花壶中。

6、给下列句子排序,最恰当的一项是( )①有的书昨天看不懂,过些日子再看才懂得②或者一本书读了前面有许多不懂的地方,读到后面才豁然贯通③经验证明,有许多书看一遍两遍还不懂得,读三遍四遍就懂得了④因此,重要的书必须常常反复阅读,每读一次都会觉得开卷有益⑤也有的似乎已经看懂了,其实不大懂,后来有了一些实际知识,才真正懂得它的意思A.①⑤②③④ B.③①⑤②④ C.④③②①⑤ D.③②①⑤④7、古诗词默写填空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—Did it?Well, that doesn’t matter _____ you enjoC.while
( )44.—How does the music sound?—It sounds_____.
A.happilyB.wonderfulC.frightened
( )45.—How about going shopping this evening?
—______, but I have to prepare for tomorrow’s exam.
A. anywhereB. somewhereC. everywhere
( )33.People should learn some knowledge in first aid. ________an injury,we will know how to deal with it.
A. Instead ofB. In case ofC. Because of
( )11.一!The car almost hit you.—How dangerous! I'll be more careful.
A. Look outB. Cheer upC. Come on
( )12.—Excuse me, is Henry in? —Sorry, he isn’t. I will call you as soon as heback.
A. betweenB. besideC. through
( )8.—Dave, why are you in such a hurry(匆忙)?
—Becauseis waiting for me at the school gate.
A. anyoneB. no oneC. someone
( )9.—Your new computer looks really cool!
( )27.-- ________is it from here?--It's about five minutes' walk.
A. How longB. How farC. How often
( )28.--I'm sorry that John is out.--Please ask him to call me as soon as he________
A. whenB. untilC. as
( )31.--Tom,don't throw litter about.It ________terrible in summer.--Sorry,I won't.
A. smellsB. tastesC. sounds
( )32.--Why do you look worried?--I'm looking for my pet cat but I can't find it________.
( )5.—, how can I get to the bus station?
—Go down this road and turn right at the second crossing You'll find it easily.
A. By the wayB. On the wayC. In a word
--________You can do it well.
A. Not afraid.B. Take it easyC. You are right.
( )26.--How much does a standard room________?--160yuan.
A. payB. spendC. cost
—I have few friends here, and I often feel.
A. shyB. lonelyC. alone
( )4.—Whatterrible,Ted?
—I'm sorry, I'll put away my shoes and wash them at once.
A. tastesB. soundsC. smells
A.hearing ofB.hearing fromC.hearing about
( )40.—I don’t know much about computer.
—I don't know, _____. Let’s go and ask for help.
A.as wellB.tooC.either
( )6.—What's the matter with you?—I am tiredI stayed up very late last night.
A. becauseB. untilC. if
( )7.—Where is thephone?—It’sthe hospital, and you can go there on foot.
A. alone;lonelyB. alone;aloneC. lonely;alone
( )20.Are your parents used to________in the city?
A. livingB. liveC. lives
( )21.It is not right ________in public places.
A. happyB. unhappilyC. unhappy
( )18.Li Lei isn't________ Liu Ming.
A. tall asB. as taller asC. so tall as
( )19.The old man lives________ but he doesn't feel________.
A. smokesB. smokingC. to smoke
( )22.If everyone ________the traffic rules,there will be fewer accidents.
A. will obeyB. obeysC. obey
( )23.Taiwan is__ the southeast part of China. Now more and more people go to visit it.
A. put onB. to put onC. to put up
( )36.Taiwan is ____ the southeast of China and_______ the west of Fujian.
A.in;onB.on;toC.in;to
( )37.—We’ll have a ______ holiday. Shall We go to Disneyland in Hong Kong?
A.I can’tB.That’s rightC.Sounds great
( )46.I don’t think his advice is good, so I can’t _____ it.
A.receiveB.refuseC.accept
( )47.—Our holiday cost a lot of money.
—Great! I amyou, dear!
A. proud ofB. worried aboutC. strict with
( )15.—go out for a picnic this weekend?—Good idea!
A. How aboutB. Why don't weC. Would you like
2019-2020年春八下期中测试(满分150分)
一.单选题。(每小题1分,共65分)
( )1.—Tina, I got__ ticket to The Sound of Music.
—Great! It’s one ofmost famous movies.
A.the: theB.a; theC.the: a
A. toB. inC. on
( )24.They were meeting Miss Brown at the airport________she arrived this afternoon.
A. whenB. whileC. if
( )25.--I'm always afraid of giving a speech in front of the class.
( )16. ---John isn't happy today.Let's go and________--- Good idea.
A.cheer up himB.cheer him upC.to cheer him up
( )17. Look,the girl seems a little________.What's wrong with her?
( )41.Lucy is used to ____ early to make breakfast for her family.
A.get upB.getting upC.gets up
( )42.—How are you feeling today?
—I’m feeling really sad because I ____the English exam.
—Thank you. However, I only$200 for it.
A. paidB. spentC. cost
( )10.The mountains in my hometown look very beautiful,in spring.
A. finallyB. slowlyC. especially
A.passedB.failedC.took
( )43.—The old woman lives in house______.
相关文档
最新文档