叶绿素理化性质的测定

合集下载

叶绿体色素的提取、分离、理化性质和叶绿素含量的测定

叶绿体色素的提取、分离、理化性质和叶绿素含量的测定
取鲜叶3-5g+95%乙醇15-25ml(逐步加入),磨成匀浆

过滤入三角瓶中
观察荧光现象 透射光 色,反射 光 光。
定性实验 无需移液管量 皂化反应(约1ml)
加KOH数片剧烈摇均, 加石油醚1ml和H2O 1ml 分层后观察 上层呈 吸收 下层呈 吸收 色,为 光。 色,为 光。 , ,
取代反应(约1mL)
在400-700nm处扫描光谱,分别测定类胡萝 卜素和叶绿素的吸收峰
• 3.叶绿素定量分析:
称取鲜叶0.1g,加1.9mlH2O,磨成匀浆,取2份 0.2ml 分别加95%酒精4.8ml,摇匀,8000转离心 5min, 上清液在 649 , 652 , 665 测定 OD ,计算 Chla,Chlb 和Chl总量的值。
5、定量分析:叶绿素吸收红光和兰紫光,红
光区可用于定量分析,其中665 和649用于定量 叶绿素a,b及总量,而652可直接用于总量测定
180 160 140 120 100 80 60 40 20 0 400 500 Waverlength(nm) 600 700
a
b
• 实验步骤 1.定性分析:
加醋酸约1ml,变褐 为_________叶绿素 , 取1/2加醋酸铜粉,加热变 色,为 叶绿素。
2、叶绿素和类胡萝ຫໍສະໝຸດ 素的吸收光谱测定:皂化反应的上层 黄色石油醚溶液 弃上层,反复用石油醚萃取,直 到无类胡萝卜素, 得叶绿素(盐)
(稀释470nm OD 0.5-1) (稀释,665nm OD 0.5-1)
• 五、实验数据记录和处理
• Ca(mg/L)=13.95A665-6.88 A649 • Cb (mg/L) =24.96A649-7.32 A665 • CT (mg/L) = Ca+ Cb 或A6521000/34.5

实验一 叶绿体色素的分离及理化性质测定

实验一 叶绿体色素的分离及理化性质测定

实验一叶绿体色素的分离及理化性质测定实验目的:1.了解叶绿体的组成及结构特点;2.掌握分离叶绿体的实验方法;3.测定叶绿体色素的吸收光谱,了解叶绿体色素的化学结构;4.学习色素溶液的制备及测定吸收光谱的方法。

实验原理:叶绿体是植物细胞中的一种特殊细胞器,它的主要功能是光合作用,能够吸收光能并将其转化为有机物质。

叶绿体中含有一系列的叶绿素和其他色素,这些色素的共同作用是吸收不同波长的光能,并将其转化为化学能。

为了分离叶绿体的色素,我们需要将植物细胞破碎,并利用离心力将叶绿体分离出来。

离心力的大小决定了离心上清液中所包含的叶绿体数量,因此,离心参数的选择非常重要。

得到叶绿体后,我们可以使用乙醇或其他溶剂将其色素提取出来。

叶绿素a是叶绿体中最主要的色素,其化学结构为卟啉结构,含有一个镁原子。

叶绿体中还含有其他种类的叶绿素和类胡萝卜素等色素,它们的化学结构虽然不同,但都具有吸收光谱。

实验步骤:1.取适量新鲜菠菜叶子,用冰冷的磷酸盐缓冲液冲洗干净,去除表面的灰尘和其他杂质。

将菠菜叶子放入离心管中,加入等体积的砂糖缓冲液,用玻璃棒捣碎成细胞浆状,避免破坏叶绿体。

将离心管置于离心机中,先进行低速离心(2000g)10min,离心后得到上清液,然后进行高速离心(10000g)15min,此时在离心管中可见下沉的绿色沉淀。

用吸管小心地将上清液吸走,然后将叶绿体沉淀用1ml冷洗涤液溶解。

2.将叶绿体溶液转移到玻璃细胞中,在可见分光光度计上分别测定叶绿体吸收光谱。

用叶绿体洗涤液作为空白对照。

记录各波长下吸光度值,绘制出叶绿体色素的吸收光谱曲线。

3.将等量的叶绿素a和β-胡萝卜素分别溶解于乙醇中,测定它们的吸收光谱,并绘制出吸收光谱曲线。

将这些谱线与叶绿体谱线进行比较,确定叶绿体中含有的其他色素种类。

实验结果:叶绿体色素的吸收光谱曲线如下图所示,其中叶绿素a的吸收峰位于675nm和450nm 处,其它叶绿色素和类胡萝卜素的吸收峰位于不同波长处。

实验3 叶绿体色素的理化性质 叶绿素的定量测定 希尔反应

实验3 叶绿体色素的理化性质 叶绿素的定量测定 希尔反应
CT = Ca + Cb = 20.2D645 + 8.02D663 注意:在此式中叶绿素浓度单位为 mg/L 。
叶绿素a、b在 652 nm 处有相同的比吸收系数 (34.5),也可在此波长下测定一次光密度D652, 求出叶绿素a、b的总量。
D652X 1000 CT = 34.5
实验步骤
1. 提取: 称0.5 g菠菜叶片,剪碎置研钵中, 加少量碳酸 钙和石英砂,加入80% 2-3mL于研钵中, 研成匀浆,再加 入2-3 mL 80%丙酮,研磨充分,用丙酮湿润的滤纸过 滤(在漏斗上完成,注意石英砂尽量不要倒入漏斗中, 以免堵塞滤纸,影响过滤),并用少量丙酮将滤纸和研钵 冲洗干净,定容至25 mL试管中。 2. 稀释: 取5ml提取液于另一刻度试管中,加5 mL 80% 丙酮稀释(可根据具体情况调整稀释倍数,使OD值在 0.2-0.8范围内)。
四 思考题:
1.叶绿素a、b在蓝光区也有吸收峰,能否用这一吸 收峰波长进行叶绿素a、b进行定量分析?为什么?
苯倒入废液瓶中!
四 吸收光谱的观察
叶绿素吸收红光和兰紫光; 类胡萝卜素吸收兰紫光;
类胡萝卜素的吸收光谱
叶绿素的吸收光谱
画图并说明原因
五 氢和铜代叶绿素反应
叶绿素在弱 酸作用下,叶绿 素中镁可被H+取 代而成为褐色的 去镁叶绿素,后 者遇铜则成为绿 色的铜代叶绿素。
取叶绿体色素5ml,加浓 盐酸1滴摇匀,观察溶液 颜色的变化。
当溶液变褐色后,取 一半去镁叶绿素提取液, 投入少许醋酸铜粉末, 微微加热,观察溶液颜 色的变化。
不要盖试管盖!
色素提取
方法与步骤
荧光 皂化

代替
吸收
叶绿素的定量测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定引言:叶绿体是植物细胞中的一个重要细胞器,其中主要存在着叶绿素等色素,它们在光合作用中起着重要的作用。

研究叶绿体色素的提取、分离、理化性质和叶绿素含量的测定,对于了解光合作用的机理以及研究植物生理生化过程具有重要意义。

本实验旨在通过实验手段提取叶绿体色素,进行色素的分离、理化性质的研究和叶绿素含量的测定。

材料与方法:材料:菠菜叶片、研钵、磨杵、丙酮、乙醇、石油醚、叶绿素提取液、测色皿、高锰酸钾溶液、浓硫酸。

方法:1.取适量菠菜叶片放入研钵中,加入适量丙酮,用磨杵捣碎成糊状。

2.将捣碎的菠菜糊状物转移到玻璃漏斗中,用石油醚冲洗3次,使叶绿体附着物进一步析出。

3.将漏斗中的上清液收集,并加入适量乙醇,振摇混合,使叶绿素慢慢析出。

4.将释放出的叶绿体颗粒通过离心机离心沉淀10分钟,收集沉淀。

5.取收集到的叶绿体沉淀,加入适量叶绿素提取液,用乳钙酸钠解离剂进行叶绿素含量的测定。

6.将其中一部分叶绿体溶液加入高锰酸钾溶液,观察颜色变化。

7.将其余叶绿体溶液与浓硫酸混合,观察颜色变化。

结果与讨论:通过上述方法,我们成功地提取并分离出菠菜叶片中的叶绿体色素。

加入石油醚可以去除一部分杂质,使叶绿体进一步纯化。

加入乙醇可以使叶绿素从叶绿体中溶出。

通过离心沉淀,我们收集到了叶绿体的沉淀物。

叶绿体的提取液与高锰酸钾溶液反应后呈现蓝色或紫色,这是由于高锰酸钾通过氧化反应将一些具有现菌酮结构的物质氧化为合成叶绿素的前体物质所引起的。

这种反应也证实了叶绿体的存在。

叶绿体溶液与浓硫酸混合后呈现蓝绿色,这是由于浓硫酸通过剥离叶绿体周围的蛋白质和其他有机物质,将叶绿素分子释放出来,产生颜色变化。

叶绿素的含量测定是通过与乳钙酸钠解离剂反应来进行的。

乳钙酸钠解离剂能够与叶绿体中的叶绿素结合,并形成稳定的叶绿素-乳钙酸钠络合物。

这种络合物通过光密度的测定,可以根据比色法来测量叶绿素的含量。

实验3叶绿体色素的提取、分离及理化性质的测定

实验3叶绿体色素的提取、分离及理化性质的测定

实验3叶绿体⾊素的提取、分离及理化性质的测定实验三叶绿体⾊素的提取、分离及理化性质的测定【实验原理】叶绿体⾊素⼜称光合⾊素,在⾼等植物中可分为叶绿素和类胡萝⼘素两⼤类,前者包括叶绿素a(蓝绿⾊)和叶绿素b(黄绿⾊),后们类囊体膜上的蛋者包括胡萝⼘素(橙⾊)和叶黄素(黄⾊),它与⽩质结合形成⾊素蛋⽩复合体,不溶于⽔,易溶于酯,因此可⽤丙酮、⼄醇、⽯油醚等有机溶剂进⾏提取。

叶绿体⾊素的分离有多种⽅法,本实验仅介绍纸层析法。

层析的基本原理:在分离过程中,由⼀种流动相(即⼀种液体或⽓体)带动着试样经过固定相(⼀种⽀持物,如纸)向外扩散,由于试样在两相中的溶解度不同和固定相对试样中不同成分的吸附程度有别,当⽤适当的溶剂推动时,混合物中各成分在两相间具有不同的分配系数,所以它们的移动速度不同,经过⼀定时间层析后,可使试样中的各种组分得到分离,在做纸层析时,由于纸对光合⾊素中各种⾊素分⼦的吸附程度不同,以及这些⾊素分⼦在溶剂四氯化碳(推进剂)中溶解度也有差异,以致溶剂带动⾊素分⼦向四周移动时,各种⾊素分⼦沿纸扩散的速度也就不同,使混合⾊素分离,出现不同颜⾊的环。

将提取的叶绿素溶液置于光下,在透射光呈绿⾊,在反射光下呈这现象称为荧光现象。

在反射光下叶绿素溶液之所以呈樱桃红⾊,种发态,激发态的叶樱桃红⾊,是因为叶绿⾊分⼦吸收光能后处于激状绿素分⼦很不稳定,当它回到基态时,将所获得的能量以辐射能的形式发射出红光量⼦。

叶绿素的化学性质很不稳定,容易受强光、⾼温等的破坏,特别是当叶绿素与蛋⽩质分离以后,破坏更快,⽽类胡萝⼘素则较稳定。

叶绿素中的镁可以被H+所取代⽽成褐⾊的去镁叶绿素,后者遇铜后,其中的氢(H+)⼜被铜(Cu2+)取代,形成了铜代叶绿素,便由褐⾊转变成蓝绿⾊,铜代叶绿素很稳定,且⽐原来的绿⾊还要稳定些,在光下也不易被破坏。

设备试剂】【材料、与1. 材料新鲜的菠菜或⼩⽩菜等其他绿⾊植物叶⽚。

2. 设备电⼦天平、研钵、烧杯、量筒、培养⽫、刻度试管、试管夹、试管架、酒精灯、剪⼑、圆形滤纸、⼩漏⽃等。

叶绿体色素的提取分离及理化性质的鉴定

叶绿体色素的提取分离及理化性质的鉴定

(脱镁叶绿素) ↓
↓ 分离色素
Cu取代 ↓
扫描光谱 花色素实验
17
四. 结果与分析
对实验现象作好详细记录, 并加以解释 请对皂化反应现象做出合理解释,而不是
单单用反应方程式来表示
18
五. 注意事项
实验中注意安全,石油醚、丙酮等试剂要 远离火源。
研磨过程中丙酮要少量多次加入,以免研 磨时四处飞溅。
– B环上羟基和甲氧基数目 羟基数多,吸收光向长波迁移,颜色偏蓝 羟基被甲氧基替代,吸收光向短波迁移,颜色偏红
– 芳香酸对主要骨架的酯化 – 液泡中pH值 酸红碱蓝 – 营养状况 低温、缺氮、缺磷 促进化色素的形成和积累
14
不同花色素的取代基和颜色
花色素
3’
4’
花葵素
-H
-OH
花青素
-OH -OH
根据三碳桥的氧化程度可分为:
花色素苷:呈现颜色。紫色锌化物、红色的碱盐、无色化合物
黄酮
防御伤害。 存在于花器官和绿叶中。
黄酮醇 紫外光保护剂,吸收UV-B,避免细胞受到伤害。
异黄酮
功能多样。鱼藤酮杀虫,植物防御素抑制微生物。
13
花色素苷分布广,溶解于细胞液中,与花、果、叶的颜色有关。 颜色受多因素影响:
6.3 如何判断呈橙黄色的花和果实中含的是类 胡萝卜素还是花色素?
20
(2)荧光和磷光 荧光现象:Chl溶液在透射光下呈绿色,而反射
光下呈红色的现象。强度大,寿命短(10-9秒) 磷光: Chl溶液停止光照后,仍能在一定时间内
放出暗红色的光。 寿命长(10-2秒——10-3秒)
5
6
7
8
9
பைடு நூலகம் 1.2 类胡萝卜素

实验一叶绿体色素的分离及理化性质测定

实验一叶绿体色素的分离及理化性质测定
实验一叶绿体色素 的分离及理化性质 测定
目录
• 实验目的 • 实验原理 • 实验步骤 • 结果分析 • 实验总结与展望
01
CATALOGUE
实验目的
掌握叶绿体色素的分离方法
叶绿体色素的提取
通过使用有机溶剂(如丙酮、乙醇等 )从植物组织中提取叶绿体色素。
叶绿体色素的分离
采用色谱法(如薄层色谱、高效液相 色谱等)将叶绿体色素中的不同组分 进行分离。
研磨与过滤
将叶片放入研钵中,加入 适量的石英砂和无水乙醇 ,研磨至匀浆。通过纱布 过滤,收集滤液。
离心分离
将滤液倒入离心管中,用 离心机离心,分离叶绿体 色素。
叶绿体色素的分离
制备滤纸条
将滤纸剪成长约5cm,宽约1cm的纸条,标明起点。
点样与展开
用毛细管将色素提取液点在滤纸条的起点线上,然后将其放入展开 剂中(如石油醚、乙醚、丙酮等)进行展开。
色素组成
02
实验结果显示,叶绿体色素主要由叶绿素a、叶绿素b、胡萝卜
素和叶黄素组成。
含量变化
03
实验中观察到不同植物或同一植物不同部位叶绿体色素含量存
在差异。
叶绿体色素理化性质测定结果分析
溶解性
实验结果表明,叶绿体色素易溶 于有机溶剂,如丙酮、氯仿等, 难溶于水。
稳定性
在一定温度和光照条件下,叶绿 体色素稳定性较高,但在高温和 强光下易分解。
学习叶绿体色素的应用价值
生物指示剂
叶绿体色素可以作为生物指示剂,用于监测环境污染 和生态变化。
食品添加剂
叶绿体色素可用于食品加工中,如绿色饮料、果蔬汁 等,增加食品的色泽和营养价值。
生物燃料
叶绿体色素可以作为生物燃料的原料,通过微生物发 酵技术转化为生物燃料,如乙醇、生物柴油等。

叶绿体色素的提取分离、理化性质和含量测定

叶绿体色素的提取分离、理化性质和含量测定

叶绿体色素的提取分离、理化性质和含量测定1 实验目的(1)学习用薄层色谱法分离叶绿体色素的实验方法;(2)验证叶绿体素的理化性质。

2 实验原理2.1 叶绿素的提取叶绿体是进行光合作用的细胞器。

叶绿体中的叶绿素a、叶绿素b、胡萝卜素和叶黄素与类囊体膜结合称为色素蛋白复合体。

这些色素都不溶于水,而溶于有机溶剂,故可用乙醇等有机溶剂提取。

提取液可用薄层色谱法加一分离和鉴别。

2.2 叶绿素的分离薄层层析色谱法是将吸附剂均匀的涂在玻璃板上称一薄层,将此吸附剂薄层作为固定相,把待分离的样品溶液点在薄层板的下端,然后用一定量的溶剂做流动相,将薄层板的下端浸入到展开剂当中。

流动相通过毛细血管作用由下而上浸润薄层板,并带动样品在板上也向上移动,样品中各组分在吸附剂和展开剂之间发生连续不断地吸附、脱吸附、再吸附、再脱附……的过程。

由于吸附剂对不同物质的吸附能力大小不同,吸附力强的物质相对移动慢一点,而吸附力弱的物质则相对移动快一些,从而使各组分有不同的移动速度而彼此分开。

2.3 叶绿素理化性质测定叶绿素是一种由叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成甲醇和叶绿醇及叶绿酸盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。

叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。

叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较为稳定。

叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素。

去镁叶绿素遇铜则成为铜代叶绿素,铜带叶绿素很稳定,在光下不易被破坏,故常用此法制作绿色多只植物的浸渍标本。

2.4 叶绿素含量的测定根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。

根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

叶绿素理化性质的测定
一、原理
叶绿素是一种二羧酸—叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开;叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光镜检查或用分光光度计精确测定;叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。

叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。

叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。

皂化反应式如下:
二、仪器与用具
20ml刻度试管;10ml小试管;试管架;分光镜;石棉网;药匙;烧杯(100ml);酒精灯;玻棒;铁三角架;刻度吸量管2ml、5ml各1支;火柴。

三、试剂
1. 95%乙醇;苯;醋酸铜粉末;5%的稀盐酸;
2. 醋酸-醋酸铜溶液:6g醋酸酮溶于100ml 50%的醋酸中,再加蒸馏水4倍稀释而成;
3. KOH-甲醇溶液:20g KOH溶于100ml甲醇中,过滤后盛于塞有橡皮塞的试剂瓶中。

四、方法
用叶绿体色素乙醇溶液和水研磨匀浆,进行以下实验。

1. 光对叶绿素的破坏作用
(1)取4支小试管,其中两支各加入5ml用水研磨的叶片匀浆,另外两支各加入2.5ml叶绿体色素乙醇提取液,并用95%乙醇稀释1倍。

(2)取1支装有叶绿素乙醇提取液的试管和1支装有水研磨叶片均浆的试管,放在直射光下,另外两支放到暗处,40min后对比观察颜色有何变化,解释其原因。

2. 荧光现象的观察
取1支20ml刻度试管加入5ml浓的叶绿体色素乙醇提取液,在直射光下观察溶液的透射光与反射光颜色有何不同?解释原因。

3. 皂化作用(绿色素与黄色素的分离)
(1)在做过荧光现象观察的叶绿体色素乙醇提取液试管中加入1.5ml 20%KOH-甲醇溶液,充分摇匀。

(2)片刻后,加入5ml苯,摇匀,再沿试管壁慢慢加入1~1.5ml蒸馏水,轻轻混匀(勿激烈摇荡),于试管架上静置分层。

若溶液不分层,则用滴管吸取蒸馏水,沿管壁滴加,边滴加边摇动,直到溶液开始分层时,静置。

可以看到溶液逐渐分为两层,下层是稀的乙醇溶液,其中溶有皂化的叶绿素a和b(以及
少量的叶黄素);上层是苯溶液,其中溶有黄色的胡萝卜素和叶黄素。

4.吸收光谱的观察
将上述已分层的试管溶液,用分光镜观察两类色素的吸收光谱,首先让下层绿色素部分对准进光孔,看光谱有何变化;然后再将上层黄色素溶液对准进光孔,看光谱又有何变化。

把观察的结果用简单的图表示出来。

5. H+和Cu2+对叶绿素分子中Mg2+的取代作用
方法一:
(1)取两支试管,第一支试管加叶绿体色素提取液2ml,作为对照。

第二支试管中加叶绿体色素提取液5ml,再加入5%HCl数滴,摇匀,观察溶液颜色变化。

(2)当溶液变褐后,再加入少量醋酸铜粉末,微微加热,观察记载溶液颜色变化情况,并与对照试管相比较。

解释其颜色变化原因。

方法二:
另取醋酸-醋酸铜溶液20ml,以烧杯盛之。

取新鲜植物叶片两片,放入烧杯中,用酒精灯慢慢加热,随时观察并记录叶片颜色的变化,直至颜色不再变化为止。

解释原因。

五、注意事项
1.在低温下发生皂化反应的叶绿体色素溶液,易乳化而出现白絮状物,溶液浑浊,且不分层。

可激烈摇匀,放在30~40℃的水浴中加热,溶液很快分层,絮状物消失,溶液变得清澈透明。

2.分离色素用的圆形滤纸,在中心打的小圆孔,周围必须整齐,否则分离的色素不是一个同心圆。

相关文档
最新文档