电磁场与电磁波课后习题七章习题解答

合集下载

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。

解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。

利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。

那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。

2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。

3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。

试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。

解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。

解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。

那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。

由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。

《电磁场与电磁波》西安交大出版社 课后答案(全)

《电磁场与电磁波》西安交大出版社 课后答案(全)
, F2 ( x, y, z) y 分别用圆柱和圆 1.8 将直角坐标系中的矢量场 F1 ( x, y, z) x
球坐标系中的坐标分量表示。 解:在圆柱坐标系中
F1 cos sin 0 Fx1 cos sin 0 1 cos F sin cos 0 F sin cos 0 0 sin 1 y1 F 0 0 1 F 0 0 1 0 0 z1 z1 ˆ sin ˆ F1 ( , , z ) cos F 2 cos sin 0 Fx 2 cos sin 0 0 sin F sin cos 0 F sin cos 0 1 cos 2 y2 F 0 0 1 F 0 0 1 0 0 z2 z2 ˆ cos ˆ F2 ( , , z ) sin
ˆ 2y ˆz ˆ 证明 :因为 A B 2 x
A ( B) C 0
所以三个矢量 A 、B 和 C 形成一个三角形 此三角形的面积为
ˆ x 1 S A B Ax 2 Bx ˆ y Ay By ˆ y ˆ ˆ ˆ z x z Az 5 5 0 5 2 5 2 20 2 / 2 10.6 Bz 3 7 1


(e)A 和 B 之间的夹角 根据 A B AB cos 得
A B 7 cos 0.764 AB 9.163

40.19 0
(f) A 在 B 上的投影
A ˆ B 7 2.86 Ab B 2.45

电磁场与电磁波基础教程--符果行版(第2版)习题解答

电磁场与电磁波基础教程--符果行版(第2版)习题解答

《电磁场与电磁波基础教程》(第2版)(符果行编著)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=-+=-,,;A a a a a a a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⨯-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 104522405x y z x z y z ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。

1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。

1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。

1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。

1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay

3az
)
;②
A−B =
53 ;③ A • B = −11;

θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2

1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;

电磁场与电磁波第七章习题及参考答案

电磁场与电磁波第七章习题及参考答案
解设一段长为 、特性阻抗为 的无损耗传输线,左端接信号源,右端接负载 ,如图所示。信号源产生沿 方向传输的电压波和电流波为
(1)
(2)
图无损耗传输线
入射电压电流波传输到负载后,一部分被负载吸收,一部分被反射。反射电压电流波可写为
(3)
(4)
传输线上的总电压电流波可写为
(5)
(6)
在终端 ,
(7)
(8)
解:
图7.2-2
(7.2-5)
(7.2-6)
串联支路上的电压为
(1)
并联支路上的电流为
(2)
由(1)和(2)式得
(3)
(4)
两边同除 得
(5)
(6)
(5)、(6)式就是(7.2-5)和(7.2-6)式对应的传输线方程的时域形式。
7-3、由(7.2-10)、(7.2-3)、(7.2-4)和(7.2-9)式推导(7.2-11)和 (7.2-12)式。
习题
7-1、如果 已知,由无源区的麦克斯韦方程,求圆柱坐标系中 与 的关系。
解:设 ;
则 ;
在圆柱坐标系中展开无源区的麦克斯韦方程


由以上几式得
式中
7-2证明(7.2-6)式为(7.2-4)式的解。
证明:
由(7.2-6)式
可得:
因此 即(7.2-4)式
7-2、从图7.2-2的等效电路,求(7.2-5)和(7.2-6)式对应的传输线方程的时域形式。
解: 将
代入 并等式两边平方得
令等式两边实部和虚部分别相等,得
解以上两方程,得
(7.2-11)
(7.2-12)
7-4、证明(7.2-13)式为(7.2-7)式的解。

电磁场与电磁波课后习题及答案七章习题解答

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中cos cos cos n x y z x y z x y zαβγ=++=++e e e e r e e e故(cos cos cos )()cos cos cos n x y z x y z x y z x y z αβγαβγ⋅=++⋅++=++e r e e e e e e则j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z zj x y z t m e j e j βωβαβγωβαβγωββ⋅-++-++-==∇=∇+∇+∇==e E E E E e E e E e E E E而22j[(cos cos cos )]222{e }x y z t m t t βαβγωω++-∂∂==-∂∂E E E故222222()(0j j t μεβμεωμεω∂∇-=+=+=∂EE E E E E 可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程2220t με∂∇-=∂EE故E 表示沿e n 方向传播的平面波。

7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

解 表征沿+z 方向传播的椭圆极化波的电场可表示为12()j z x x y y E jE e β-=+=+E e e E E式中取121[()()]21[()()]2j zx x y y x y j zx x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

电磁场与电磁波第三版答案第七章

电磁场与电磁波第三版答案第七章

动时,电场强度将逐渐减少。试问当电场强度减少到最大值的 1 时,接收 2
电台的位置偏离正南方向多少度。 解:电基本振子的归一化方向函数为
f (θ ) = sinθ
109
习题七
由题意可知,当电场强度成为原来的 1 时,接收电台的位置偏离正南方向 45o 。 2
7-9 两个半波振子天线平行放置,相距 λ 。若要求它们的最大辐射方向在偏离天 2
∫ ∫ EP
=
j
ES0 2λ
b a e− jkr (1 + cosθ ′) d x′ d y′ r −b −a
式中, r 为口径面上 (x′, y′, 0) 点到场点 P(x, y, z) 的距离:
r = (x − x′)2 + ( y − y′)2 + z2
= x2 + y2 + x2 − 2xx′ − 2 yy′ + x′2 + y′2 = r02 − 2xx′ − 2 yy′ + x′2 + y′2
π 2
cosθ
⎢⎣ sinθ
⎟⎞ ⎠
e−
jkr
+
cos⎜⎛ π cos ⎝2 sin θ
θ
⎟⎞ ⎠
e

jkr
e−
jkh
cosθ
⎤ ⎥ ⎥ ⎥⎦
=
j 60Im r
cos⎜⎛ π cosθ ⎝2 sin θ
⎟⎞ ⎠
⎜⎜⎝⎛
2
e

j
kh 2
cosθ
⎟⎟⎠⎞
cos⎜⎛ ⎝
kh 2
cos
θ
⎟⎞ ⎠
e

jkr
远区 E 面方向因子为

《电磁场与电磁波》课后习题解答(第七章)

《电磁场与电磁波》课后习题解答(第七章)

第7章习题解答【7.1】 解:设第一个分子的球心位置为原点,即0d (d 为分子直径)处 依题意任意时刻都要满足%5)10()0(0≤-E d d E E (1)其中E 是空间变化的电场,其形式为)exp(0ikx E -=E ,ck ω=,则(1)式变为%5)210exp(1≤--cfdi π (2) 可以求出 15151019.11056.1215⨯≈⨯≤f 所以频率上限的数量级为1510【7.2】解p V k ω=p pg p g p kdV dV d V V V dk dk V d ωωω===+ 1pg pp V V V d ωω=-22()1p i o rcc V n n ωωαω==-+0i n → p V c ∴= g p V V c ==即 2g p V V c ⋅=【7.3】解(1)波数681221501022310k f πππ===⨯⨯⨯⨯=⨯(rad/m ) 相速81.510p v ===⨯ (m/s )波长 21kπλ==(m )波阻抗60ηπ==(Ω) (2)均匀平面波的平均坡印廷矢量26z m S 0.26510z e e -==⨯平均 (W/m 2)得 31010m E -=⨯(V/m )当t = 0,z = 0时33sin 10100.8668.66103m E E π--⎛⎫==⨯⨯=⨯ ⎪⎝⎭(V/m )(3) t = 0.1s μ后210sin 23E ft kz ππ-⎛⎫=-+ ⎪⎝⎭267310sin 21501011028.66103z πππ---⎛⎫=⨯⨯⨯⨯-+=⨯ ⎪⎝⎭得 1sin 3028.66103z πππ-⎛⎫+-=⨯ ⎪⎝⎭15z =(m )【7.4】 解:电磁波的频率为8820310********v f λ-⨯===⨯⨯(Hz ) 在无损耗媒质中的波长为 12810vfλ-==⨯ (m ) 故波速为12888102510210v f λ-==⨯⨯⨯=⨯=(m/s )而无损耗媒质的本征阻抗为505000.1E H η==== (Ω) 联解以下两式:8210=⨯500= 得 1.99, 1.13r r με==【7.5】 解: 803100.2c f fλ⨯===故 883101510()0.2f Hz ⨯==⨯ 而 0.09vfλ== 故 880.090.091510 1.3510(/)v f m s =⨯=⨯⨯=⨯ 又v ===故 2882(/)(310/1.3510) 4.94r c v ε==⨯⨯=【7.6】 解:由题意知 7610ωπ=⨯0.8k π==106016E Hηππ====联解6100.8ππ⨯= 和60π= 得 8,2r r εμ==【7.7】 解:因4101σωε=<<,为低损耗媒质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中
都是实数,故 也是实数。
反射波的电场为
可见,反射波的电场的两个分量的振幅仍相等,相位关系与入射波相比没有变化,故反射波仍然是圆极化波。但波的传播方向变为-z方向,故反射波也变为右旋圆极化波。而入射波是沿+z方向传播的左旋圆极化波。
透射波的电场为
式中, 是媒质2中的相位常数。可见,透射波是沿+z方向传播的左旋圆极化波。
解(1)
可见,在角频率 时,海水为一般有损耗媒质,故
(2)由 即 得
(3)
其复数形式为
故电场的复数表示式为

7.13在自由空间(z<0)内沿+z方向传播的均匀平面波,垂直入射到z=0处的导体平面上。导体的电导率 , 。自由空间E波的频率f=1.5MHz,振幅为1V/m;在分界面(z=0)处,E由下式给出
对于z>0的区域,求 。

可见,在f=1.5MHz的频率该导体可视为良导体。故
分界面上的透射系数为
入射波电场的复数表示式可写为
则z>0区域的透射波电场的复数形式为
与之相伴的磁场为

7.14一圆极化波垂直入射到一介质板上,入射波电场为
求反射波与透射波的电场,它们的极化情况又如何?
解设媒质1为空气,其本征阻抗为 ;介质板的本征阻抗为 。故分界面上的反射系数和透射系数分别为
7.15均匀平面波的电场振幅 ,从空气中垂直入射到无损耗的介质平面上(介质的 ),求反射波和透射波的电场振幅。

反射系数为
透射系数为
故反射波的电场振幅为
透射波的电场振幅为
7.16最简单的天线罩是单层介质板。若已知介质板的介电常数 ,问介质板的厚度应为多少方可使频率为3GHz的电磁波垂直入射到介质板面时没有反射。当频率分别为3.1GHz及2.9GHz时,反射增大多少?
f=100MHz时
f=1GHz时
7.8求证:电磁波在导电媒质内传播时场量的衰减约为55dB/λ。
证明在一定频率范围内将该导电媒质视为良导体,此时
故场量的衰减因子为
即场量的振幅经过z=λ的距离后衰减到起始值的0.002。用分贝表示。
7.9在自由空间中,一列平面波的相位常数 ,当该平面波进入到理想电介质后,其相位常数变为 。设 ,求理想电介质的 和波在电介质中的传播速度。
题7.16图
解天线罩示意图如题7.16图所示。介质板的本征阻抗为 ,其左、右两侧媒质的本征阻抗分别为 和 。设均匀平面波从左侧垂直入射到介质板,此问题就成了均匀平面波对多层媒质的垂直入射问题。
设媒质1中的入射波电场只有x分量,则在题7.16图所示坐标下,入射波电场可表示为
而媒质1中的反射波电场为
与之相伴的磁场为
式中取
显然,E1和E2分别表示沿+z方向传播的左旋圆极化波和右旋圆极化波。
7.3在自由空间中,已知电场 ,试求磁场强度 。
解以余弦为基准,重新写出已知的电场表示式
这是一个沿+z方向传播的均匀平面波的电场,其初相角为 。与之相伴的磁场为
7.4均匀平面波的磁场强度H的振幅为 ,以相位常数30rad/m在空气中沿 方向传播。当t=0和z=0时,若H的取向为 ,试写出E和H的表示式,并求出波的频率和波长。


该媒质在f=3GHz时可视为弱导电媒质,故衰减常数为
由 得
(2)对于弱导电媒质,本征阻抗为
而相位常数
故波长和相速分别为
(3)在x=0处,



7.12有一线极化的均匀平面波在海水( )中沿+y方向传播,其磁场强度在y=0处为
(1)求衰减常数、相位常数、本征阻抗、相速、波长及透入深度;(2)求出H的振幅为0.01A/m时的位置;(3)写出E(y,t)和H(y,t)的表示式。


7.7海水的电导率 ,相对介电常数 。求频率为10kHz、100kHz、1MHz、10MHz、100MHz、1GHz的电磁波在海水中的波长、衰减系数和波阻抗。
解先判定海水在各频率下的属性
可见,当 时,满足 ,海水可视为良导体。此时
f=10kHz时
f=100kHz时
f=1MHz时
f=10MHz时
当f=100MHz以上时, 不再满足,海水属一般有损耗媒质。此时,
《电磁场与电磁波》习题解答 第七章 正弦电磁波
7.1求证在无界理想介质内沿任意方向en(en为单位矢量)传播的平面波可写成 。
解Em为常矢量。在直角坐标中




可见,已知的 满足波动方程
故E表示沿en方向传播的平面波。
7.2试证明:任何椭圆极化波均可分解ห้องสมุดไป่ตู้两个旋向相反的圆极化波。
解表征沿+z方向传播的椭圆极化波的电场可表示为
故媒质1中的总电场和总磁场分别为
(1)
同样,可写出媒质2中的总电场和总磁场
(2)
媒质3中只有透射波
(3)
在式(1)、(2)、(3)中,通常已知入射波电场振幅 ,而 、 、 和 为待求量。利用两个分界面①和②上的四个边界条件方程即可确定它们。
在分界面②处,即z=0处,应有 。由式(2)和(3)得
解以余弦为基准,按题意先写出磁场表示式
与之相伴的电场为
由 得波长 和频率 分别为
则磁场和电场分别为
7.5一个在空气中沿 方向传播的均匀平面波,其磁场强度的瞬时值表示式为
(1)求 和在 时, 的位置;(2)写出E的瞬时表示式。
解(1)
在t=3ms时,欲使Hz=0,则要求
若取n=0,解得y=899992.m。
考虑到波长 ,故
因此,t=3ms时,Hz=0的位置为
(2)电场的瞬时表示式为
7.6在自由空间中,某一电磁波的波长为0.2m。当该电磁波进入某理想介质后,波长变为0.09m。设 ,试求理想介质的相对介电常数 以及在该介质中的波速。
解在自由空间,波的相速 ,故波的频率为
在理想介质中,波长 ,故波的相速为

(1)
无损耗媒质中的波阻抗为
(2)
联解式(1)和式(2),得
7.11一个频率为f=3GHz,ey方向极化的均匀平面波在 ,损耗正切 的非磁性媒质中沿 方向传播。求:(1)波的振幅衰减一半时,传播的距离;(2)媒质的本征阻抗,波的波长和相速;(3)设在x=0处的 ,写出H(x,t)的表示式。
解(1)
解自由空间的相位常数
,故
在理想电介质中,相位常数 ,故
电介质中的波速则为
7.10在自由空间中,某均匀平面波的波长为12cm;当该平面波进入到某无损耗媒质时,波长变为8cm,且已知此时的 , 。求该均匀平面波的频率以及无损耗媒质的 、 。
解自由空间中,波的相速 ,故波的频率为
在无损耗媒质中,波的相速为
相关文档
最新文档