哈工大数学文化结课论文 - 从数学式看数学之美

合集下载

浅谈数学之美

浅谈数学之美

浅谈数学之美【摘要】数学美是自然美的客观反映,是科学美的核心。

“那里有数学,哪里就有美”,数学美不是什么虚无缥缈、不可捉摸的东西,而是有其确定的客观内容.数学美的内容是丰富的,如数学概念的简单性、统一性,结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等,都是数学美的具体内容。

本文主要围绕数学美的三个特征:简洁性、和谐性和奇异性进行阐述。

【关键词】数学,数学美,美学特征数学美的表现形式是多种多样的,从外在形象上看:她有体系之美、概念之美、公式之美;从思维方式上看:她有简约之美、无限之美、抽象之美、类比之美;从美学原理上看:她有对称之美、和谐之美、奇异之美等.此外,数学还有着完美的符号语言、特有的抽象艺术、严密的逻辑体系、永恒的创新动力等特点。

但这些都离不开数学美的三大特征,即:简洁性、和谐性和奇异性。

1简洁性是数学美的首要特点爱因斯坦说:“美,本质上终究是简单性",“只有既朴实清秀,又底蕴深厚,才称得上至美”。

简洁本身就是一种美,而数学的首要特点在于它的简洁性.数学中的基本概念、理论和公式所呈现的简单性就是一种实实在在的简洁美。

数学家莫德尔说过:“在数学里美的各个属性中,首先要推崇的大概是简单性了”.数学的简洁性在人们生活中屡见不鲜:钱币只须有一分、二分、五分、一角、二角、五角、一元、二元、五元、十元……就可简单的构成任何数目的款项;圆的周长公式:C=2πR,就是“简洁美”的典范,它概括了所有圆形的共同特性;把一亿写成l08,把千万分之一写成10—7;二进制在计算机领域的应用……化繁为简,化难为易,力求简洁、直观。

数学不仅仅是在运算上要求这样,论证说明也更是如此。

显然,数学的公式与公理就是简洁美的最佳证据之一.1.1简洁性之一:符号美实现数学的简洁性的重要手段是使用了数学符号.符号对于数学的发展来讲是极为重要的,它可使人们摆脱数学自身的抽象与约束,集中精力于主要环节,没有符号去表示数及其运算,数学的发展是不可想象的。

数学之美论文2000数学之美论文

数学之美论文2000数学之美论文

数学之美论文2000数学之美论文数学之美论文篇一人类对数学的认识最早是从自然数开始的。

这看似极普通的自然数里面,其实就埋藏着数不尽的奇珍异宝。

古希腊的毕达哥拉斯学派对自然数很有研究,当他们将这数不尽的奇珍异宝的一部分挖掘出来并呈现于人类面前时,人们就为这数的美震撼了。

其实,“哪里有数学,哪里就有美”,这是古代哲学家对数学美的一个高度评价。

一、简洁美数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。

如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。

欧拉给出的公式:V-E+F=2堪称“简单美”的典范。

世间的多面体有多少没有人能说清楚。

但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。

二、和谐美古希腊数学家毕达哥拉斯有一句至理名言:“凡是美的东西都具有共同的特性,这就是部分与部分、部分与整体之间的和谐性。

”三、对称美毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。

圆是中心对称图形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。

对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。

如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。

数学美学中的对称美并不局限于客观事物外形的对称。

它着重追求的是数学对象乃至整个数学体系的合理,匀称与协调。

数学概念,数学公式,数学运算,数学方程式,数学结论甚至数学方法中,都蕴含着奇妙的对称性。

数学课堂之美论文

数学课堂之美论文

数学课堂之美论⽂ 数学拥有⾮凡的美,⽽数学之美不像⾃然⽣长的鲜花那么显⽽易见,在数学课堂教学中,需要⽼师的耐⼼引导,学⽣才能够发现。

下⾯店铺给你分享数学课堂之美论⽂,欢迎阅读。

数学课堂之美论⽂篇⼀ 长期以来,⼈们在数学教学中只致⼒于基础知识、基本技能与逻辑思维的教学与研究,⽽不善于发掘数学本⾝所特有的美,不注意⽤数学美来感染诱发学⽣的求知欲望,激发他们的学习兴趣,不重视引导学⽣发现数学美,鉴赏数学美,更谈不上引导学⽣创造数学美,以致使⼀些学⽣感到数学抽象枯燥,失去学好的信⼼。

那么什么是数学美?在⼩学数学教育中如何发挥数学的美育功能呢?这是⼀个值得我们每⼀位⼩学教师思考的问题,我从以下⼏个⽅⾯进⾏了⼩学数学教学中美育渗透途径的研究。

⼀、在教材中感悟美 ⼈们常说数学是万花筒,是⼀个五彩缤纷的世界。

在数学教材中,蕴藏着丰富的美育因素,现⾏的数学教材正确处理了数学学科特点与⼉童认知规律、德育与智育、教与学、减轻负担与提⾼素质等⽅⾯关系,把数学的抽象美、符号美、数的神奇美、数的和谐美和概括美、猜想美、浓浓的时代⽣活⽓息美、开放灵活美等融⼊在⾥⾯。

我认为,挖掘和提炼教材中的美育因素,让学⽣感知数学美的存在,是激发学⽣情感,陶冶学⽣⼼灵的有效途径。

如在许多⼏何图形中就充满着⽆穷⽆尽的美,闪烁着美的风采。

在教学《长⽅形、正⽅形、圆》时,我⼀⾛进教室,教室⾥所有学⽣的⽬光都聚集于我的胸前。

“哇”有的学⽣忘乎所以地叫了来:“王⽼师,你今天真漂亮!”我就问:“为什么,今天⽼师看起来这么漂亮呢?”学⽣马上叫起来:“⽼师的⾐服上贴了各种各样的粘纸,有长⽅形、正⽅形和圆形的。

”学⽣被我这⼀举动⼀下⼦吸引住了,所以在接下去的学习中他们学得特别带劲。

离下课还有近五分钟时,我布置了⼀个节⽬:“请⼩朋友们把发下来的卡⽚制作成⼀张明信⽚,正⾯⽤长⽅形、正⽅形、圆形粘纸进⾏组合拼贴,设计⼀幅美丽的图画,然后送给你最好是朋友。

”学⽣特别兴奋,直到下课都不愿停⼿。

数学之美文章

数学之美文章

数学之美文章数学是一门探索抽象概念和逻辑推理的学科,它隐藏着一种无穷的美。

数学之美不仅体现在其应用于现实世界的能力上,更体现在它自身的纯粹性和美妙的结构中。

数学之美体现在它的纯粹性上。

数学是一种纯粹的学科,它不受时间和空间的限制,存在于人类思维的领域中。

数学的概念和定理并不依赖于具体的实例,而是建立在严密的逻辑推理之上。

在数学中,我们可以通过推理和证明来发现和理解数学定理的美。

例如,勾股定理是一个简单而优雅的数学定理,它揭示了直角三角形边长之间的关系,无论是在几何学还是物理学中,勾股定理都起着重要的作用。

数学之美还体现在它的结构和模式中。

数学是一个由各种概念、定理和公理组成的系统,这些元素之间存在着丰富的关系和相互作用。

数学家们通过研究这些关系和作用,揭示了数学的深层结构和模式。

例如,数列是数学中一种常见的结构,它由一系列按照一定规律排列的数字组成。

在数学中,数列可以用来研究数的性质和规律,如斐波那契数列和调和级数等。

这些数列中的规律和结构不仅具有美感,而且对于解决实际问题也具有重要意义。

数学之美还体现在它的应用中。

数学是一种非常实用的学科,它在自然科学、工程技术、经济学等领域中都起着重要的作用。

数学的应用不仅能够解决实际问题,还能够提供新的思维方式和解决问题的方法。

例如,微积分是数学中的一个重要分支,它的应用广泛涉及到物理学、经济学、计算机科学等各个领域。

微积分的概念和方法不仅能够描述物体的运动和变化,还能够解决最优化问题和计算机算法设计等实际问题。

数学之美体现在它的纯粹性、结构和应用中。

数学的纯粹性使其成为一门深奥而美丽的学科,数学的结构和模式揭示了它的内在美感,数学的应用则使其成为一种强大的工具。

通过学习和探索数学,我们不仅能够领略到数学的美,还能够培养逻辑思维和解决问题的能力。

数学之美如同一幅抽象的艺术品,让我们在思维的海洋中尽情畅游。

无论是从纯粹性、结构还是应用角度来看,数学都是一门充满魅力的学科,它的美妙之处正等待我们去发现和探索。

大学生数学毕业论文

大学生数学毕业论文

目录摘要 (1)一、数学之美 (2)1.数学与哲学 (3)2.数学的简洁美 (3)3。

数学的对称美 (3)4.数学的和谐美 (4)5.数学的奇异美 (5)6.数学的统一美 (5)二、数学美的作用 (5)三、数学审美能力的培养 (6)四、数学审美感知能力的培养 (6)五、数学审美想象力的培养 (7)六、数学审美评判能力的培养 (7)总结 (8)浅析数学中的美摘要我们从小就开始接触和学习数学这一学科,它在我们的学生生涯中占了很重的位置.一方面往往把数学理解成很枯燥乏味的东西,对它丝毫没有兴趣,一连串的数字和一排排的公式,是我们对数学这门学科的直观认识,甚至一提起数学这两个字,很多同学就会犯困犯晕.然而,在另一方面,我们都有这样的体验,很多人都以能否学好数学来判断自己是否足够聪明,如果数学学不好,就会自信全无,甚至影响自己学习其他课程的热情.所以很多人的学习生涯,都是伴随着数学这一学科成长起来的.科学家说数学就是科学,哲学家说数学就是真理,艺术家说数学就是艺术.那么数学到底是什么呢,它真那么令人头痛吗?曾经有人说过,科学、艺术和哲学,好比金字塔底部的三个点,顺着那条线不断上升,就会越来越接近,最后到达顶点,变得完美。

亦即三者是可以和谐统一的。

比如我国著名数学家华罗庚就说过数学也是艺术之类的话。

20世纪最伟大的科学家爱因斯坦也说过,科学的艺术就是美的艺术,看来,数学并不是那么的枯燥乏味,如果我们能够拥有一颗审美之心去看待它的话,数学也可以是美的。

那么美是什么?可能仁者见仁,智者见智。

西方哲学家康德绕开这个问题,提出:审美是什么?他认识到的美是能够使我们内心产生愉悦的且不受客观世界影响亦即不受现实价值观等的自然的比较主观的东西。

现在就让我们抛却对数学的成见,带着一颗纯粹的审美之心,一起去发现数学中存在的美吧.关键词:简洁美;,统一美;协调美,对称美;奇异美、数学美的作用。

当你倘佯在音乐的殿堂,聆听优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“语不惊人死不休”的绝妙语句,一定能够领悟文学带给你的的“美”……美的事物,总是为人们乐意醉心追求的。

数学文化课结课论文

数学文化课结课论文

数学文化结课论文——数学与数学美姓名:班级:学号:专业:数学与数学美作者:单位:学号:摘要:要激发学生学习数学的兴趣,就得把要学生学数学变成学生自己要学数学,让枯燥无味的数学变得“有趣、有味、有惑”。

学习数学中简单图形的美,使学生感到学习“有味”。

通过发现数学中的和谐美,使学生感到学习数学“有趣”。

发现数学中的残缺美,提高学生分析问题的能力,使学生感到学习数学也“有惑”,激发学生想学习下去的欲望。

正文:学习兴趣是学生学习自觉的核心因素,是学习动力的源泉,是一种无形的力量,是学生学习的强化剂和学好数学的保证。

学生怕学数学,甚至是讨厌数学,症结就在于对数学缺乏兴趣。

要激发学生学习数学的兴趣,就得把要学生学数学变成学生自己要学数学,让枯燥无味的数学变得“有趣、有味、有惑”。

因而,如何解决这一难题,我认为利用数学中的美来激发学生学习数学的兴趣是一种行之有效的方法。

在教学中,我一直都在探讨这样一些问题:如何用数学美来唤起学生学习数学的兴趣?数学究竟美在哪里?我认为:数学美在数量关系与空间形式上表现出来的简单美、和谐美和残缺美。

法国数学家庞加莱说得十分中肯:“到底是什么使我们感到一种解法、一种证明的优美呢?那就是各部分间的和谐、对称与恰到好处的平衡。

”我发现若能在数学教学中引导学生体味其中的美,特别是若能用数学美来解答数学问题,定能激发学生的学习欲望,大大提高学生学习的兴趣,以下是我的几点尝试:一、学习数学中简单图形的美,使学生感到学习“有味”。

1、优美的图形总带给人们美的享受。

如华东师大版初一数学(上)第一章P13第六题:请以给定的图形(两个圆、两个三角形、两条平行线)为构件,构思独特且有意义的图形,并写一两句诙谐的解说词。

在教学中我让学生先个人设计,发挥想象,并相互交流,然后对全班同学中的优秀作品展示并评奖。

如“战车”、“风筝”、“夕阳夹山”、“倒影入溪”等许多构思巧妙、意义丰富的图形加上诙谐的解说词,让同学们体会到成功的乐趣。

研究论文:浅谈数学中的美

研究论文:浅谈数学中的美

84118 数学论文浅谈数学中的美马克思说过人类对美的追求的结晶就是社会的进步,换句话说就是,由于人类对美的渴望、对美的追求才促使了社会的发展。

的确如此,文明发展源于对美的向往,文明进步源于对美的追求。

数学是真理与美并存的一门科学。

但是数学美不像绘画美有华丽的装饰,也不像音乐美有婀娜的音符。

数学美是一种纯净的、高贵的、冷而严肃的美。

数学美是世界之美的原型,一切事物生存发展的本质特征就是对美的追求,拥有数学美感以及数学审美能力是进行数学研究和数学创造的前提基础。

简洁美。

先来看一个公式E=mc2,看似简单无奇实则寓意深远,它深刻揭示了从微观到宏观再到宇观的质能变化规律。

爱因斯坦对人类的贡献不用多说也是众所周知的,恰恰这个如此简单的式子就代表了相对论的精髓。

再来看我们都熟悉的数学数字1,1可以说是数学里面最为简单的数了,但是1却被视为万物的开端,世界的本源,整个世界都是由它派生而来,何其妙哉。

对称美。

圆,太阳的象征,“一切平面图形中最美的图形”;美不胜收的埃及金字塔;铜钱式的圆中方;美丽的“雪花”图案;无不表现出对称美以及和谐美。

我们知道这世间最美的立体图形和平面图形分别是球形与圆形。

大家会发现一个有趣的事,圆形不仅是中心对称图形还是轴对称图形,球形则是点对称、线对称、面对称图形。

当然不是只有几何中才有对称美,下列是对称的杨辉三角。

美吗?答案是明确的。

美,往往是无意间发现的,很多时候我们并不知道我们想要的美是怎样得来的,是想出来的还是算出来的,其实都不是,更多的是无意间发现的。

通过公式定理以及方程等的证明、绘图等,很容易得出以前未曾定义过的美。

如与与与的图像,对称是显然的,除此之外,中心处还有一朵小花,美吗?当然!奇异美。

生活充满惊喜,数学充满奇异。

奇异,就是指新颖奇特,意想不到。

数学中的奇异存在于数学的每一个角落,利用简单的数学线条能够拼凑出简单的数学图形,也能够拼凑出姿态万千的图案,还可以勾勒出美不胜收的艺术珍品。

数学中的数学之美

数学中的数学之美

数学中的数学之美数学,作为一门古老而又深奥的学科,一直以来都给人们带来无尽的探索和惊喜。

在数学的世界中,有着一种特殊而又独特的美感,被称之为“数学之美”。

这个概念源自于数学家吴军的著作《数学之美》,它揭示了数学与现实之间的美妙联系和奇妙的智慧。

本文将探讨数学中的数学之美,并举例说明其在几个重要数学领域的应用。

一、对称美数学中的对称美是数学之美的一种表现形式。

数学中的对称以及对称性在整个自然界都有着广泛的应用。

在几何中,我们可以看到各种各样的对称图形,如正方形、圆和螺旋线等。

而对称性的思想则进一步应用到代数中,如群论、格论等领域。

二、简洁美数学中的简洁美是指数学概念和原理能够用简洁而优美的方式表达出来。

数学家们通过推理和证明,将复杂的数学问题转化为简单的公式和方程,使得数学问题更具可读性和可解性。

例如,欧几里得几何学的五条公理,以及爱因斯坦的质能方程E=mc²,无一不展示着数学中的简洁美。

三、深邃美数学中的深邃美是指数学中的某些理论和定理能够揭示出人类观察和思考所无法达到的深邃世界。

高维几何、复数理论以及数论等领域都体现了这种深邃美。

例如,费马大定理和哥德巴赫猜想,这些问题困扰数学家数百年之久,却也催生出了一系列重要的数学发现和创新。

四、普适美数学中的普适美是指数学在各个学科和领域中都具有普适性和广泛的应用。

数学无处不在,从物理学到化学,从经济学到生物学,数学都能够为这些学科提供理论基础和工具方法。

例如,微积分的发展为物理学和工程学等提供了核心的数学工具,线性代数和概率论则为计算机科学和统计学等领域提供了基础。

总的来说,数学中的数学之美包含了对称美、简洁美、深邃美和普适美等多个方面。

这些美感在数学领域中的应用和发展中起到了重要的推动作用。

同时,数学之美也激发和启迪了人们对数学的兴趣和热爱,促进了数学教育和研究的发展。

数学,作为一门独特的语言和思维方式,不仅仅存在于数学书籍和公式中,更贯穿于人类的思维和生活的方方面面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从数学式看数学之美
【摘 要】在数学这门学科里,处处充满着等式、不等式、关系式等各式各样的式子,这些式子往往表达了几个相互关联的量之间的关系,本文通过介绍几个著名的数学式,从不同的角度去理解观察这些式子,加深对这些数学式的认识,从中挖掘数学文化的内涵和数学之美。

【关键字】数学文化 欧拉公式 勾股定理 牛顿-莱布尼兹公式
数学文化包含着数学的思想、精神、方法、观点、语言,以及它们的形成和发展,数学文化还包含数学家,数学史,数学美,数学教育。

数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。

可见数学文化是一个非常广阔的命题,就更不用说数学了,毕达哥拉斯说万物皆数,数学是一个奇幻而美丽的学科,其中数不清的数学式就包含着一种数学独有的美,下面就让我们从数学式的角度去欣赏数学之美。

1. 欧拉公式
1748年,瑞士数学家、复变函数论的先驱者欧拉导入了一个重要的公式:
θθθsin cos i i e +=
这就是著名的欧拉公式.下面我们来分析欧拉公式中蕴含的数学美。

欧拉公式包含着统一多样美。

在欧拉公式中,第一次将指数函数、虚数单位i 与三角函数统一于一个优美而简洁的公式中。

欧拉公式具有一目了然的简洁美,而愈简单就愈能体现真、善、美的统一。

一位哲人说:美是真理的光辉。

而欧拉公式就是向人们永远发出熠熠夺目的真理光辉的典范!举世公认的科学巨匠爱因斯坦曾经宣称我们在寻求一个能把观察到的事实联结到一起的思路体系,它将具有最大可能的简单性.我们说.欧拉已经寻求到了一个美妙绝伦的公式,它在把指数函数、三角函数和虚数联结到一起时,就具有了最大可能的简单性。

欧拉公式具有和谐奇异的美。

令πθ=,得到01=+πi e ,式中出现了五个常数
e,i,π ,1 ,0,它们都是自然科学中十分重要的常数。

在法国巴黎的发明宫中,有一个数学史陈列室,其中在古代数学与近代数学部分的间壁培上,就悬挂着这个公式,这是非常发人深思的,这个公式散发着奇花异草般的芳香,表砚出惊人的数学奇异美:π和e 是重要的超越数.-1与i.又标志着数学发展的两个重要阶段—数的概念由正数扩展到负数,由实数扩展到虚数,和谐美与奇异美对立统一于一体。

欧拉公式还具有动态平衡美。

数学的动态平衡美,反映出事物的量变到质变的规律,若将欧拉公式展开成幂级数形式就不难看出其动态美了,事实上欧拉公式的多样统一美与和谐奇异美也是幂级数收敛于和函数的极限过程的动态平衡美的结果。

2. 勾股定理
大体上勾股定理可以从两方面描述: 1.从代数角度叙述:直角三角形两直角边的平方和等于斜边的平方.如果用a 、b 和c 分别表示直角三角形的两直角边和斜边,那么a2 + b2=c2。

2.从几何角度叙述:以直角三角形斜边为边的正方形的面积等于以直角三角形两直角边为边的正方形的面积和。

如上所述,该定理内容精准、清晰、言简意赅,在用最平实的语言阐明道理的同时,留给读者充足的想象空间,引发其积极思考.其中公式a2 + b2 = c2形式整齐、和谐、简单、美观,给人以美的感受.另外,此定理的条件恰到好处,多一个太多,少一个
太少,严密简练.爱因斯坦说过“美,本质上终究是简单性.”这种简单性、准确性、严密性是美的特征,也是数学美的基本内容。

有着“千古第一定理”之称的“勾股定理”可以说是初等数学中最重要、最美丽的定理.之所以美丽,不仅在于定理本身是联系数学中最基本、最原始的两个对象—数与形的第一定理,是代数方法与几何方法相互渗透的完美体现;不仅在于它是解决许多问题的重要工具和有效媒介,在现实生活中有着广泛的应用;更在于其本身蕴涵的丰富历史见证了古代人民的坚持与智慧,更见证了数学这门科学不断发展、不断超越的光辉历程。

3.牛顿-莱布尼兹公式
我们知道,微积分主要由微分学和积分学两大部分构成。

历史上微分学的中心问题是切线问题,积分学的中心问题是求积问题,微分和积分本质上是平行发展互不干涉的两个概念。

而当牛顿一莱布尼兹公式出现后,才在微分和积分之间架起一座联系的桥梁。

该公式不仅给出了计算定积分的具体方法,而且在理论上标志着微积分完整体系的形成。

从此,微积分才真正成为互相不能分离的一门学科。

牛顿-莱布尼兹的公式不仅没在它将微分学和积分学联系到了一起,更美在牛顿一莱布尼兹公式还揭示了这样的一个事实:定积分可归结为一个只与被积函数与积分区间端点有关的量。

并且这一思想可以推广到多元函数的积分,如林格公式、高斯公式、斯托克斯公式就表明多元函数在某个区域上的积分,可归结为一个只与被积函数和积分区域的边界有关的量(积分区域为区间时,其区域为区间端点;积分区域为平面区域或曲面区域时,其边界为一条封闭的曲线)。

导数、微分、不定积分、定积分是微积分学中最重要的概念。

其中微分与不定积分都是由导数定义的,三者之间的联系是显而易见的,但定积分同这三个概念间的联系都不能从定义中看出,正是牛顿一莱布尼兹公式从理论上揭示了定积分与微分间的互逆关系,使微积分的四个重要概念融为一体。

数学本身蕴含着鲜活的文化背景,浸润了人类不断探索、不断发现的精神本质和力量,与人类社会(自然的、人文的、历史的)有着千丝万缕的联系。

数学视角使我们透过现象看本质,透过孤立的事物看其背后的关联,体察思想与方法的激烈碰撞与高度统一。

只要用心感受我们就会发现数学无处不在、数学无处不用、数学无处不美。

参考文献:
徐光甫、张邦基.欧拉公式中的数学美.东疆学刊.1998.11.15
吴晓丹、徐章韬.欣赏数学之美-以勾股定理为例.中国数学杂志.2015.04.10
王世莹.牛顿-莱布尼兹公式随想.成都教育学院学报.2002.07.15。

相关文档
最新文档