初一数学下能力测试题(五)
初一数学能力测试题(五)

初一数学能力测试题(五)初一数学能力测试题(五)班级_______姓名_______一.填空题1.-64的绝对值的相反数与-2的平方的差是___________2.的平方的倒数与0.5倒数的平方的和的相反数是_________3.计算的结果等于________4.若,则=_________5.一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是______6.109除以一个两位数的余数是4,则适合上述条件的两位数有__________个,两位数是_____________________7.已知a_lt;0,-1_lt;b_lt;0,则a,ab,ab2从小到大排列的顺序是_______________8.在四个互不相等的正数a.b.c.d中,a最大,d最小,且,则a+d与b+c的大小关系是____________9.7100-1的末位数字是________10.将0,1,2,3,4,5,6分别填入圆圏和方格内,每个数字只出现一次,组成只有一位数和两位数的整数算式11.甲.乙两个长方形,它们的周长相等,但甲的长:宽=3:2;乙的长:宽=7:5,则甲面积:乙面积=___________12.小明训练1000米长跑,如果速度提高5%,那么时间比原来的要缩短_________%(保留一位小数)13.按一定规律排列的一串数:中,第98个数是_____________14.下面的算式里,符号□.○.和△分别代表三个不同的自然数,这三个数的和是________15.已知代数式m2+m-1=0,那么代数式m3+2m2+_=___________16.一群整数朋友按照一定的规律排成一排,可排在□位置的数跑掉了,请帮它们把跑掉的朋友找回来.(1)5,8,11,14,□,20;(2)1,3,7,15,31,63,□;(3)1,1,2,3,5,8,□,21二.选择题1.下列两列数:2,4,6,8,10,12,……1994;6,13,20,27,34, (1994)这两列数中,相同的数的个数是( )A.142B.143C.284D.2852.在数轴上表示和两点的中点所表示的数是( )A. B. C. D.3.如果a_lt;-2,则等于( )A.3-aB.a-3C.1+aD.-1-a4.两个质数的和是49,则这两个质数的倒数和是( )A. B. C. D.5.若a_gt;,那么a的取值范围是( )A.a_gt;0B.a_lt;0C.a_gt;1或-1_lt;a_lt;0D.a_gt;16.在自然数中,前50个奇数的和减去前50个偶数的和的差是( )A.100B.-100C.50D.-507.已知a.b.c.d是互不相等的整数,且abcd=9,则a+b+c+d的值等于( ) A.0 B.4 C.8 D.不能求出8.当0_lt;__lt;1时,_2,_,的大小关系是( )A._2<_<B.<_2<_C._<< _2D._ <_2<三.解答题:非负数a.b.c满足a+b-c=2,a-b+2c=1,求s=a+b+c的最大值和最小值。
初一数学下能力测试题(五)-初中一年级数学试题练习、期中期末试卷-初中数学试卷_1

初一数学下能力测试题(五)-初中一年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载初一数学下能力测试题(五)班级姓名一.填空题1、,2、;3、;4、(x—1)(x+5)=_________,(x+5)(x—3)=_____________5、(2a+b)(—a+2b)=__________,(3x—2y)(3x—4y)=____________6、;7、如果(2x+3)(x—5)=2x2—mx+n,则m=___________,n=___________8、如果,则m=__________9、如果是一个完全平方公式,则m=___________10、如果a2—b2=12,—a+b= —4,则a+b=____________11、已知:(2x+3)(ax—2)=6x2—kx+b,则a=__________;b=__________;k=_________12、已知a2+b2=25,a+b=6,则(a—b)2=__________,ab=_____________13、如果(x+y)2—4(x+y)+4=0,则x+y=_____________14、如果(a2+b2)(a2+b2—6)+9=0,a2+b2=__________15、如果x2+y2—4x—6y+13=0,则xy=____________16、已知xy=6,则(2x+3y)2—(2x—3y)2=____________二.选择题1、下列计算中,运算正确的有几个()(1),(2),(3),(4)A、0个B、1个C、2个D、3个2、下列各式的计算中,正确的是()A、(—3a3)3= —9a27B、(—a2)3= —a6C、—(—a2)4=a8D、(a2)3=a53、计算的结果是()A、0B、1C、2a15D、—2a154、下列计算中,正确的是()A、(ab)3=ab3B、(—2ab2)3= —6a3b6C、—(—ab)3=a3b3D、(—2ab)2= —4a2b25、下列各式中,计算错误的是()A、(x+1)(x+4)=x2+5x+4B、(m—2)(m+3)=m2+m—6C、(x+4)(x—5)=x2+9x—20D、(y—1)(y—2)=y2—3y+26、下列各式中计算正确的是()A、(a+b)3=a3+b3+3abB、(—a—b)2=a2+b2+2abC、(—a+b)2= —a2+b2—2abD、(b—a)4= —(a—b)47、下列各式中能用平方差公式计算的是()A、(—x+2y)(x—2y)B、(1—5m)(5m—1)C、(3x—5y)(—3x—5y)D、(—a—b)(b+a)8、下列计算中结果正确的是()A、(a+b)2=a2+b2B、(a+2)(b—2)=xy—4C、(—a—b)(a+b)=a2—b2D、(a2+b2+2)(a2+b2—2)=(a2+b2)2—49、下列各式中能运用平方差公式计算的有几个()(1) (2—a)(2+a)(4+a2)(2)(a+2b—c)(a—2b+c)(3)(—a+b)(—a—b)(4)(xn+yn)(xn—yn)(5)(a+b)2+(a—b)2A、1个B、2个C、3个D、4个10、下列各式中,能够成立的是()A、(2x—y)2=4x2—2xy+y2B、(x+y)2=x2+yC、D、(a—b)2=(b—a)211、如果4x2—Mxy+9y2是一个完全平方式,则M的值是()A、72B、36C、—12D、±1212、下列计算正确的是()A、(a+b)2=a2+b2B、(a—b)2=a2+2ab—b2C、(—a+b)2=a2—2ab+b2D、(—a—b)2=a2—2ab+b213、若m,n是整数,那么(m+n)2—(m—n)2的值一定是()A、正数B、负数C、非负数D、4的倍数14、计算的结果是()A、B、C、D、15、已知(3x+2y)2+(2x—3y)2=26则x2+y2的值等于()A、1B、2C、3D、416、已知(a2+b2—3)(a2+b2+1)= —4,则a2+b2等于()A、±1B、1C、—1D、0三.计算题1、2、3、4、5、6、7、(a+b)(a—b)(a2+b2)(a4+b4)8、9、10、(2x2+3x+5)2—(2x2+3x+4)211、(5a+3b—2)(5a—3b+2)12、x4—(x—1)(x+1)(x2+1)13、(2a2+3b2)2—(2a2—3b2)214、(x+y)2(x—y)2(x2+y2)215、16、17、已知:a+b+c=6,a2+b2+c2=14,求ab+bc+ac的值18、观察下列各式:;;现在已知a+b=5,ab=4,请根据上面的等式求出的值欢迎下载使用,分享让人快乐。
2017-2018学年度最新浙教版七年级数学下册《整式的乘除》能力测试题及答案解析精品试卷

浙教版七下数学第三章:整式的乘除能力测试一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1. 下列运算正确的是( )A.1243a a a =⋅B.()9633222b a b a -=-C.633a a a ÷=D. ()222b a b a +=+2.已知3,5=-=+xy y x 则22y x +=( ) A. 25. B 25- C 19 D 、19-3.计算()()2016201522-+-所得结果( ) A. 20152- B. 20152 C. 1 D. 24. 若79,43==y x ,则y x 23-的值为( )A .74B .47C .3-D .72 5.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 6. 23227(257)(______)55a b ab ab b -+÷=-括号内应填( ) A. ab 5 B. ab 5- C. b a 25 D. 25a b -7.如果整式29x mx ++ 恰好是一个整式的平方,那么 m 的值是( )A. ±3B. ±4.5C. ±6D. 98.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( )A. 2B. 0C. ﹣1D. 19.下列等式正确的个数是( )①963326)2(y x y x -=- ②()n n a a 632=- ③9363)3(a a =④()5735(510)7103510⨯⨯⨯=⨯ ⑤2)25.0(2)5.0(100101100⨯⨯-=⨯-A. 1个B. 2个C. 3个D. 4个10.3927的个位数是( )A. 7B. 9C. 3D. 1二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.若622=-n m ,且3=-n m ,则=+n m 12.方程()()()()32521841x x x x +--+-=的解是______13.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是__________14.若13x x-= ,则221x x += 15.若代数式232x x ++ 可以表示为2(x 1)(x 1)b a -+-+ 的形式,则a b += ________16.定义新运算“⊗”规定:2143a b a ab ⊗=-- 则3(1)⊗-= ___________ 三.解答题(共7题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题8分)计算下列各式:(1)()()222226633m n m n m m --÷-(2)()()()()233232222x y x xy yx ÷-+-⋅18(本题8分)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中21a =-.19(本题8分).已知751812,,1,1y y y x x xy x n m n n m =⋅=⋅>>----,求n m ,的值20.(本题10分)(1)若0352=-+y x ,求y x 324⋅的值 (2)已知2x -y =10,求()()()222x y x y 2y x y 4y ⎡⎤+--+-÷⎣⎦的值21(本题10分).观察下列等式,并回答有关问题:2233324121⨯⨯=+; 223334341321⨯⨯=++; 22333354414321⨯⨯=+++; (1)若n 为正整数,猜想=+⋅⋅⋅+++3333321n (2)利用上题的结论比较3333123100+++⋅⋅⋅+与25000的大小.22(本题10分)(1)关于x 的多项式乘多项式()()2321x x ax --+,若结果中不含有x 的一次项,求代数式:2(21)(21)(21)a a a +-+-的值。
初一数学下能力测试题(一)

初一数学下能力测试题(一)班级_________姓名___________一.填空题1.多项式4x 2-7xy 2+3x -14是 次 项式,它的二次项是 ,它的最高次项的系数是 ____ ,常数项是 。
2.在代数式0,-x,1x -, 2x π中,单项式有_________ 个。
3.当m= 时,2312m x y -是六次单项式。
4.已知2x 3y 2和-x m y n是同类项,则代数式9m 2-5mn -17的值为 。
5.[-(-x)2]3= ,(a 4)3·(-a 3)5= ,()3723a a a÷⋅=6.()()()8231_______11x x x -÷⋅-=-, 11122______2n n n +--+=⨯ 7.19_________3n n+÷= 20012002120.4_________2⎛⎫⨯= ⎪⎝⎭8.()()2223210310_________---⨯⨯-⨯=(写成科学记数法的形式)二.选择题:1.不是同类项的是( )A.-25与1B.-4xy 2z 2和-4x 2yz 2C.-x 2y 与-yx 2D.-a 3与-4a 32.下列等式中能成立的个数是( )(1) x 2m =(x 2)m (2)a 2m =(-a m )2 (3)x 2m =(x m )2 (4)x 2m =(-x 2)mA.4个B.3个C.2个D.1个 3.下列计算中,正确的是( )A.3a -2a=1B.-m -m=m 2C.7x 2y 3-7x 2y 3=0D.2x 2+2x 2=4x 44.下列去括号中,错误的是( )A.3x 2-(x -2y+5z)=3x -x -5z+2yB.5a 2+(-3a -b)-(2c -d)=5a 2-3a -b -2c+dC.3x 2-3(x+6)=3x 2-3x -6D.-(x -2y)-(-x 2+y 2)=-x+2y+x 2-y 25.下列计算正确的是( )A.(ab m )n =a n b m+nB.[-(-x)2y]2=x 6y 3C.(x -y)(-x+y)=-x 2-y 2D.(5a+3b)(3b -5a)=-25a 2+9b 26.化简()3432212a b a b -⋅÷的结果是( )A.216b B. 216b - C. 223b - D. 223ab -7.下列计算正确的是( )A.236236x x x ⋅=B. 336x x x += C. ()222x y x y +=+ D.()32mm m x x x ÷=8.在下列运算中,正确的是( )A.()10428x x x x ÷÷= B.()()532xy xy xy ÷=C.212n n xx x ++÷= D.423n n n n x x x x -÷⋅=9.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭等于( ) A.214a c B. 14ac C. 294a c D. 94ac 10.下列各乘式中,不能用平方差公式计算的是( ) A.(x -y)(-x+y) B.(-x+y)(-x -y) C.(-x -y)(x -y) D.(x+y)(-x+y)11.若x 2-x -m=(x -m)(x+1)且x ≠0,则m=( ). A.0 B.-1 C.1 D.212.若多项式244x nx m ++等于()22x n +,则m 、n 满足( )A.20m n +=B. 20m n -=C. 20m n +=D. 20n m -= 13.在下列各式中,运算结果是223649y x -+的是( ) A.()()6767y x y x -+-- B. ()()6767y x y x -+- C.()()7479x y x y -+ D. ()()6767y x y x ---14.()()121341224n n n n y y y y ++--+-÷-等于( )A.23111862y y y -++ B. 22121111862n n n y y y +--+ C. 23111862y y y -+ D. 22121111862n n n y yy +---- 15.化简()()()()243a b c b a c a c b b c a -+⋅--⋅+-⋅--结果是( )A.()10a b c --+ B. ()10a b c -+ C. ()10a b c -- D. ()10a b c ---三.计算题 1.()()()32423a a a -⋅-⋅- 2. ()()342232m x y mxy -÷-3.()()()564410510310-⨯⨯⨯ 4. ()()()2323337235x x x x x -⋅--+-⋅5. ()222212252a ab b a a b ab ⎛⎫-⋅--- ⎪⎝⎭6. ()()1002000.252---⨯-7.22322251253523a b a b ab a b b ab ⎛⎫⎛⎫-+--⋅ ⎪ ⎪⎝⎭⎝⎭8.()()()()()453243245422x x x x a a ⎡⎤-⋅---÷---⋅⎢⎥⎣⎦四.解答题 先化简,再求值1.()()222222a a ab b b ab a b ----+-,其中13a =,12b =2.()()()3223222132332mn m mmn n m n ⎡⎤--⋅÷-⎢⎥⎣⎦,其中10m =,1n =-3.已知105m=,104n =,求2310m n -的值.4.一个正方形的一边增加3cm ,另一边减少3cm ,所得到的长方形与这个正方形的每一边减少1cm 所得到的正方形的面积相等,求这个长方形的长和宽。
人教版七年级数学下册第五章测试题(含答案)

农村管理创新探讨随着城市化的推进和农村经济的快速发展,农村管理面临着新的挑战和需求。
如何利用现代科技和管理理念,提升农村管理水平,助力农村发展,成为亟待解决的问题。
本文将从不同角度出发,探讨农村管理的创新。
一、数字农村建设随着信息技术的迅猛发展,数字化已经成为农村管理的关键词之一。
数字农村建设将现代化技术引入到农村,实现农村基础设施的信息化和智能化。
通过建设农村信息化平台,实现数据的互通共享,可以提高资源的配置效率,并为农村发展提供积极支持。
二、贫困农村的创新案例在农村管理创新的过程中,贫困地区的农村发展是重点和难点。
为了解决贫困问题,一些地方政府和社会组织提出了一些创新案例。
例如,通过发展特色农业和乡村旅游,传统贫困地区的农民可以增加收入。
此外,推动农民参与农产品加工和电商平台的建设,也为贫困地区农民创造了更多就业机会。
三、农村土地管理农村土地管理一直是一个复杂而重要的问题。
传统的土地占有权和承包权制度已经无法满足现代农村管理的需求。
一些地方已经开始尝试土地流转和农地集体经营的改革,以适应现代产业发展的需求。
改革可以通过确保农民权益和保护农村环境等方面,推动农村土地资源的更加合理利用。
四、农村金融服务创新传统金融服务往往难以满足农村的需求,例如小额贷款和农民保险等。
现代金融服务的创新可以提供更多种类的金融产品和服务,满足农村发展的多样化需求。
例如,一些地方政府和金融机构合作,成立农村金融合作社,为农民提供方便快捷的金融服务。
五、农村社会组织建设农村社会组织是促进农村管理创新的重要力量。
传统的村民自治组织在一些地方存在效率低下和权力滥用等问题。
为了解决这些问题,一些地方政府开始鼓励和支持农村社会组织的建设。
通过培育和引导有效的农村社会组织,可以提高村民的自治能力,推动农村管理的创新。
六、农村教育创新农村教育是农村人才培养和农村社会发展的重要基础。
农村教育普及和教师素质提升一直是农村管理创新的重要方向。
初一数学下能力测试题(四)

初一数学下水平测试题〔四〕班级 姓名一、填空题 1、()()__________523=÷-⋅-x x x ,()()__________2552=-⋅--a a2、55______a a =÷; ()()()3223________a a -=-÷3、________2121=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--b a b a ;()224994________3223x y y x +-=⎪⎭⎫ ⎝⎛+-4、300角的余角是__________0,补角是___________05、一个角的余角是它的补角四分之一,那么这个角的度数是__________06、()()_________323222=-++b a b a ;________322132213232=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a7、如果(2x+3)(ax —5)=2x 2—bx+c,那么a=________;b=________;c=_________ 8、如图,假设∠2=∠3,那么根据 ,可得 ;(只填图中标出的角)如果AB ∥CD,那么根据 , 可得 .(只填图中标出的角)9、如图,如果∠1=∠2,那么互相平行的线段是____________.10、如图:∠AOB=2∠BOC,且OA ⊥OC,那么∠AOB=_________0D 1 2 A BC图9 A O B C 图1011、如图:∠ACB=900,CD ⊥AB,那么图有互余的角有_________组假设∠A=32∠B,那么∠ACD=__________012、如下图:OE ⊥OF 直线AB 经过点O,那么∠BOF —∠AOE=__________ 假设∠AOF=2∠AOE,那么∠BOF=___________二、选择题1、以下计算中,运算正确的有几个〔 〕(1) a 5+a 5=a 10 (2) (a+b)3=a 3+b 3 (3) (—a+b)(—a —b)=a 2—b 2 (4) (a —b)3= —(b —a)3 A 、0个 B 、1个 C 、2个 D 、3个2、以下各式的计算中,正确的选项是〔 〕A 、(a 5÷a 3)÷a 2=1B 、(—2a 2)3= —6a 6C 、—(—a 2)4=a 8D 、(a 2)3=a 5 3、计算()()355322a a -÷-的结果是〔 〕A 、—2B 、2C 、4D 、—44、(a+b)2=m,(a —b)2=n,那么ab 等于〔 〕 A 、()n m -21B 、()n m --21C 、()n m -41D 、()n m --41 5、以下各式中,计算错误的选项是〔 〕A 、(x+1)(x+2)=x 2+3x+2B 、(x —2)(x+3)=x 2+x —6C 、(x+4)(x —2)=x 2+2x —8D 、(x+y —1)(x+y —2)=(x+y)2—3(x+y)—2 6、在同一平面内,如有三条直线a 、b 、c 满足a ∥b,b ⊥c,那么a 与c 的位置关系是〔 〕 A 、垂直 B 、平行 C 、相交但不垂直 D 、不能确定 7、以下各式中能用平方差公式计算的是〔 〕A 、(—3x+2y)(3x —2y)B 、(—a —3b+c)(a+3b —c)C 、(3x —5y —2)(—3x+5y —2)D 、(a+b+3)(a+b —2)8、假设一个角的两边与另一个面的两边分别平行,那么这两个角〔 〕 A 、相等 B 、互补 C 、相等且互补 D 、相等或互补 9、在以下图中,∠1和∠2是对顶角的图形是 ( )A 、B 、C 、D 、CA B DA BFEO 1212121 210、在图10中,直线AB 、CD 相交于点O,OE ⊥AB 于O,∠DOE=55°,那么∠AOC 的度数为 ( )A 、 40°B 、 45°C 、 30°D 、35°11、如图11中,两条非平行直线AB 、CD 被第三条直线EF 所截,交点为P 、Q,那么这三条直线将所在平面分成 ( )A 、5个局部B 、6个局部C 、7个局部 D)、8个局部 12、如图,AB ∥CD,AC ⊥BC,图中与∠CAB 互余的角有 〔 〕 A :1个 B :2个 C :3个D :4个13、,如图,以下条件中不能判断直线l 1∥l 2的是〔 〕A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180°14、如图14中,AB ∥CD,AD ∥BC 有多少组相等的内错角〔 〕 A 、两组 B 、三组 C 、四组 D 、五组15、如图15中,△ABC 中,AB ∥EF,DE ∥BC,那么图中相等的同位角有〔 〕 相等的内错角有〔 〕A 、2组B 、三组C 、四组D 、五组AB CDEO图10 ABC DEPQ图11F图12图13 AB D 图14 AB FE D 图15三、解做题1、:02122=⎪⎭⎫ ⎝⎛-++y x ,求2222⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+y x y x 的值2、()()的值求2232322b a b a ,ab --+=3、如图:AB ∥EF,DE ∥BC,那么∠ADE=∠EFC 吗?为什么?4、如图:AB ∥CD,AD ∥BC,问: ∠ABC=∠CDA 吗?为什么?5、如图:AB ∥CD,AF 平分∠BACCE 平分∠ACD,那么AF ∥CE 成立吗? 为什么?ABFCEDABCDBA CDFE。
初一数学能力培养与测试答案

初一数学能力培养与测试答案
一、能力培养
1. 帮助学生建立正确的数学思维方式,引导学生以解决问题的态度去学习数
学知识,培养学生的数学素养。
2. 注重数学基础知识的记忆,在此基础之上继续引导学生进行归纳、概括和
总结,也就是把基确的知识用来解决新问题。
3. 注重数学基础训练,包括掌握常用公式,使学生能根据一定的原理、思想
解决新问题。
4. 养成独立完成题目的习惯,学会深入分析研究,用适当的思维方法解决以
往类似的题目。
二、测试题目:
1. 下列四个数中,最大的数是()
A. -28
B. 28
C. 0
D. 8
2. 将四个数8,11,15,-4按升序排列,则正确排列结果为()
A. 11,8,15,-4
B. 8,11,-4,15
C. -4,8,11,15
D. 11,-4,8,
15
3. 下列根据说法正确的应是()
A. 两个数相加等于零,则这两个数相等
B. 两个数相等,则这两个数相加一定等于零
C. 三个数满足,则这三个数的最小值等于它们的和
D. 三个数之和等于零,则其中一个数等于零
答案:1. B 2. C 3. A。
2023年新人教版初中七年级数学下册第五单元综合能力提升测试卷(附参考答案)

2023年新人教版初中七年级数学下册第五单元综合能力提升测试卷一、选择题(共12小题,满分36分,每小题3分)1.如图,下列说法错误的是()A.∠1与∠2是对顶角B.∠1与∠3是同位角C.∠1与∠4是内错角D.∠B与∠D是同旁内角2.如图,AB∥CD∥EF,则下列各式成立的是()A.∠1+∠2+∠3=180°B.∠2+∠3﹣∠1=180°C.∠1+∠2﹣∠3=180°D.∠1﹣∠2+∠3=180°3.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②4.如图,下列给出的条件中,能判定AC∥DE的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4D.∠A=∠3 5.如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b 上,若∠1=70°,则∠2的大小为()A.15°B.20°C.25°D.30°6.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④7.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠58.如图,下列推理正确的是()A.∵∠2=∠4,∴AD∥BC B.∵∠1=∠3,∴AD∥BCC.∵∠4+∠D=180°,∴AD∥BC D.∵∠4+∠B=180°,∴AD∥BC9.下列图形中,∠1和∠2是同位角的是()A.B.C.D.10.如图,已知直线AB,CD被直线ED所截,AB∥CD,若∠D=40°,则∠1等于()A.140°B.130°C.120°D.100°11.如图,直线DE与BC相交于点O,∠1与∠2互余,∠COE=36°,则∠2的度数是()A.36°B.54°C.60°D.64°12.如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=58°,则∠E 等于()A.25°B.29°C.30°D.45°二、填空题(共6小题,满分18分,每小题3分)13.如图,AO⊥BO,若∠BOC=10°,OD平分∠AOC,则∠BOD的度数是°.14.一张长方形纸条折成如图的形状,若∠1=50°,则∠2=°.15.如图,已知AB∥CD,则∠A=70°,∠C=130°,∠P=.16.“内错角相等,两直线平行”的逆命题是.17.如图,直线a∥b,AC分别交直线a、b于点B、C,AC⊥DC,若∠α=25°,那么∠β=°.18.已知∠A与∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠A的度数为.三、解答题(共7小题,满分66分)19.(9分)如图,已知∠1=52°,∠2=128°,∠C=∠D.求证:∠A=∠F.20.(9分)已知:如图,EF∥CD,∠1+∠2=180°.(1)判断GD与CA的位置关系,并说明理由.(2)若DG平分∠CDB,若∠ACD=40°,求∠A的度数.21.(9分)如图,直线AB,CD相交于点O,已知∠BOC=75°,ON将∠AOD分成两个角,且∠AON:∠NOD=2:3.(1)求∠AON的度数.(2)若OM平分∠BON,则OB是∠COM的平分线吗?判断并说明理由.22.(9分)已知:如图EF∥CD,∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠CGD的度数.23.(10分)在正方形网格中,△ABC的位置如图所示.平移△ABC,使点A移到点B的位置.(1)请画出平移后的△BDE,其中,B、D、E分别为A、B、C的对应点;(2)若图中每个小正方形的边长都为1,则△ADE的面积为.24.(10分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.25.(10分)如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.参考答案一、选择题(共12小题)1.C2.D3.A4.B5.B6.D7.B8.B9.C10.A11.B12.B;二、填空题(共6小题)13.4014.80°15.20°16.两直线平行,内错角相等17.6518.30°或110°;三、解答题(共7小题)19.证明:∵∠1=52°,∠2=128°,∴∠1+∠2=180°,∴BD∥CE,∴∠C=∠ABD,又∵∠C=∠D,∴∠ABD=∠D,∵AC∥DF,∴∠A=∠F.20.解:(1)GD∥CA.理由:∵EF∥CD,∴∠1+∠ACD=180°,又∵∠1+∠2=180°,∴∠ACD=∠2,∴GD∥CA;(2)∵GD∥CA,∴∠2=∠ACD=40°,∵DG平分∠CDB,∴∠BDG=∠2=40°,∵GD∥CA,∴∠A=∠BDG=40°.21.解:(1)∵∠AON:∠NOD=2:3,设∠AON=2x,∠NOD=3x,∴∠AOD=5x,∵∠BOC=75°,∴∠AOD=5x=75°,∴x=15°,∴∠AON=30°;(2)OB是∠COM的平分线,理由如下:∵∠AON=30°,∴∠BON=180°﹣∠AON=150°,∵OM平分∠BON,∴∠BOM=75°,∴∠BOM=∠BOC,∴OB是∠COM的角平分线.22.(1)证明:∵EF∥CD,∴∠1+∠ECD=180°,又∵∠1+∠2=180°,∴∠2=∠ECD,∴GD∥CA.(2)解:由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°,∵GD∥CA,∴∠ACB+∠CGD=180°,∴∠CGD=180°﹣∠ACB=180°﹣80°=100°.23.解:(1)如图所示:△BDE即为所求;(2)△ADE的面积为:4×8−12×2×6−12×2×4−12×2×8=14.24.解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(﹣1,5)、(﹣4,0)、(﹣1,0);(2)由平移的性质可知,四边形AA′B′B是平行四边形,∴△ABC扫过的面积=S四边形AA'B'B +S△ABC=B′B•AC+12BC•AC=5×5+12×3×5=25+152=652.25.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下能力测试题(五)
班级 姓名
一.填空题
1、()()__________362=÷-⋅-x x x ,()()__________2332=-⋅--x x
2、53______a a
=÷; ()()332________a a -=-÷ 3、()()________=+--b a b a ;()224
191________3121x y y x +-=⎪⎭⎫ ⎝⎛+- 4、(x —1)(x+5)=_________,(x+5)(x —3)=_____________
5、(2a+b )(—a+2b )=__________,(3x —2y )(3x —4y )=____________
6、()()_______22=----b a b a ;()()_________2
2=-++b a b a 7、假如(2x+3)(x —5)=2x 2—mx+n ,则m=___________,n=___________
8、假如()()m x x +-=+2
23232,则m=__________ 9、假如()9322
+-+x m x 是一个完全平方公式,则m=___________ 10、假如a 2—b 2=12,—a+b= —4,则a+b=____________
11、已知:(2x+3)(ax —2)=6x 2—kx+b ,则a=__________;b=__________;k=_________
12、已知a 2+b 2=25,a+b=6,则(a —b)2=__________,ab=_____________
13、假如(x+y)2—4(x+y)+4=0,则x+y=_____________
14、假如(a 2+b 2)(a 2+b 2—6)+9=0,a 2+b 2=__________
15、假如x 2+y 2—4x —6y+13=0,则xy=____________
16、已知xy=6,则(2x+3y)2—(2x —3y)2=____________
二.选择题
1、下列运算中,运算正确的有几个( )
(1)5552a a a =⋅,(2)1266a a a =+,(3)933a a a =⋅,(4)532a a a =⋅
A 、0个
B 、1个
C 、2个
D 、3个
2、下列各式的运算中,正确的是( )
A 、(—3a 3)3= —9a 27
B 、(—a 2)3= —a 6
C 、—(—a 2)4=a 8
D 、(a 2)3=a 5
3、运算()()3
553a a ---的结果是( ) A 、0 B 、1 C 、2a 15 D 、—2a 15
4、下列运算中,正确的是( )
A 、(ab)3=ab 3
B 、(—2ab 2)3= —6a 3b 6
C 、—(—ab)3=a 3b 3
D 、(—2ab)2= —4a 2b 2
5、下列各式中,运算错误的是( )
A 、(x+1)(x+4)=x 2+5x+4
B 、(m —2)(m+3)=m 2+m —6
C 、(x+4)(x —5)=x 2+9x —20
D 、(y —1)(y —2)=y 2—3y+2
6、下列各式中运算正确的是( )
A 、(a+b)3=a 3+b 3+3ab
B 、(—a —b)2=a 2+b 2+2ab
C 、(—a+b)2= —a 2+b 2—2ab
D 、(b —a)4= —(a —b)4
7、下列各式中能用平方差公式运算的是( )
A 、(—x+2y)(x —2y)
B 、(1—5m)(5m —1)
C 、(3x —5y)(—3x —5y)
D 、(—a —b)(b+a)
8、下列运算中结果正确的是( )
A 、(a+b)2=a 2+b 2
B 、(a+2)(b —2)=xy —4
C 、(—a —b)(a+b)=a 2—b 2
D 、(a 2+b 2+2)(a 2+b 2—2)=(a 2+b 2)2—4
9、下列各式中能运用平方差公式运算的有几个( )
(1) (2—a)(2+a)(4+a 2) (2) (a+2b —c)(a —2b+c) (3) (—a+b)(—a —b)
(4) (x n +y n )(x n —y n ) (5) (a+b)2+(a —b)2
A 、1个
B 、2个
C 、3个
D 、4个
10、下列各式中,能够成立的是( )
A 、(2x —y)2=4x 2—2xy+y 2
B 、(x+y)2=x 2+y
C 、222
4121b ab a b a ++=⎪⎭
⎫ ⎝⎛- D 、(a —b)2=(b —a)2 11、假如4x 2—Mxy+9y 2是一个完全平方式,则M 的值是( )
A 、72
B 、36
C 、—12
D 、±12
12、下列运算正确的是( )
A 、(a+b)2=a 2+b 2
B 、(a —b)2=a 2+2ab —b 2
C 、(—a+b)2=a 2—2ab+b 2
D 、(—a —b)2=a 2—2ab+b 2
13、若m,n 是整数,那么(m+n)2—(m —n)2的值一定是( )
A 、正数
B 、负数
C 、非负数
D 、4的倍数
14、运算223232⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+b a b a 的结果是( ) A 、ab 94 B 、ab 94- C 、ab 9
8 D 、ab 98- 15、已知(3x+2y)2+(2x —3y)2=26则x 2+y 2的值等于( )
A 、1
B 、2
C 、3
D 、4
16、已知(a 2+b 2—3)(a 2+b 2+1)= —4,则a 2+b 2等于( )
A 、±1
B 、1
C 、—1
D 、0
三.运算题
1、)()()(2332a a a
-÷-⋅-- 2、32232)2()3(mxy y mx -÷-
3、
()2223)3()2(3-÷-⋅- 4、223121--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-
5、()()233210210
3-⨯-⨯⨯- 6、()20099214⎪⎭⎫ ⎝⎛-⨯-
7、(a+b)(a —b)(a 2+b 2)(a 4+b 4) 8、2
2232232⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-b a b a
9、 )23
32
)(23
32
(2222b a b a --+-
10、(2x 2+3x+5)2—(2x 2+3x+4)2
11、(5a+3b —2)(5a —3b+2)
12、x 4—(x —1)(x+1)(x 2+1)
13、(2a 2+3b 2)2—(2a 2—3b 2)2
14、(x+y)2(x —y)2(x 2+y 2)2
15、2
22222⎪⎭⎫
⎝⎛-+⎪⎭⎫
⎝⎛+b a
b a
16、()()()2c b c b a c b a --+--+
17、已知:a+b+c=6,a 2+b 2+c 2=14,求ab+bc+ac 的值
18、观看下列各式:3232233222⨯+=+;4343344322⨯+=+;545445542
2⨯+=+ 现在已知a+b=5,ab=4,请依照上面的等式求出a b b a +的值。