大学物理II-1习题课2 刚体
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。
先使小球以速度0v 。
绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。
(2)由r D 缩到r 1过程中,力F 所作的功。
解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。
物体置于倾角为θ的光滑斜面上。
开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。
解 把物体、滑轮、弹簧、轻绳和地球为研究系统。
在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。
设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。
3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。
大学物理2-1第5章

若质量离散分布:
(质点,质点系)
J i mi ri2
J r2 dm
若质量连续分布:
dm dl
其中: d m d s
d m dV
例题补充 求质量为m,半径为R 的均匀圆环的对中心 轴的转动惯量。 解: 设线密度为λ; d m d l
J R dm
2
2R
0
R dl
2
o
R
dm
R2 2R mR2
例题5-3 求质量为m、半径为R 的均匀薄圆盘对中心轴 的转动惯量。 解: 设面密度为σ。
取半径为 r 宽为d r 的薄圆环,
R
d m d s 2 r d r
J r d m r 2 2r 2 d r
2
3 3g 2L
2)由v r得: v A L
L 3 3 gL 3 3 gL vB 2 8 2
5.2 定轴转动刚体的功和能
一、刚体的动能 当刚体绕Oz轴作定轴转动时,刚体上各质元某一瞬时 均以相同的角速度绕该轴作圆周运动。
2 2 质元mi的动能 E ki mi v i mi ( i ri )2 mi ri 2
2)取C 点为坐标原点。 在距C 点为x 处取dm 。 说明
A
A
x dm
B
L
C
x
x
xd m B
L2
L2
2 mL x 2 d x 12
JC x 2 d m
L 2 L 2
1) 刚体的转动惯量是由刚体的总质量、质量分布、 转轴的位置三个因素共同决定; 2) 同一刚体对不同转轴的转动惯量不同, 凡提到转动惯量 必须指明它是对哪个轴的。
大学物理刚体力学习题课ppt课件

0 3g/ L
(2)弹性碰撞过程,角动量守恒 m
J0 JmvL
机械能守恒
12J02
1J21mv2
22
.
v 1 3gL 2
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2 23 2 3g
l
.
6. 如图所示的阿特伍德机装置中,滑轮和绳子间没
有滑动且绳子不可以伸长,轴与轮间有阻力矩,求
滑轮两边绳子的张力。已知m1=20 kg, m2=10 kg。
滑轮质量为m3=5 kg。滑轮半径为r=0.2 m。滑轮可视
为均匀圆盘,阻力矩Mf=6.6 Nm,圆盘对过其中心且
与盘面垂直的轴的转动惯量为
解:由于摩擦力矩恒定,因此轮子做匀角加速转动, 轮子上的各点做匀变速圆周运动
0t
t1, 0.80
0.20
t2,00.40
当轮子静止时 = 0
2022
2 0
2
02 0.40
2.50
.N 2 .5 0/2 5 0/4
4. 在恒力矩M=12 Nm作用下,转动惯量为4 kgm2 的圆盘从静止开始转动。当转过一周时,圆盘的转 动角速度为 2 3 rad/s。
与O点的距离为3l/4,求:(1)棒开始运动时的角速度;
(2)棒的最大偏转角。
o
解:对题中非弹性碰撞,角动量守恒,
mv 3 l J
4
J
m(3l)2 4
1 3Ml2
36ml
(27m16M)l
3
l 4
l
A
上摆过程, 机械能守恒
1J 2M l(1 g c o) sm3lg (1 c o)s
2
大学物理刚体习题

大学物理刚体习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题第三章 刚体的转动刚体的定轴转动47. 一定滑轮半径为R ,质量为M ,用一质量不计的绳绕在滑轮上,另一端系一质量为m 的物体并由静止释放,这时滑轮的角加速度为1β,若不系物体而用一力F = mg 拉绳子使滑轮转动,这时角加速度为2β,这时有()1β2β()1β2β (C )1β2β(D )无法判断 分析由转动定律M I β=本题中I 不变β的大小完全取决于M 的大小而 M TR =系物体m 时 : T mg <不系物体而用一力F = mg 时: TF mg ==因此力矩变大所以有12ββ<mF选49.一飞轮的转动惯量为J ,t = 0时角速度为0ω,轮子在转动过程中受到一力矩2ωk M-=,则当转动角速度为0/3ω时的角加速度β = 从0ω到0/3ω飞轮转动经过的时间t ∆= 解: (1) 求β当0/3ω时, 20()3M k ω=-由 M J β=, 可得此时 209k MJ J ωβ==-(2) d M J J dt ωβ== 2d k J dt ωω-=分离变量,两边积分32td kdt Jωωωω-=⎰⎰解得: 02J t k ω∆=50.长为l 的均匀直棒可绕其下端与棒垂直的水平光滑轴在竖直平面内转动。
抬起一端使与水平夹角为60=θ,棒对轴的转动惯量为231ml J =,由静止释放直棒,则t = 0时棒的β=?;水平位置时的β=?这时的ω=(1)求β 据转动定律M J β=, MJβ= 0t =时, cos 602lM mg =︒水平位置时, 2lM mg =代入MJβ=,可别解得034glβ= 和 32g l β= (2)求ωd d d d M J J J J dt d dt d ωωθωβωθθ====将cos 2l M mg θ=和213J ml =代入化简并积分得, 0033cos 2g d d l ωπθθωω=⎰⎰ 60可求得332g l ω=(本题还可用动能定律机械能守恒方便求解ω)2211sin 60223l mg ml ω︒=⋅ 332g lω⇒=51.一飞轮以min /600rev 的转速转动,其转动惯量为25.2m kg J ⋅=,以恒定力矩使飞轮在一分钟内停止转动,求该力矩M 。
物理学 第四版 马文蔚 习题课ppt

(a)(b)两图中的细棒和小球均相同,系统可绕o 轴在竖直面内自由转动系统从水平位置静止释放,转动 到竖直位置所需时间分别为ta和tb,则:
( A) ta tb , ( B) ta tb , ( C) ta tb , (D) 无法判定
判断两种情况下小球绕轴转动的角加速度
P
一子弹水平地射穿两个前后并排放在光滑水平桌面上的 木块。木块质量分别为m1和m2,测得子弹穿过两木块 的时间分别为Δt1和Δt2,已知子弹在木块中受的阻力为 恒力F。求子弹穿过后两木块各以多大的速度运动。 两个木块受到子弹给它们的力均为F
木块1 木块2
还是角动量守恒
2.质量为m,半径为R的均匀圆盘,可在 水平桌面上绕中心轴转动,若盘与桌面 间的摩擦系数为μ,则盘转动时所受摩擦 力矩Mf = 。
μ
μ
μ
μ
补充专题:刚体平衡问题
μ
补充专题:刚体平衡问题
平衡要求: 合力为零 ∑F=0 μ 对任意点,合力矩为零 ∑M=0
补充专题:刚体平衡问题
∑M
μ
若对刚体某轴的合外力矩为零 则对其他轴的合外力矩也为零 学会聪明地选轴
补充专题:刚体平衡问题
μ
题:刚体平衡问题
角动量守恒
(B)
两个匀质圆盘A和B的密度分别为rA和rB ,若rA> rB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂 直于盘面轴的转动惯量各为JA和JB,则
(A) JA>JB. (C) JA=JB. (B) JB>JA. (D) JA、JB哪个大,不能确定.
(B)
厚度相同,质量相同,密度大的半径小
μ
补充专题:刚体平衡问题
μ
补充专题:刚体平衡问题
《大学物理学》第二章 刚体力学基础 自学练习题

第二章 刚体力学基础 自学练习题一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。
【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。
【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅; (B )29kN m ⋅; (C )29kN m -⋅; (D )3kN m ⋅。
【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。
大学物理 刚体的定轴转动 习题及答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Friday, December 11, 202011
-Dec-2020.12.11
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1101:12:2411 December 202001:12
• 10、你要做多大的事情,就该承受多大的压力。12/11/
2020 1:12:24 AM01:12:242020/12/11
• 11、自己要先看得起自己,别人才会看得起你。12/11/
谢 谢 大 家 2020 1:12 AM12/11/2020 1:12 AM20.12.1120.12.11
• 12、这一秒不放弃,下一秒就会有希望。11-Dec-2011 December 202020.12.11
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 120.12. 1101:1 2:2401: 12:24D ecembe r 11, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月11 日星期 五上午 1时12 分24秒0 1:12:24 20.12.1 1
判断两种情况下小球绕轴转动的角加速度
(A)
可判断(a)系统转动得比(b)快,所以ta < tb 。
地球的质量为m,太阳的质量为M,地心与日心的距离为R,引 力常数为G,则地球绕太阳作圆周运动的轨道角动量为:
(A)
( A) m GMR , (B) GMm , ( C) Mm G , (D) GMm
R
R
2R
向心力:
角速度: 角动量:
1N m s
mw ab
mωab
mgtb
gl
a
Ob
x
y
2m
O
m
μ 系统机械能守恒
代入参数得
μ
μ
首先:
μ
μ
w
w0
2v 21R
μ
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1120. 12.11Fr iday, December 11, 2020
大学物理II 习题课讲义-刚体
一个物体正在绕固定光滑轴自由转动,
(A) 它受热膨胀或遇冷收缩时,角速度不变. (B) 它受热时角速度变大,遇冷时角速度变小. (C) 它受热或遇冷时,角速度均变大. (D) 它受热时角速度变小,遇冷时角速度变大.
(D)
(C)
(B)
力矩方向≠转动方向
(C)
(C)
•
2、阅读一切好书如同和过去最杰出的 人谈话 。01:1 2:2401: 12:2401 :1212/ 11/2020 1:12:24 AM
•
3、越是没有本领的就越加自命不凡。 20.12.1 101:12: 2401:1 2Dec-20 11-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 01:12:2 401:12: 2401:1 2Friday , December 11, 2020
转动,转动惯量为J,开始时转台以匀角速度w0转动,此时有一质量
为m的人站在转台边缘.随后人沿半径向转台中心跑去,当人到达
转台中心时,转台的角速度为
角动量守恒
(B)
两个匀质圆盘A和B的密度分别为rA和rB 若rA>rB,但两圆盘的质量与厚度相同,如两盘对通过
盘心垂直于盘面轴的转动惯量各为JA和JB,则
(C)
F1-mg=ma1;
RF2-RF1=Jα; RF3-RF2=Jα;
2mg-F3=2ma2; a1=a2=Rα
(D)
(A)
MΔt =ΔL M=积分(rμgdm)=1/2 lmg L=1/3 m l2ω0
(A) (A)
(B) (D)
有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月上午 1时12 分20.12. 1101:1 2December 11, 2020
•
8、业余生活要有意义,不要越轨。20 20年12 月11日 星期五 1时12 分24秒0 1:12:24 11 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。上午 1时12 分24秒 上午1时 12分01 :12:242 0.12.11
(A) J(B)
(D) JA、JB哪个大,不能确定.
厚度相同,质量相同,密度大的半径小
J=1/2 mR2
(a)(b)两图中的细棒和小球均相同,系统可绕o轴在竖直面内 自由转动系统从水平位置静止释放,转动到竖直位置所需时间分别 为ta和tb,则:
( A) ta tb , (B) ta tb , ( C) ta tb , (D) 无法判定