(线性代数)矩阵秩的8大性质、重要定理以及关系

合集下载

线性代数:矩阵秩的求法

线性代数:矩阵秩的求法
齐次线性方程组 Ax=0 总是有解的,x=0 就是一个解, 称为零解。 所以我们更关心的是它是否有非零解.
6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次

矩阵的秩的定理

矩阵的秩的定理

矩阵的秩的定理
矩阵的秩的定理,也称为格拉姆-施密特(Gram-Schmidt)定理或斯皮耳定理(Sylvester's law),是线性代数中的一个基本定理。

它描述了一个矩阵的秩,也称为矩阵的“行秩”或“列秩”,等于其行向量组或列向量组的极大线性无关组中向量的个数。

具体地,设A是一个n\times m矩阵,r是它的秩,则:
1. 存在n\times r矩阵B和r\times m矩阵C,使得A=BC;
2. r等于矩阵A中的行向量组或列向量组的极大线性无关组中向量的个数。

这个定理的证明可以通过线性代数的一般理论,包括线性空间的基本概念和线性相关性等进行推导。

矩阵的秩的定理在很多数学和工程应用中都得到了广泛的应用,如矩阵分解、矩阵压缩、图像处理、信号处理和统计学中的因子分析等。

线性代数 矩阵的秩与逆矩阵

线性代数 矩阵的秩与逆矩阵

BP1 P2
Ps = X
AP1 P2
Ps = E
3. AXC = B, A, C可逆。 解法I : X = A BC
解法II : AX = BC
−1
−1
−1
−1
XC = A B
求解矩阵方程时,一定要记住:先化简,再求解。
1 .已知 A, 且 AB = A − B , 求 B .
−1 ⇒ B = ( A + E ) A ⇒ AB + B = A ⇒ ( A + E ) B = A
⎛1 − 1 − 1 ⎜ → ⎜0 −1 − 2 ⎜0 0 −1 ⎝
⎛1 0 0 ⎜ → ⎜0 1 0 ⎜0 0 1 ⎝ 2
1 0 0⎞ ⎟ 3 1 0⎟ 4 2 1⎟ ⎠
1 ⎞ ⎟ 5 3 2⎟ − 4 − 2 − 1⎟ ⎠ 1
∴A
−1
=
1 1 ⎞ ⎛ 2 ⎜ ⎟ 3 2⎟ ⎜ 5 ⎜ − 4 − 2 − 1⎟ ⎝ ⎠
⎛2 ⎛1 − 1 ⎞ 3 . C = ⎜ 2.B = ⎜ ⎟ ⎜0 ⎜1 − 2 ⎟ ⎝ ⎝ ⎠
− 2⎞ ⎟ ⎟ 1 ⎠
⎛2 1 ⎛ 1 1⎞ −1 2. B = ⎜ = ⎜ ⎟ ⎜ ⎟ ⎜1 3 ⎝ − 2 1⎠ ⎝
− 1⎞ −1 1 ⎛ 1 2 ⎞ ⎜ ⎟ = C 3 . ⎟ ⎜ ⎟ ⎟ 0 2 2 − 1⎠ ⎝ ⎠
?? ⎛ 1 − 1 − 1⎞ ⎜ ⎟ 的逆怎样求? ? A = ⎜− 3 2 1 ⎟
⎜ 2 ⎝ 0 1 ⎟ ⎠
逆阵的性质
1 (i ) A可逆 ⇒ A = ; A (ii ) A可逆 ⇒ A−1可逆, ( A−1 ) −1 = A;
−1
(iii ) AB = E (or BA = E ) ⇒ B = A ;

矩阵秩的性质大全及证明

矩阵秩的性质大全及证明

矩阵秩的性质大全及证明矩阵的秩是指矩阵中最多能线性无关的列(或行)的数量。

下面是矩阵秩的一些性质和证明:秩加性性质如果有两个矩阵$A$ 和$B$,则有:$$\text{rank}(A+B) \leq \text{rank}(A)+\text{rank}(B)$$证明:设$A$ 的秩为$r_A$,$B$ 的秩为$r_B$。

则存在$r_A$ 个线性无关列$a_1, a_2, \dots, a_{r_A}$ 和$r_B$ 个线性无关列$b_1, b_2, \dots, b_{r_B}$,使得$A$ 和$B$ 分别可以写成如下形式:$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_{r_A} & * & \dots & * \end{bmatrix}$$$$B = \begin{bmatrix} b_1 & b_2 & \dots & b_{r_B} & * & \dots & * \end{bmatrix}$$其中星号表示可以是任意列。

由于$a_1, a_2, \dots, a_{r_A}$ 和$b_1, b_2, \dots, b_{r_B}$ 都是线性无关的,所以$A+B$ 中前$r_A+r_B$ 列是线性无关的。

因此$\text{rank}(A+B) \leq r_A+r_B = \text{rank}(A)+\text{rank}(B)$。

秩乘法性质如果有两个矩阵$A$ 和$B$,则有:$$\text{rank}(AB) \leq \min(\text{rank}(A),\text{rank}(B))$$证明:设$A$ 的秩为$r_A$,$B$ 的秩为$r_B$。

则存在$r_A$ 个线性。

线性代数 矩阵的秩

线性代数 矩阵的秩

小结. 求m × n 矩阵A 的秩r(A), 可用以下方法: 1. 对于比较简单的矩阵, 直接用秩的定义 直接用秩的定义. .

1 0 0 0
0 1 0 4
0 1 0 −1 0 0 5 0
2. 用有限次初等变换, 用有限次初等变换, 将矩阵A变为它的等价 标准形 , 则 r = r( A ) . O O 3. 用有限次行初等变换, 用有限次行初等变换,将矩阵A变为梯矩阵, 则 r(A)等于该梯矩阵的非零行的行数 等于该梯矩阵的非零行的行数. (方法2 与方法3 相比, 方法3 较为简单.)
例1 求下列矩阵的秩: 求下列矩阵的秩:
(1) A = 2 2
1 1
2 4 8 (2) B = 1 2 1
(3) C = 2
1 2 4 1 4 8 2 3 6 2 0
.
解 (1)因为
1 1 a = 1 ≠ 0 而 det A = 1 1 = 0 A= 11 , 2 2 2 2 故 r ( A) = 1
又B 并无3阶子式, 阶子式,故 r (B) =2.
8 2 2 0
故, 矩阵C 的秩不小于2.
= −3 ≠ 0
另外, 因为矩阵 C 不存在高于3阶的子式, 可知r (C) ≤ 3. 又因矩阵C 的第1, 2行元是对应成比例的, 行元是对应成比例的, 故C 的任一 3阶 子式皆等于零. 子式皆等于零.因此
0 0 1 0
4 3 −3 4
1 0 B= 0 0
0 1 0 0
−1 −1 2 0
0 0 1 0
4 3 −3 4
1 0 (2) 每个台阶只有一行, 每个台阶只有一行,台阶 A = 0 数即是非零行的行数, ,阶梯 数即是非零行的行数 0 线的竖线后面的第一个元素

线性代数§3.3矩阵的秩

线性代数§3.3矩阵的秩

设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n

第一章 第五讲 矩阵的秩

第一章 第五讲  矩阵的秩

第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。

本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。

5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。

其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。

因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。

定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。

其中, r E 是r 阶单位矩阵;其余都是零矩阵。

注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。

(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。

当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。

解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。

(线性代数)矩阵秩的8大性质、重要定理以及关系

(线性代数)矩阵秩的8大性质、重要定理以及关系

矩阵秩的8大性质:①A,宀)冬mini加小I ;③若A〜叭则R(A) = K(B)j④若可逆•则R(PAQ) = R(A),下面再介绍几个常用的矩阵秩的性质:⑤maxi R( A )>R(B)|^J R(A t B)^J R(A) + P (B), 特别地,当B = b为非零列向量时,有R(A)MR(A』)MR(A)+ 1.⑦R(AB)^min{K(A)t K(B)|,(见下节定理7)⑧若A…B“二0,则R(A) + R(B)Mm(见下章例13)设AB= O■若A为列满秩矩阵,则B-0.线性方程组的解:定理3 H元线性方程组A x=&(i)无解的充分必要条件是K(A)CR(A』);(ii)有惟一解的充分必要条件是R(A) = R(A,b)=n;(iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?・定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A"定理6解方gAX=£有解的充分必要条件是R(A) = R(A,B).定理7 «AB = C,则R(C)Wmin|R(A),R(B)h向量组的线性相关性:定鰹1向跖能由向量组严心线憐示的充分必要桑件是j£^A=(a H fl J1»<t a w )的秩等于矩阵B =(爲卫?广』册』)的税.定理2向虽组B4訥严上能由向蚩组A0 叫…心 线性表示的 充分必要条件是矩阵A = («i 严心)的秩等于矩阵(A,B)=(釦严心, 27啲秩,即 R(A} = R(A,B)・推论向輦组宀%与向HfflB :*1(h lt -s6,等价的充分必要 条件是J?(A) = R(B)-J?(A,B)t其中A 和月是向僮组A 和B 所构成的矩阵”定理3设向員组Bl 】』?「讪能由向證组A a 厲厂心线性表示. 则R(h 』W 血KR 仏曲宀仇)・阵A = g 曲严松)的秩小于向懂个数奶向咼组线性无关曲充分必要条件 是R ⑷二皿血“也线性相关成盲之,若向储组B 线性无关侧向A 也线性无关.(2) 7«个"维向虽组成的向量组,当维数«小于向虽个数加时一定钱牲相 关•特别地,n + ltwt 向量一定线性相关,(3) 设向量组人:叭』2,线性无关,而向量组线性 相关侧向虽b 必能由向鈕组A 钱性表示,且表示式是惟一的.定理4,%线性相关的充分必要条件是它所构成的矩 定理5 (1)若向员组A0严心线性相关』IJ 向量組SW *对比:矩阵A =(叭』加小,%)的秧等于矩阵B = 的税,定理5线性方程组曲M 有解的充分必要憑件是R ⑷= R(A ;b)?l定理2向虽组时血严血能由向量组A :釘』线性表示的 充分必要条件是矩阵4二(尙,伽「・,心)的秩等于矩阵= 儿7)的秩,即R(A) = R(A 』}.条件是定理1 JSA 仙疋“5—线性表示的充分必要条件是 推论 向量组A :%与向 组…出等价的充分必要曬b 能由向 R(A) = R(B) = R(A t B),其中A 和B 是向世组A 和B 所构成的矩阵・定理6矩阵方程AX=B 有解的充分必要条件是R(A) = R(A t B).则RO】』?严,h)WR(a*2严叫)・n定理4向燧组小勺严心黠相关的充分必要条件是它所构成的矩阵亦⑴曲「心)的秩小于向齢数用洞鞠黠无关的充分必縣件是R(A)n||能4 "元制:黠方翻X0有鶴繃充分必要条瞬丽石~|觀5如騎次難方翻(13)的系協行臟D判屈粽黠方翱(13)蹣粹館定理5’如果撅黠方翩(13)辭輔』陀的系舫脱必腮.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档