1.1.1算法的概念(练习题)
江西科学技术版小学信息技术五年级上册《算法的概念及其特征》同步练习题附知识点归纳

江西科学技术版小学信息技术五年级上册《算法的概念及其特征》同步练习题附知识点归纳一、课文知识点归纳:1.算法的概念:算法是一系列解决问题的明确步骤的序列。
2.算法的特征:确定性、可行性、有穷性、正确性、可读性和健壮性。
3.算法的描述方法:自然语言、流程图、伪代码等。
二、同步练习题。
(一)、填空题。
1. 算法是一系列解决问题的______步骤。
2. 在算法设计中,我们通常需要遵循的两个基本原则是______和______。
3. 一个好的算法通常具有的特征是______、______和______。
(二)、选择题。
1. 下列哪个不是算法的特征?()A. 确定性B. 可行性C. 无穷性D. 有穷性2. 下列哪项不属于算法的描述方法?()A. 自然语言B. 流程图C. 伪代码D. 散文3. 在算法设计中,如果算法的步骤不明确或含糊,可能会导致什么后果?()A. 算法无法执行B. 算法执行速度变慢C. 算法结果不准确D. 算法占用更多内存(三)、判断题。
(正确的打“√”,错误的打“×”)1. 算法的每一步都必须是清晰、无歧义的。
()2. 算法可以有多个输入,但只能有一个输出。
()3. 一个算法可以没有输入,但不可以没有输出。
()(四)、简答题。
1.请简述算法的定义,并举例说明算法在日常生活中的应用。
__________________________________________________________________ __________________________________________________________________ __________________________________________________________________2.请列举算法的几个主要特征,并解释其中一个特征的含义。
____________________________________________________________________________________________________________________________________ __________________________________________________________________三、学习目标:1. 理解算法的基本概念及其在日常生活和计算机科学中的应用。
算法的概念

S3 如果序列中还有其他整数,重复S2; S4 在序列中一直到没有可比的数为止,这时 假定的“最大值”就是这个序列中的最大值。
如果让你去找,你可能不会这样做,可 能认为,这样太机械、太枯燥。不要忘了, 我们写的是算法。算法要求按部就班地做, 每一步都有唯一的结果,又要求写出的算 法对任意整数序列都适用,总能得到结果。 所以上面写的,符合算法的要求。
程序框图
又称流程图,是一种用程序框、流程 线和文字说明来表示算法的图形。
程序框图的通俗解释: 由一些图框和有 向箭头构成,表示算法按一定的顺序执行.
图形符号
名称
符号表示的意义
起、止框
框图的开始或结束
输入、输出框
数据的输入或者结果的输 出
处理框
赋值、执行计算语句、结 果的传输
判断框
根据给定条件判断
流程线 循环框 连结点 注释框
⑦ ⑧
S5 输出结果x1,x2, S6 若a11b2-a21b1≠0. 则执行下一步;否 则执行S8 S7 输出“方程组无解”.
S8 输出“方程组有无穷多个解”
以上解二元一次方程组的方法,叫做 高斯消去法
二、算法的特点
不论在哪一种算法中,它们都是经有限 次步骤完成的,因而它们体现了算法的有 穷性。
流程进行的方向
程序做重复运算 连结另一页或另一部分的
框图 帮助理解框图
练习:
1.流程图的功能是:…………………..( D ). A.表示算法的起始和结束. B.表示算法的输入和输出信息. C.赋值、运算. D.按照算法顺序连接程序图框.
2.对程序框
表示的功能描述正确的一项
是:…( B ).
(推荐)高一数学必修三第一单元知识点及练习题

高一数学必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
高中数学必修三习题:第一章1.1-1.1.1算法的概念含答案

第一章 算法初步1.1 算法与程序框图1.1.1 算法的概念A 级 基础巩固一、选择题1.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米解析:算法是做一件事情或解决一类问题的程序或步骤,故选B.答案:B2.以下对算法的描述正确的有( )①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.A .1个B .2个C .3个D .4个答案:D3.给出下面一个算法:第一步,给出三个数x ,y ,z .第二步,计算M =x +y +z .第三步,计算N =13M .第四步,得出每次计算结果.则上述算法是( )A .求和B .求余数C .求平均数D .先求和再求平均数解析:由算法过程知,M 为三数之和,N 为这三数的平均数.答案:D4.一个算法步骤如下:S 1,S 取值0,i 取值1;S2,如果i≤10,则执行S3;否则,执行S6;S3,计算S+i并将结果代替S;S4,用i+2的值代替i;S5,转去执行S2;S6,输出S.运行以上步骤后输出的结果S=( )A.16 B.25C.36 D.以上均不对解析:由以上计算可知:S=1+3+5+7+9=25.答案:B5.对于算法:第一步,输入n.第二步,判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到(n-1)检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.第四步,输出n.满足条件的n是( )A.质数B.奇数C.偶数D.约数解析:此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.答案:A二、填空题6.给出下列算法:第一步,输入x的值.第二步,当x>4时,计算y=x+2;否则执行下一步.第三步,计算y=4-x.第四步,输出y.当输入x=0时,输出y=________.解析:因为0<4,执行第三步,所以y=4-0=2.答案:27.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=a2+b2.(2)输入直角三角形两直角边长a,b的值.(3)输出斜边长c 的值.其中正确的顺序是________________.解析:算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.答案:(2)(1)(3)8.如下算法:第一步,输入x 的值;第二步,若x ≥0,则y =x ;第三步,否则,y =x 2;第四步,输出y 的值.若输出的y 值为9,则x =________.解析:根据题意可知,此为求分段函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的函数值的算法,当x ≥0时,x=9;当x <0时,x 2=9,所以x =-3.答案:9或-3三、解答题9.写出求1×2×3×4×5×6的算法.解:第一步,计算1×2得到2.第二步,将第一步的运算结果2乘3,得到6.第三步,将第二步的运算结果6乘4,得到24.第四步,将第三步的运算结果24乘5,得到120.第五步,将第四步的运算结果120乘6,得到720.10.某商场举办优惠促销活动.若购物金额在800 元以上(不含800 元),打7折;若购物金额在400 元以上(不含400 元),800 元以下(含800 元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x ,输出实际交款额y .解:算法步骤如下:第一步,输入购物金额x (x >0).第二步,判断“x >800”是否成立,若是,则y =0.7x ,转第四步;否则,执行第三步. 第三步,判断“x >400”是否成立,若是,则y =0.8x ;否则,y =x .第四步,输出y ,结束算法.B 级 能力提升1.结合下面的算法:第一步,输入x .第二步,判断x 是否小于0,若是,则输出x +2;否则,执行第三步.第三步,输出x -1.当输入的x 的值为-1,0,1时,输出的结果分别为( )A .-1,0,1B .-1,1,0C .1,-1,0D .0,-1,1解析:根据x 值与0的关系选择执行不同的步骤.答案:C2.求过P (a 1,b 1),Q (a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整: S 1 取x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.S 2 若x 1=x 2,则输出斜率不存在;否则,________.S 3 输出计算结果k 或者无法求解信息.解析:根据直线斜率公式可得此步骤.答案:k =y 2-y 1x 2-x 13.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只.解:第一步,设有x 只鸡,y 只兔,列方程组⎩⎪⎨⎪⎧x +y =30,①2x +4y =100.② 第二步,②÷2-①,得y =20.第三步,把y =20代入①,得x =10.第四步,得到方程组的解⎩⎪⎨⎪⎧x =10,y =20. 第五步,输出结果,鸡10只,兔20只.。
新人教版算法与程序框图练习题及答案

第一章 算法初步1.1算法与程序框图1.1.1算法的概念1.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:①计算22c a b =+a ,b 的值;③输出斜边长c 的值,其中正确的顺序是 【 】A.①②③B.②③①C.①③②D.②①③2.若()f x 在区间[],a b 内单调,且()()0f a f b <,则()f x 在区间[],a b 内 【 】A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定3.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为: 第一步:取A =89 ,B =96 ,C =99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.4.写出按从小到大的顺序重新排列,,x y z 三个数值的算法.1.1.2 程序框图1.在程序框图中,算法中间要处理数据或计算,可分别写在不同的 【 】A .处理框内B .判断框内C .终端框内D .输入输出框内2.将两个数a=10,b=18交换,使a=18,b=10,下面语句正确一组是 【 】A. B. C. D.3指出下列语句的错误,并改正:(1)A =B =50(2)x =1,y =2,z =3(3)INPUT “How o ld are y ou” x(4)INPUT ,x(5)PRINT A +B =;C(6)PRINT Good-b y e!4.2021年我国人口为13亿,如果人口每年的自然增长率为7‰,那么多少年后我国人口将达到15亿?设计一个算法的程序.5.儿童乘坐火车时,若身高不超过1.1 m ,则不需买票;若身高超过1.1 m 但不超过1.4 m ,则需买半票;若身高超过1.4 m ,则需买全票.试设计一个买票的算法,并画出相应的程序框图及程序。
1.2基本算法语句1.2.1输入语句、输出语句和赋值语句1 .在输入语句中,若同时输入多个变量,则变量之间的分隔符号是 【 】A.逗号B.空格C.分号D.顿号2 . 3a =4b =a=b b=a c=b b=a a=c b=a a=b a=cc=b b=aa b =b a =输出 ,a b以上程序输出的结果是 【 】A.3,4B. 4,4C.3,3D.4,33 请从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内.4. 设计一个算法,要求输入一个圆的半径,便能输出该圆的周长和面积(π 取3.14)。
人教版数学高一-辽宁省沈阳市二十一中高一数学《算法初步》学案

1.1.1算法的概念1.应用举例例1《鸡兔同笼问题》一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡? (1)算术解法(2)代数解法小结:代数解法的本质是________________ 例2用消元法解二元一次方程组),,(212221*********2221211212111为常数,,,,,不同时为零b b a a a a a a b x a x a b x a x a ⎩⎨⎧=+=+ 2.5.算法步骤举例(1)我们在描述算法时,用英文_________ ,_________,┅来表示第一步,第二步,┅(2)写出例2中解二元一次方程组的算法步骤。
(1)用数学语言写出对任意3个整数a,b,c,求出最大值的算法。
(2)写出一个求有限整数序列中的最大植的算法。
6.巩固练习:(1)下列关于算法的说法正确的是()①求解某一类问题的算法是唯一的;②算法必须是有限步骤之后停止;③算法的每一步操作必须是明确的,不能有歧异和模糊;④算法执行后一定产生确定的结果;⑤一个程序框图的结构是可逆的;⑥设计算法要本着简单方便的原则;⑦算法是关于某个问题的解题过程;⑧算法要求按部就班地做,每一步可以有不同的结果。
(2)教材练习A1,2(3)练习B1,2,31.1.2程序框图[学习目标]掌握程序框图符号的含义和画程序框图的规则。
[课前自主预习]1.程序框图的概念通常用一些________________________来表示算法,这种图称做程序框图(简称框图)或流程图。
2.用框图表示算法步骤的一些常用的图形符号3.画流程图的规则(1)使用___________的框图的符号。
(2)框图一般按________________________的方向画。
(3)除判断框外,大多数流程图符号只有_____________进入点和_______________退出点。
判断框是具有超过一个退出点的唯一符号。
(4)一种判断框是“是”“不是”两分支的判断,有______________不同的结果。
2020-2021学年高中数学必修3人教A版课件:1.1.1 算法的概念

其中正确的顺序是( )
A.①②③
B.②③①
(2)设计算法时注意的问题 ①算法从初始步骤开始,每一个步骤只能有一个确定的后继步骤,从而组成 一个步骤序列,序列的终止表示问题得到解答或指出问题没有解. ②一个具体问题的算法不唯一,如解二元一次方程组的算法就有消元法、代 入法两种.由于传统数学问题解法的不唯一,使得求解某一个问题的算法也不唯 一. ③不同的算法有简繁、优劣之分,但每一种都会使问题有一个最终的结果.对 于一个具体的问题,我们可以找到一个算法步骤相对较少、执行步骤也较少的算 法,即最优算法.
4.已知 A(x1,y1),B(x2,y2),求直线 AB 的斜率的一个算法如下: (1)输入 x1、y1、x2、y2 的值. (2)计算 Δx=x2-x1,Δy=y2-y1. (3)若 Δx=0,则输出斜率不存在,否则(Δx≠0),k=__①__.
(4)输出斜率 k.
则①处应填________. 解析: 由斜率的计算公式应填ΔΔyx.
[自主练习] 1.下列叙述不能称为算法的是( ) A.从北京到上海先乘汽车到飞机场,再乘飞机到上海 B.解方程 4x+1=0 的过程是先移项再把 x 的系数化成 1 C.利用公式 S=πr2 计算半径为 2 的圆的面积得 π×22 D.解方程 x2-2x+1=0
解析:
A× A,B 两选项给出了解决问题的方法和步骤,是算法
题型二 算法的设计 写出解方程 x2-2x-3=0 的一个算法. [思路探究] 解一元二次方程的方法很多,此处,我们用因式分解法、配方 法、公式法写出算法. , 解析: 法一:算法如下. (1)将方程左边因式分解,得(x-3)(x+1)=0.① (2)由①得 x-3=0,②或 x+1=0.③ (3)解②得 x=3,解③得 x=-1.
高中人教版数学必修3课本练习_习题参考答案

高中数学必修③课本练习,习题参考答案新心希望教育:RenYongSheng 第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)A 组解;题目:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)BB 组1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1算法的概念
一、选择题
1.下列说法正确的是( ) A .算法就是某个问题的解题过程 B .算法执行后可以产生不同的结论
C .解决某一个具体问题,算法不同所得的结果不同
D .算法执行步骤的次数不可以很大,否则无法实施 2.阅读下列算法. S1 输入n ;
S2 判断n 是否是2,若n =2,则n 满足条件;若n >2,则执行S3; S3 依次检验从2到n -1的整数能不能整除n ,若不能整除n ,满足条件. 满足上述条件的数是( ) A .质数 B .奇数 C .偶数
D .4的倍数
3.对于一般的二元一次方程组⎩⎨
⎧
a 1x +
b 1y +
c 1=0,
a 2x +
b 2y +
c 2=0.在写此方程组解的算法时,
需要我们注意的是( ) A .a 1≠0 B .a 2≠0 C .a 1b 1-a 2b 2≠0
D .a 1b 2-a 2b 1≠0
4.指出下列哪个不是算法( )
A .解方程2x -6=0的过程是移项和系数化为1
B .从济南到温哥华要先乘火车到北京,再转乘飞机
C .解方程2x 2+x -1=0
D .利用公式S =πr 2计算半径为3的圆的面积时,计算π×32 5.下列语句表达中是算法的有( )
①利用公式S =1
2ah 计算底为1,高为2的三角形的面积;
②1
2
x >2x +4; ③求M (1,2)与N (-3,-5)两点连线的方程,可先求MN 的斜率,再利用点斜式
方程求得.
A.①③B.②③
C.①②D.③
6.有一堆形状大小相同的珠子,其中只有一粒重量比其他的轻,某同学利用科学的算法,最多两次利用天平找出了这颗最轻的珠子,则这堆珠子最多的粒数是( )
A.4 B.5
C.6 D.7
7.下列对算法的理解不正确的是( )
A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)
B.算法要求是一步步执行,每一步都能得到唯一的结果
C.算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法D.任何问题都可以用算法来解决
8.算法的有限性是指( )
A.算法的步骤必须有限
B.算法的最后必须包括输出
C.算法中每个操作步骤都是可执行的
D.以上说法都不正确
9.早上起床到出门需洗脸刷牙(5 min),刷水壶(2 min),烧水(8 min),泡面(3 min),吃饭(10 min),听广播(8 min)几个步骤.下列选项中最好的一种算法为( )
A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播
B.S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭、S5听广播
C.S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭的同时听广播
D.S1吃饭的同时听广播、S2泡面、S3浇水的同时洗脸刷牙、S4刷水壶
二、填空题
10.写出解方程2x+3=0的算法步骤:
S1____________________________;
S2____________________________;
S3____________________________.
11.一个算法步骤如下: S1 S 取0,i 取1;
S2 如果i ≤10,则执行S3,否则执行S6; S3 计算S +i 并将结果代替S ; S4 用i +2的值代替i ; S5 执行S2; S6 输出S .
运行以上步骤输出的结果为S =________.
12.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总成绩和平均成绩的一个算法如下,在①②处应填写________、________. S1 取A =89,B =96,C =99; S2 __①__; S3 __②__;
S4 输出计算的结果. 13.以下有六个步骤:
①拨号;②等拨号音;③提起话筒(或免提功能); ④开始通话或挂机(线路不通); ⑤等复话方信号;⑥结束通话.
试写出打一个本地电话的算法________.(只写编号)
14.求1+3+5+7+9的算法的第一步是1+3得4,第二步是将第一步中运算结果4与5相加得9,第三步是__________________________. 三、解答题
15.设一个球的半径为r (r >0),请写出求以r 为半径的球的表面积的算法. 16.写出求过点M (-2,-1)、N (2,3)的直线与坐标轴围成的三角形面积的一个算法.
17.某快递公司规定甲、乙两地之间物品的托运费用根据下面的方法计算: f =⎩⎨
⎧
0.53ω, ω≤5050×0.53+ω-50×0.85, ω>50
其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出计算费用f 的算法.
1 解析:选B.B项,如判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;而A项,算法不能等同于解法;C项,解决某一个具体问题算法不同所得的结果应该相同,否则算法不正确;D项,算法可以为很多次,但不可以无限次.
2 解析:选A.由质数的定义知A正确.
3 解析:选D.由高斯消去法知,方程组是否有解,解的个数是否有限,在于a1b2-a2b1是否为零.故选D.
4 答案:C
5 解析:选A.算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,
①③都各表达了一种算法.判断算法的标准是“解决问题的有效步骤或程序”.②只是一个纯数学问题,没有解决问题的步骤,不属于算法的范畴.
6 解析:选D.最多是7粒,第一次是天平每边3粒,若平衡,则剩余的为最轻的珠子;若不平衡,则在轻的一边选出两粒,再放在天平的两边,同样就可以得到最轻的珠子,故选D.
7 解析:选 D.算法是解决问题的精确的描述,但是并不是所有问题都有算法,有些问题使用形式化、程序化的刻画是最恰当的.
8 答案:A
9 解析:选C.经比较可知C最省时,效率最高.
10 答案:移项得2x=-3
未知数系数化为1,得x=-3 2
输出x=-3 2
11 解析:由以上算法可知S=1+3+5+7+9=25. 答案:25
12 答案:计算总分D=A+B+C计算平均成绩E=D 3
13 答案:③②①⑤④⑥
14 答案:将第二步中运算结果9与7相加得16
15 解:算法如下:
S1 输入半径r;
S2 计算表面积S=4πr2;
S3 输出S.
16 解:算法步骤如下:
S1 取x1=-2,y1=-1,x2=2,y2=3;
S2 得直线方程y-y
1
y
2
-y1
=
x-x
1
x
2
-x1
;
S3 令x=0得y的值m,从而得直线与y轴交点的坐标(0,m);S4 令y=0得x的值n,从而得直线与x轴交点的坐标(n,0);
S5 根据三角形面积公式求S=1
2
·|m|·|n|;
S6 输出运算结果.
17 解:S1 输入物品重量ω;
S2 如果ω≤50,那么f=0.53ω,否则f=50×0.53+(ω-50)×0.85;S3 输出物品重量ω和托运费f.。