数值分析第二章答案

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析第二章答案

数值分析第二章答案

1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。

数值分析(清华大学出版社)第二章课后答案

数值分析(清华大学出版社)第二章课后答案

1.用Gauss 消去法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤---⎢⎢⎢⎢⎣⎡-551631011411014211264321x x x x 解:第一步:交换第三行和第一行,得到如下矩阵⎥⎥⎥⎥⎦⎤----⎢⎢⎢⎢⎣⎡-56153101111402411621做运算()22121E E E →⎪⎭⎫ ⎝⎛+-,()33161E E E →⎪⎭⎫⎝⎛+-,()()441E E E →+,得到增广矩阵 ⎥⎥⎥⎥⎦⎤------⎢⎢⎢⎢⎣⎡0249525213237414210001 第二步:再做运算()3322E E E →+,()44221E E E →⎪⎭⎫⎝⎛+-,得到如下矩阵 ⎥⎥⎥⎥⎦⎤-----⎢⎢⎢⎢⎣⎡94295292113377400210001第三步:做运算()4433713E E E →⎪⎭⎫⎝⎛+,得到 ⎥⎥⎥⎥⎦⎤------⎢⎢⎢⎢⎣⎡21342951919210377400210001利用回代公式求得.790576.0,361257.0,863874.0,115183.11234=-==-=x x x x2、解 2.51 1.48 4.531.480.93 1.302.68 3.041.48⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.051.030.53⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ 做两次换行()()()()↔↔3132;E E E E 得2.683.04 1.42.511.48 4.531.480.931.30⎡⎤-⎢⎥⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.051.03⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦ 计算()()()()-+→-+→1221330.93657;0.55224;E E E E E E2.683.04 1.481.3672 5.916100.748810.48269⎡⎤-⎢⎥-⎢⎥⎢⎥--⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.546381.3227⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦计算()()-+→2330.54770;E E E2.683.04 1.4801.36725.9161003.7229⎡⎤-⎢⎥-⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.546381.0235⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦ 换行和消去到此结束,经回代计算得到x =()1.440360, 1.577963,0.27494T--3.用Doolittle 三角分解方法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----551631011411014211264321x x x x解:首先对系数矩阵A 做分解LUA =解出:解b y L=,计算出Ty ⎪⎭⎫ ⎝⎛--=74213,521,1,6解y x U=,计算出()T x 115183.1,863874.0,361257.0,790576.0--=4.设][,ij n n a A R A =∈⨯,011≠a ,b Ax =经过高斯消去法一步后变为)2()2(b x A =,其中=)2(A⎥⎦⎤⎢⎣⎡21110A a a T ,(2)A =()(2),2n ij i j a =为(n-1)⨯(n-1)矩阵.其元素为(2)ija =(1)ij a -(1)(1)11i j a a /(1)11a , ,i j =2,3, n. 证明:(1)若A 对称正定,则2A 是对称矩阵。

数值分析课后习题答案

数值分析课后习题答案

7、计算的近似值,取。

利用以下四种计算格式,试问哪一种算法误差最小。

〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。

解:在计算机上计算该级数的是一个收敛的级数。

因为随着的增大,会出现大数吃小数的现象。

9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。

10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。

解:此算法是数值稳定的。

第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。

〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

设A是n×n的正交矩阵。

证明A-1也是n×n的正交矩阵。

证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。

设A是非奇异的对称阵,证A-1也是非奇异的对称阵。

A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。

证A-1也是单位上〔下〕三角阵。

证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。

R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0的根底解系。

A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。

数值分析答案第二章参数估计习题

数值分析答案第二章参数估计习题
数值分析答案第二章参数估计习题数值分析习题解答数值分析课后习题答案参数估计练习题数值分析习题参数估计习题参数估计习题及答案数值分析习题解答pdf数值分析习题集及答案数值分析习题答案
f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ

x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =

X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α

数值分析第二版(丁丽娟)答案

数值分析第二版(丁丽娟)答案
第一章答案
第二章答案
第三章答案
0 0.5 0.5 1 1 2.5000
5.0000 5.5000
第四章答案
2 10.5000 19.0000 19.5000
3 42.5000 91.0000 91.5000
4 170.5000 315.0000 315.5000
5 682.5000 1467.0000 1467.5000
第八章答案
练习: 第一章
答案
练习二 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反幂法中,为什么每步都要将迭代向量规范化?
1.32
1.68
2.08
2.52
3.00
解答下列问题 (1)试列出相应的差分表; (2)写出牛顿向前插值公式; (3)用二次牛顿前插公式计算 f(0.225);
例3已知当 x=-1,0,2,3时,对应的函数值为




,求 的四次 Newton 插值多项式。
例4 设 对 n=1,2,3时
,证明:
例5 设 (1)
第一章答案第二章答案第三章答案第四章答案050525000500005500010500019000019500021000000000000000380001950004250009100009150001700000000000000018199999999999999166363636363636371705000315000031550001623809523809523716578947368421051161794871794871796825000146700001467500016058823529411764161208791208791201603825136612021827305000505100005051500016014662756598241160349206349206351601109350237717910922500023483000023483500016003663003663004160074982958418521600238500851788743690500080827000080827500016000915583226515160021777865769151600069286350589则开根号得400011444626607140002722140595534000086607000640对应的特征向量为第五章答案第六章答案2727930204331053600038939418364475947673代入数据得132解

高等数值分析第二章答案

第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。

令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。

在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。

以上证明了求解,22b Ax b Ax −=等价于极小化即。

等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。

使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。

为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。

数值分析参考答案第二章

第二章插值法1.当兀= 1—2时,/(%) = 0-3,4^/(%)的二次插值多项式。

解:X。

= I/】=—l,x2 = 2, /Uo) =0,/(^)=-3,/(X2) = 4;一丄(兀+i)(一2),0(人)=Oo — xJOo — xJ 2加)=(_兀)(—心=丄(一1)(一2)(兀一兀)(州一呂)6(A-.VoX.V-Vj l(Y_1)(x+1)(x2-x Q)(x2-x t) 3则二次拉格朗口插值多项式为2厶⑴=£)恥)k=0=-3/0(X)+4/2(X)1 4= --U- 1)(A—2) + -(x-l)(x + 1)5r 3 7=-X" +—x--6 2 3/(x) = liix2.用线性插值及二次插值计算1110.54的近似值。

解:由表格知,x0 = 0・4,兀=0.59X2 = 0.6, x3 = 0.7,x4 = 0.8; f(x Q) = -0.916291,/(xj = -0.693147 /(A) = —0.510826,/a)= -0.356675 /(x4) =-0.223144若采用线性插值法计算hiO.54即/(0.54),则0.5 <0.54 <0.6/1(x) = ^—^ = -10(.v-0.6) 人一无X —X /.(%) = -__ =-10(x-0.5)厶⑴=/U1XW + /(x 2)/2(x)=6.93147(x — 0.6) - 5・ 10826(.— 0.5)・・・厶(0.54) = -0.6202186 « -0.620219若采用二次插值法计算lnO.54时, (V f _亠)=50(x-0.5)(x- 0.6)(x Q -xj(x 0-x 2)(工7。

)(工_亠)=-100(x- 0.4)(x — 0.6)(兀一 Xo )(X 】一XJ厶(x) = /UoVoW+/U1XW+/(x 2)/2(x )=-50 x 0.916291(%-0.5)(A -0.6)+ 69.3147(x-0.4)(x-0.6)-0.510826 x50(x-0.4)(x-0.5).14(0.54) = -0.61531984 « -0.615320 3.给全cosx,0 <x<90°的函数表,步长/? = r = (l/60)\若函数表具有5位有效数字,研 究用线性插值求cos 兀近似值时的总误差界。

数值分析第二章作业答案

第二章1.试证明nn R⨯中的子集“上三角阵”对矩阵乘法是封闭的。

证明:设n n R B A ⨯∈,为上三角阵,则)( 0,0j i b a ij ij >== C=AB ,则∑==nk kjik ij b ac 1)( 0j i c ij >=∴,即上三角阵对矩阵乘法封闭。

2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=512103421121A ,求A 的行空间)(T A R 及零空间N(A)的基。

解:对T A 进行行变换,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=00100010121420050000121501131242121TA 3)(=∴T A r ,)(T A R 的基为[][][]T T T 5121,03421121321=-==ααα,由Ax=0可得[]Tx 0012-=∴N(A)的基为[]T0012-3.已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。

解:2321()det()230(3)(64)013A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基。

,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。

1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。

数值分析参考答案(第二章)doc资料

(2)若 ,则
证明:
(1)
得证。
+
得证。
14. 求 及 。
解:


15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知

可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,
若采用线性插值法计算 即 ,

若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


n
i=1
ln x i = 0
θ

= −
n
∑ ∑
n
n
i=1
ln x i n
θ
= =
解之得:
i=1
ln x i
(2)母体 X 的期望
E (x) =

+∞ −∞
xf ( x ) d x =

1 0
θ xθ dx =
θ θ +1
而样本均值为:
1 n X = ∑ xi n i =1 令E ( x) = X 得 θ =
x e 2σ 1 n
d x = 2 x ) =

+ ∞ 0
x 2σ
e

x σ
d x = − x e ) = 1 ⋅ nσ n

x σ
+ ∞
+
0

+ ∞ 0
e

x σ
d x =
E (σ ) = E (

n
i=1
i
1 n

n
E ( x
i=1
i
= σ
所以
σ=

1 n ∑ xi σ n i=1 为 的无偏估计量。

X 1− X
5.。解:其似然函数为:
L (σ ) = ∏
i =1
n
1 ⋅e 2σ

xi σ
=
1 ⋅e (2σ ) n 1 σ
n i =1

1 σ
∑ xi
i =1
n
ln L (σ ) = − n ln(2σ ) − 得: σ =

∑ =0
xi

1 σ
∑x
i =1
− x σ
n
i
(2)由于
E =


+ ∞ − ∞
即 X 也是 λ 的无偏估计。 又 ∀α ∈ [0,1]
E (a X + (1 − α ) S * ) = αE ( X ) + (1 − α ) E ( S * ) = αλ + (1 − λ )λ = λ
2 2 2
因此 α X + (1 − α ) S * 也是 λ 的无偏估计
14.解:由题意: X ~ N ( µ , σ 2 ) 因为 E (λ ) 2 = C ∑ E ( X i +1 − X i ) 2 = C ∑ [ D ( X i +1 − X i ) + ( E ( X i +1 − X i ) 2 ]
第二章 1.
λ e−λx, x ≥ 0 f (x) = 0, x < 0 E (x) = = − xe = − 令

+∞ −∞ +∞ 0
f (x) ⋅ xdx = + 1 λ =

+∞ 0
λ xe
− λ x
dx
− λ x

1 λ
+∞ 0
e
− λ x
d (λ x )
1 e λ
− λ x
+∞ 0
i =1 i =1
要使似然函数最大,则需 θ 取 min( x1 , x 2 ,L, x n ) 即 θ = min( x1 , x 2 ,L x n ) 9. 解:取子样值 ( x1, x 2 ,L , x n )( xi > 0) 则其似然函数 L(λ ) = ∏ λe −λx = λn e
i

故 σ 2 的罗—克拉美下界
IR = 2 4 σ n
∧ 2
n 1 n 1 2 ( X µ ) ) − = E ( ∑ i ∑ ( X i − µ)2 ) = σ 2 n i =1 n i =1
10. 解: (1)由题中子样值及题意知: 极差 R = 6.2 − 1.5 = 4.7
λ = 0.4299 × 4.7 = 2.0205

查表 2-1 得
1 = 0.4299 d5

(2)平均极差 R = 0.115 ,查表知

1 = 0.3249 d 10

λ = 0.3249 × 0.115 = 0.0455
n i=1
i
n
n
ln L ( P ) = n ln p + ( ∑ X
i=1
n
− n ) l n (1 − p )
X − n ) = 0
d ln L d p
=
n 1 − ( p 1 − p
p =


1 X
i=1
i
n
解之得

n
= X
i
i=1
3. 解:因为总体X服从U(a,b)所以
2 a+b ( a-b) n! D( X) = 2 12 r ! ( n − r )! 令 E( X) =X D ( X ) = S 2, n 1 S2 = ∑ ( X i − X )2 n i =1 a+b = X 2 2 ( a − b) = S2 12 ∧ a = X − 3S ∧ b = X + 3S
1 = x λ
从而有 2.
λ=

1 x
1) . E ( x ) = = p

1

x =1
k (1 − p ) k − 1 p = p ∑ k (1 − p ) k − 1
x =1 2

1 − (1 − p )
=
1 p
1

p= X
p =

所以有
1 X
2) .其似然函数为
∑Xi −n xi −1` n L(P) =∏(1− P) p = p (1− p)i=1
6. 解:其似然函数为: n βk βk n n ( k −1) − β xi L(β ) = ∏ xi e =( ) ∏ xi ( k −1) e − β xi ( k −1)! i =1 i =1 ( k −1)!
n n ln L ( β ) = n k ln β + ( k − 1 ) ln ( ∑ X i ) − β ∑ X i i =1 i =1
2

n 2
− i =1
∑ ( xi − µ ) 2
2σ 2
n
n n LnL (σ 2 ) = − Ln 2π − Lnσ 2 − 2 2
∑ (x
i
− µ)2
2σ 2
dLnL n =− + dσ 2 2σ 2
∑ (x
i =1
n
i
− µ)2 =0
2σ 4
σ2 =
1 n ∑ ( xi − µ ) 2 n i =1
d ln L ( β ) nk = − dβ β

n
X
i =1
i
= 0
解得
β =

nk

n
=
i
X
k X
β −0 β = , 2 2
i =1
7.解:由题意知:均匀分布的母体平均数 µ = 方差 λ2 =
( β − 0) 2 β 2 = 12 12
用极大似然估计法求 β 得极大似然估计量
似然函数: L( β ) = ∏
+∞
2 +∞ ( x − µ ) 1 2 ∂Lnf ( x ) 2 因为 ∫−∞ ( = − ] [ ) f ( x ) dx 4 ∫ 2 −∞ 2σ 2σ 2 ∂σ
1 2π σ
e

( x− µ )2 2σ 2
dx
=
1 n [ E ( X − µ ) 4 − E ( X − µ ) 2 2σ 2 + σ 4 ] = 8 4σ 2σ 4
15.证明:Q 参数 θ 的无偏估计量为 θ , D θ 依赖于子样容量 n 则 ∀ε > 0, 由切比雪夫不等式
∧ ∧ Q lim D θ = 0 故有 lim p θ − θ < ε = 1 n →∞ n →∞
即证 θ 为 θ 的相合估计量。 16 证明:设 X 服从 B ( N , p ) ,则分布律为 P ( X = k ) = C kN P k (1 − P ) k
E ( X )=
4. 解: (1)设 1
L (θ ) = θ
n n i=1
x , x2 ,L xn 为样本观察值则似然函数为:
−1
(∏ x i )θ
, 0 < x i < 1, i = 1, 2 ,L , n
n
Hale Waihona Puke l n L (θ ) = n l n θ + ( θ -1) ∑ ln x i
i=i
d ln L n = + dθ θ

解:设 u 为其母体平均数的无偏估计,则应有 µ = x 又因 x =

1 (8 × 1 + 40 × 3 + 10 × 6 + 2 × 26) = 4 60
即知 µ = 4 12. 解:Q X ~ N ( µ ,1)
∴ E ( xi ) = µ
E(µ 2 ) =

, D ( xi ) = 1 ,
所以 I R =
∧ ∧ P (1 − P ) = D P 即 p 为优效估计 nN
17. 解:设总体 X 的密度函数
f ( x) = 1 2π σ e
− ( x− µ )2 2σ 2
似然函数为 L(σ ) = ∏
2 i =1
n
1 2π σ
n i =1
( xi − µ )
相关文档
最新文档