考研高数总复习平面点集与多元函数(讲解)

合集下载

数学分析下——平面点集与多元函数知识点

数学分析下——平面点集与多元函数知识点

数学分析下定义定理整理第一章多元函数的极限与连续第一节平面点集与多元函数1、坐标平面上满足某种条件P的点的集合称为平面点集,并记作E={(x,y)|(x,y)满足条件P}.2、内点——若存在点A的某邻域U(A),使得U(A)ÌE,则称点A是点E的内点.E的全体内点构成的集合称为E的内部,记作int E.3、外点——若存在点A的某邻域U(A),使得U(A)∩E=Æ,则称A是点集E的外点.4、界点——若在点A的任何邻域内既含有属于E的点,又含有不属于E的点,则称A是集合E的界点.即对任何正数d,恒有U(A;d)∩E≠Æ且U(A;d)∩E c≠Æ,其中E c=R2\E是E关于全平面的余集.E的全体界点构成E的边界,记作¶ E.注:E的内点必定属于E,E的外点必定不属于E,E的界点可能属于E,也可能属于E,也可能不属于E.5、聚点——若在点A的任何空心邻域U0(A)内都含有E中的点,则称A是E的聚点,聚点本身可能属于E,也可能不属于E.6、孤立点——若点A∈E,但不是E的聚点,即存在某一正数d,使得U0(A;d)∩E=Æ,则称点A是E的孤立点.注:孤立点一定是界点,内点和非孤立的界点一定是聚点,既不是聚点,又不是孤立点,则必为外点.7、开集——若平面点集所属的每一点都是E的内点(即int E=E),则称E为开集.8、闭集——若平面点集E的所有聚点都属于E,则称E为闭集.若点集E没有聚点,这时也称E为闭集.注:只有R2与Æ是既开又闭的点集.9、开域——若非空开集具有连通性,即E中任意两点之间都可用一条完全含于E的有限折线相连接,则称E为开域.10、闭域——开域连同其边界所成的点集称为闭域.11、区域——开域、闭域,或者开域连同其一部分界点所成的点集,统称为区域.12、有界点集——对于平面点集E,若存在某一正数r,使得EÌU(O;r),其中O是坐标原点(也可以是其他固定点),则称E是有界点集.否则就是无界点集.13、定义1设{P n}ÌR2为平面点列,P0∈R2为一固定点.若对任给的正数e,存在正整数N,使得当n>N时,有P n∈U(P0;e),则称点列{P n}收敛于点P0,记作lim P n=P0 或P n®P0,n®¥.n14、定理16.1(柯西准则)平面点列{P n}收敛的充要条件是:任给正数e,存在正整数N ,使得当n>N 时,对一切正整数p ,都有 r (P n ,P n+p )<e .15、定理16.2(闭域套定理) 设{D n }是R 2中的闭域列,它满足:(i )D n ÉD n+1,n=1,2,…;(ii )d n =d(D n ),nlim d n =0, 则存在惟一的点P 0∈D n ,n=1,2,….推论 对上述闭域套{D n },任给e >0,存在N ∈N +,当n>N 时,有D n ÌU(P 0;e ).16、定理16.3(聚点定理) 设E ÌR 2为有界无限点集,则E 在R 2中至少有一个聚点.17、定理16.3’ 有界无限点列{P n }ÌR 2必存在收敛子列{P n k }.18、定理16.4(有限覆盖定理) 设D ÌR 2为一有界闭域,{D α}为一开域族,它覆盖了D (即D Ìaα),则在{D α}中必存在有限个开域D 1,D 2,…,D n ,它们同样覆盖了D (即D Ì1n i =D α). 19、定以2 设平面点集D ÌR 2,若按照某对应法则f ,D 中每一点P(x,y)都有惟一确定的实数z 与之对应,则称f 为定义在D 上的二元函数(或称f 为D 到R 的一个映射),记作F :D ®R ,。

16章§1平面点集与多元函数

16章§1平面点集与多元函数

16章§1平面点集与多元函数第十六章多元函数的极限与连续§1 平面点集与多元函数教学目的了解平面中的邻域,开集,闭集,开域,闭域的定义,了解的完备性,掌握二元及多元函数的定义.教学要求基本要求:了解平面中的邻域,开集,闭集,开域,闭域的定义,以及的完备性,掌握二元及多元函数的定义.较高要求:掌握的完备性定理.教学建议(1) 要求学生清楚地了解平面中的邻域,开集,闭集,开域,闭域等有关的概念,可布置适量习题.(2) 有关的完备性定理的证明可对较好学生提出要求.教学程序一、平面点集: 平面点集的表示: 满足的条件P}.余集 .(一)、常见平面点集:1 全平面和半平面全平面:半平面: , , , 等。

2 矩形域: 例 , }.3 圆域: 开圆 , 闭圆 , 圆环.圆的个部分. 极坐标表示, 特别是和 .4 角域: .5 简单域: 型域和型域.(二)、邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域 , 空心方邻域与集的区别.二、点集拓扑的基本概念:(一)、内点、外点和界点:内点:若存在点P 的某邻域使得,则称P是集合E的内点。

外点:若存在点P 的某邻域,使得,则称P是集合E的外点。

界点:若P的任何邻域内既有属于E的点,又有不属于E的点,则称点P是E的界点集合的全体内点集表示为 , 边界表示为 .集合的内点 , 外点 , 界点不定 .例1确定集的内点、外点集和边界 .例2为Dirichlet函数.确定集的内点、外点和界点集 .(二)、( 以凝聚程度分为 ) 聚点和孤立点:定义(聚点)若P的任何空心邻域内都含有E中的的点,则称点P 是E的聚点。

定义(孤立点): 若存在,使得,则称点A是E的孤立点。

孤立点必为界点.例3 . 确定集的聚点集 .解:的聚点集 .(三)、( 以包含不包含边界分为 ) 开集和闭集:时称为开集 , 的聚点集时称为闭集. 存在非开非闭集.和空集为既开又闭集.(四)、( 以连通性分为 ) 开区域、闭区域、区域:以上常见平面点集均为区域 .开区域:若非空开集E具有连通性,即E中任何两点都可以用一条完全含于E的有限折线链接起来,则称E为开区域。

高等数学第九章第一节 多元函数的基本概念

高等数学第九章第一节 多元函数的基本概念
28
多元初等函数:由多元多项式及基本初等函数 经过有限次的四则运算和复合步骤所构成的可 用一个式子所表示的多元函数叫多元初等函数 一切多元初等函数在其定义区域内是连续的. 定义区域是指包含在定义域内的区域或闭区域.
29
一般地,求 lim f (P) 时,如果 f (P) 是初等函 P P0
数,且 P0 是 f (P ) 的定义域的内点,则 f (P ) 在
第一节 多元函数的基本概念
一、平面点集 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性
1
一、平面点集
1. 平面点集
平面上的点P与有序二元实数组 ( x, y) 之间
是一一对应的。
R2 R R (x, y) | x, y R 表示坐标平面。
平面上具有性质P的点集,称为平面点集,记作
边界上的点都是聚点也都属于集合.
9
二、多元函数概念
设 D是平面上的一个点集,如果对于每个点
P( x, y) D,变量z按照一定的法则总有确定的值 和它对应,则称 z 是变量 x, y 的二元函数,记为 z f ( x, y)(或记为z f (P)).
类似地可定义三元及三元以上函数.
当n 2时,n 元函数统称为多元函数.
点 P0
处连续,于是 lim P P0
f (P)
f (P0 ).
例7 求 lim xy 1 1.
x0
xy
y0
30
四、小结
多元函数的定义 多元函数极限的概念
(注意趋近方式的任意性)
多元函数连续的概念 闭区域上连续函数的性质
31
思考题
若点( x, y)沿着无数多条平面曲线趋向于 点( x0 , y0 )时,函数 f ( x, y)都趋向于 A,能否 断定 lim f ( x, y) A?

数学分析16.1平面点集与多元函数

数学分析16.1平面点集与多元函数

数学分析16.1平面点集与多元函数第十六章多元函数的极限与连续1平面点集与多元函数一、平面点集概念1:在平面上确定一个坐标系(一般指平面直角坐标系),所有有序实数对(x,y)与平面上所有的点之间建立了一一对应,因此“数对”可等同于“平面上的点”,这种确定了坐标系的平面称为坐标平面. 坐标平面上满足某种条件P的点的集合称为平面点集,记作:E={(x,y)|(x,y)满足条件P}.如R2={(x,y)|-∞<x<+∞,-∞<=""></x<+∞,-∞以原点为中心,r为半径的圆内所有点的集合是C={(x,y)|x2+y2<="" p="">一般地,对于任意两个数集A, B,记A×B={(x,y)|x∈A,y∈B },称为A 与B的直积. 如:A={(u,v)|u2+v2<1},B=[0,1],则A×B={(u,v,w)|u2+v2<1, 0≤w≤1 }.平面点集{(x,y)|(x-x0)2+(y-y0)2<δ2}与{(x,y)||x-x0|<δ,|y-y0|<δ}分别称为以点A(x0,y0)为中心的δ圆邻域与δ方邻域.点A的任一圆邻域可包含在点A的某一方邻域之内(反之亦然),所以通常用“点A的δ邻域”或“点A的邻域”泛指这两种形状的邻域,并记为U(A;δ)或U(A). 而点A的空心邻域是指:(记为U?(A;δ)或U?(A)) {(x,y)|0<(x-x0)2+(y-y0)2<δ2}或{(x,y)||x-x0|<δ,|y-y0|<δ, (x,y)≠(x0,y0)}.任一点A∈R2与任意一个点集E?R2之间必有以下三种关系之一:1、内点:若存在点A的某邻域U(A),使得U(A)?E,则称A是点集E 的内点. E的全体内点构成的集合称为E的内部,记作int E.2、外点:若存在点A的某邻域U(A),使得U(A)∩E=?,则称A 是点集E的外点.3、界点:若点A的任何邻域内既含有属于E的点,又含有不属于E 的点,则称A是集合E的界点. 即对任何正数δ,恒有U(A;δ)∩E≠?且U(A;δ)∩E c≠?,其中E c=R2\E是E关于全平面的余集. E的全体界点构成E的边界,记作?E.内点属于E,外点不属于E,界点不能确定.按点A的近旁是否密集着E中无穷多个点而构成的关系:1、聚点:若在点A的任何空心邻域U?(A)内都含有E中的点,则称A 是E的聚点. 聚点不一定属于E. A是点集E的聚点的定义等价于“点A的任何邻域U(A)内包含有E的无穷多个点”.2、孤立点:若点A∈E, 但不是E的聚点,即存在某一正数δ,使得U?(A;δ)∩E=?,则称点A是E的孤立点. 孤立点一定是界点,内点和非孤立的界点一定是聚点,即不是聚点,又不是孤立点,必为外点.例1:设平面点集D={(x,y)|1≤x2+y2<4},分别指出它的内点、界点和聚点,并指出界点是否属于点集D.解:满足1<x2+y2<4的一切点都是d的内点;< bdsfid="88" p=""></x2+y2<4的一切点都是d的内点;<>满足x2+y2=1的一切点是D的界点且属于D;满足x2+y2=4的一切点是D的界点且不属于D;点集D连同它外圆边界上的所有点都是D的聚点.概念2:重要的平面点集:1、开集:若平面点集所属的每一点都是E的内点(即intE=E),则称E 为开集.2、闭集:若平面点集E的所有集点都属于E,则称E为闭集. 没有聚点的点集也称为闭集.注:例1中的点集D即不是开集也不是闭集;R2和?既开又闭.3、开域:若非空开集E具有连通性,即E中任意两点之间都可用一条完全包含于E的有限折线相连接,则称E为开域(非空连通开集).4、闭域:开域连同其边界所成的点集称为闭域.5、区域:开域、闭域,或者开域连同其一部分界点所成的点集,统称为区域. 反例:开集E={(x,y)|xy>0}在I,III象限之间不具有连通性,所以它不是区域.6、有界点集:对于平面点集E,若存在某一正数r ,使得E?U(O,r),其中O 为坐标原点(也可为其它固定点),则称E 为有界点集. 反之则为无界点集. E 为有界点集等价于:存在矩形区域D=[a,b]×[c,d]?E.点集的有界性可用点集的直径来反映,即d(E)=EP ,P 21sup ∈ρ(P 1,P 2),其中ρ(P 1,P 2)表示P 1与P 2两点之间的距离,当P 1,P 2的坐标分别为(x 1,y 1)和(x 2,y 2)时,则ρ(P 1,P 2)=221221)-y (y )x -(x +,于是当d(E)为有限值时,E 为有界点集.根据距离的概念,对R 2上的任意三点P 1,P 2,P 3,有以下三角不等式:ρ(P1,P 2)≤ρ(P 1,P 3)+ ρ(P 2,P 3).例2:证明:对任何S ?R 2,?S 恒为闭集.证:如图:设x 0为?S 的任一聚点,ε>0,由聚点的定义,?γ∈U ?(x 0;ε)∩?S. 又γ是S 的界点,∴对任意U(γ;δ)?U ?(x 0;ε), U(γ;δ)上既有S 的点,又有非S 的点. ∴U(x 0;ε)上也既有S 的点,又有非S 的点,即x 0∈?S ,∴?S 恒为闭集.二、R 2上的完备性定理定义1:设{P n }?R 2为平面点列,P 0∈R 2为一固定点. 若对任给的正数ε,存在正整数N ,使得当n>N 时,有P n ∈(P 0;ε),则称点列{P n }收敛于点P 0,记作:∞→n lim P n =P 0或P n →P 0, n →∞.注:分别以(x n ,y n )与(x 0,y 0)表示P n 与P 0时,∞→n lim P n =P 0等价于∞→n lim x n =x 0,∞→n lim y n =y 0. 以ρ(P 1,P 2)表示P n 与P 0之间距离时,∞→n lim P n =P 0又等价于,∞→n lim ρ=0.定理16.1:(柯西准则)平面点列{P n }收敛的充要条件是:任给正数ε,存在正整数N ,使得当n>N 时,对一切正整数p ,都有ρ(P n ,P n+p )<ε. 证:[必要性]设∞→n lim P n =P 0, 则由三角不等式有ρ(P n ,P n+p )≤ρ(P n ,P 0)+ρ(P n+p ,P 0),由点列收敛定义,?ε>0,?正整数N ,当n+p>n>N 时,恒有ρ(P n ,P 0n+p ,P 0)<2ε;∴ρ(P n ,P n+p )<ε.[充分性]若ρ(P n ,P n+p )<ε,则同时有|x n+p -x n |≤ρ(P n ,P n+p ) <ε,|y n+p -y n |≤ρ(P n ,P n+p ) <ε,∴∞→n lim x n =x 0,∞→n lim y n =y 0,∴∞→n lim P n =P 0,即{P n }收敛于P 0.定理16.2:(闭域套定理)设{D n }是R 2中的闭域列,它满足:(1)D n ?D n+1, n=1,2,…;(2)d n =d(D n ), ∞→n lim d n =0,则存在唯一的点P 0∈D n , n=1,2,….证:任取点列P n ∈D n , n=1,2,….∵D n+p ?D n , ∴P n ,P n+p ∈D n , 如图有ρ(P n ,P n+p )≤d n →0, n →∞. 由定理16.1知,存在P 0∈R 2,使∞→n lim P n =P 0. 任取n ,对任何正整数p ,有P n+p ∈D n+p ?D n .令p →∞,∵D n 是闭域,从而必为闭集. ∴D n 的聚点P 0∈D n ,即P0=lim P n+p∈D n, n=1,2,…. 若有P0’∈D n, n=1,2,….n→∞由ρ(P0,P0’)≤ρ(P n,P0)+ρ(P n,P0’)≤2d n→0, n→∞. 得ρ(P0,P0’)=0,∴P0=P0’. 即P0是唯一的,得证!推论:对上述闭域套{D n},任给ε>0,存在正整数N,当n>N 时,有D n?U(P0;ε).定理16.3:(聚点定理)设E?R2为有界无限点集,则E在R2中至少有一个聚点.证法一:∵E是平面有界无限点集,∴存在一个闭正方形D1包含它. 连接正方形对边中点,把D1分成四个小的闭正方形,则在这个四个小闭正方形中,至少有一个含有E的无限个点,记为D2,同样的将D2分成四个小的闭正方形,得到D3含有E的无限个点,如此下去得到一个闭正方形序列:D1?D2?D3?…,则闭正方形序列{D n}的边长随着n趋向于无限而趋向于0,于是由闭域套定理,存在一点M0∈D n, n=1,2,….ε,任取M0的ε邻域U(M0;ε),当n充分大时,正方形的边长小于2即D n?U(M0;ε). 又由D n的取法知U(M0;ε)含有E的无限多个点,即M0是E的聚点.证法二:若点集E不存在任何聚点,则对任意点P∈E,∵E有界,∴存在某一正数r ,使得E?U(P;r),且U(P;r)中只包含E的有限个点. 而E的所有点都包含于U(P;r),即E 只包含有限个点,与E 为无限点集矛盾;∴E 在R 2中至少有一个聚点.定理16.3’:有界无限点列{P n }?R 2必存在收敛子列{kn P }.定理16.4:(有限覆盖定理)设D ?R 2为一有界闭域(集),{△α}为一开域(集)族,它覆盖了D(即D ?αα),则{△α}中必存在有限个开域(集)△1,△2,…,△n ,它们同样覆盖了D(即D ?i n1i ?= ). 证:设有界闭域D 含在矩形[a,b]×[c,d]之中,并假设D 不能被{△α}中有限个开域所覆盖.用直线x=2b a +,y=2d c +把矩形[a,b]×[c,d]分成四个相等的闭矩形,则至少有一个闭矩形所含的D 的部分不能被{△α}中有限个开域所覆盖. 类似的,把这个矩形(或几个的其中任一)再分成四个相等的闭矩形. 按此法继续下去,可得一闭矩形套{[a n ,b n ]×[c n ,d n ]}. 其中每一个闭矩形所含的D 的部分都不能为{△α}中有限个开域所覆盖,于是每个闭矩形[a n ,b n ]×[c n ,d n ]中都至少含有D 的一点,任取其中一点(x n ,y n ), 则(x n ,y n )∈D, 且a n <x n="" <b="" ,="" c="" <y="" <d="" (n="1,2,…)." 由闭矩形套定理可知:="" 存在一点(x="" 0,y=""0),满足对任意自然数n="" ,都有a="" ≤x="" 0≤b="" ≤y="" 0≤d="" .="" ∵∞→n="" lim="" (b="" -a="" )="n" 2a="" -b="" ∞→="0;" ∞→n="" (d="" -c="" 2<="" p="" bdsfid="171">。

高等数学第16章第1节平面点集与多元函数

高等数学第16章第1节平面点集与多元函数

第十六章 多元函数的极限与连续§1 平面点集与多元函数在前面各章中,我们所讨论的函数都只限于一个自变量的函数,简称一元函数.但是在更多的问题中所遇到的是多个自变量的函数.例如,矩形的面积xy s =,描述了面积S 和长x 、宽y 这两个量之间的函数关系.又如,烧热的铁块中每一点的温度T 与该点的位置之间有着确定的函数关系,即当铁块中点的位置用坐标(x ,y ,z)表示时,温度丁由y x ,,z 这三个变量所确定.如果进一步考虑上述铁块的冷却过程,那末温度T 还与时间t 有关,即T 的值由x,y,z,t 这四个变量所确定.这种两个、三个或四个自变量的函数,分别称为二元、三元或四元函数,一般统称为多元函数.多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也由于自变量由一个增加到多个,产生了某些新的内容,读者对这些内容尤其要加以注意.对于多元函数,我们将着重讨论二元函数.在掌握了二元函数的有关理论与研究方法之后,我们可以把它推广到一般的多元函数中去.一元函数的定义域是实数轴上的点集;二元函数的定义域将是坐标平面上的点集.因此,在讨论二元函数之前,有必要先了解有关平面点集的一些基本概念.一 平面点集由平面解析几何知道,当在平面上确定了一个坐标系(今后如不特别指出,都假定是直角坐标系)之后,所有有序实数对①(x,y)与平面上所有的点之间建立了一一对应.因此,今后将把“数对”与“平面上的点”这两种说法看作是完全等同的.这种确定了坐标系的平面,称为坐标平面.坐标平面上满足某种条件P 的点的集合,称为平面点集,并记作 ()(){}P y x y x E 满足条件,|,= . 例如全平面上的点所组成的点集是 (){}.,|,2+∞<<-∞+∞<<-∞=y x y x R (1)平面上以原点为中心,r 为半径的圆内所有的点的集合是 (){}222|,r y x y x C <+= (2) 而集合(){}d y c b x a y x S ≤≤≤≤=,|, (3)则为一矩形及其内部所有点的全体,为书写上的方便,也常把它记作[a,b]⨯[]d ,c .平面点集()()(){}2202|,δ<-+-y y x x y x 与(){}δδ<-<-00,|,y y x x y x分别称为以点()00,y x A 为中心的δ圆领域与δ方领域(图16-1).由于点A 的任一圆邻域可以包含在点A 的某一方邻域之内(反之亦然),因此通常用“点A 的δ邻域”或“点A 的邻域”泛指这两种形状的邻域,并以记号U(A ;δ)或U(A)来表示.点A 的空心邻域是指()()(){}220200|,δ<-+-<y y x x y x或()()(){}0000,,,,|,y x y x y y xx y x ≠<-<-δδ并用记号()()A U A U 0;或δ来表示.下面利用邻域来描述点和点集之间的关系.任意一点2R A ∈与任意一个点集2R E ⊂之间必有以下三种关系之一: (i )内点——若存在点A 的某邻域U(A),使得U(A)E ⊂,则称点A 是点E 的内点;E 的全体内点构成的集合称为E 的内部,记作intE .(ii)外点——若存在点A 的某邻域U(A),使得U(A)φ=⋂E ,则称A 是点集E 的外点.(iii)界点——若在点A 的任何邻域内既含有属于E 的点,又含有不属于E 的点.则称A 是集合E 的界点.即对任何正数δ,恒有 ()(),;;φδφδ≠≠cE A U E A U 且其中E R cE \2=是E 关于全平面的余集,E 的全体界点构成E 的边界,记作E ∂. E 的内点必定属于E ;E 的外点必定不属于E ;E 的界点可能属于E ,也可能不属于E .点A 与点集E 的上述关系是按“点A 在E 内或在E 外”来区分的.此外,还可按在点A 的近旁是否密集着E 中无穷多个点而构成另一类关系: (i)聚点——若在点A 的任何空心邻域0U (A)内都含有E 中的点,则称A 是E 的聚点,聚点本身可能属于E ,也可能不属于E .(ii)孤立点——若点A E ∈,但不是E 的聚点,即存在某一正数δ,使得()φδ=E A U ;0,则称点A 是正的孤立点.显然,孤立点一定是界点;内点和非孤立的界点一定是聚点;既不是聚点,又不是孤立点,则必为外点.例1 设平面点集 (){}41|,22<+≤=y x y x D (4)满足4122<+<y x 的一切点都是D 的内点;满足122=+y x 的一切点是D 的界点,它们都属于D ;满足422=+y x 的一切点也是D 的界点,但它们都不属于D ;点集D 连同它外圆边界上的一切点都是D 的聚点. 口根据点集中所属点的特征,我们再来定义一些重要的平面点集.开集——若平面点集所属的每一点都是正的内点(即intE=E),则称E 为开集.闭集——若平面点集E 的所有聚点都属于E ,则称E 为闭集.若点集E 没有聚点,这时也称E 为闭集.在前面列举的平面点集中,(2)所表示的点集C 是开集;(3)所表示的点集S 是闭集;(4)所表示的点集D 既非开集,又非闭集;而且(1)所表示的点集2R 既是开集又是闭集.此外,还约定空集φ既是开集又是闭集.可以证明,在一切平面点集中,只有R 2与g 是既开又闭的点集.开域——若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于正的有限折线(由有限条直线段连接而成的折线)相连接,则称正为开域(或称连通开集).闭域——开域连同其边界所成的点集称为闭域.区域——开域、闭域,或者开域连同其一部分界点所成的点集,统称为区域.在上述诸例中,(2)是开域,(3)是闭域,(1)既是开域又是闭域. 又如(){}0|,>=xy y x E(5)虽然是开集,但因Ⅰ、Ⅱ象限之间不具有连通性,所以它不是开域,也不是区域.有界点集——对于平面点集E ,若存在某一正数,使得 (),;r O U E ⊂其中O 是坐标原点(也可以是其他固定点),由称E 是有界点集.否则就是无界点集.上述()()()432、、都是有界点集,()()51、是无界点集. E 为界点集的另一等价说法是:存在矩形区域[][].,,E d c b a D ⊃⨯= . 点集的有界性还可用点集的直径来反映,所谓点集E 的直径,就是 ()(),,sup 21,21p p E dEp p ρ∈=其中()21,p p ρ表示1P 与2P 两点之间的距离,当1P 和2P 的坐标分别为()11,y x 和()22,y x 时,则,()()().,22122121y y x x p p -+-=ρ 于是,当且仅当()E d 为有限值时E 是有界点集. 根据距离概念,读者不难证明如下三角形不等式,即对R 2上任何三点1P ,2P 和3P ,皆有()()()ρρρρ.,,,323121p p p p p p +≤二 R 2上的完备性定理反映实数系完备性的几个等价定理,构成了一元函数极限理论的基础。

16.1平面点集与多元函数

16.1平面点集与多元函数

令p , Dn是闭域, Dn是闭集,
而P0是Dn的聚点,
P0
lim
n
Pn
p
Dn ,
Dn
Dn p
• Pn
p
• Pn
x
n 1,2, ,
(唯一性) 设P0, P0 Dn , n 1, 2, ,则
P0, P0 P0, Pn P0, Pn
2dn 0, n .
P0, P0 0,
(xn x0 )2 ( yn y0 )2 xn x0 yn y0
(1)成立, (2)成立

lim
n
Pn
P0 (按方形邻域),
lim
n
Pn
P0 (按圆形邻域).
例3.
lim
n
Pn
P0 ,
Pn, P0
0
xn x0,且yn y0
其中Pn xn, yn , P0 x0, y0
y 1
可能 E
o1 2
x
•A
•A
内点
2

外点集 边界
E
•A
例 1.确定集E (x, y) | 0 (x 1)2 ( y 2)2 1
的内点、外点集和边界 .
2.(以凝聚程度分为) 聚点和孤立点:
P
定义 E平面点集, A点, 如果
A•
U (A, ) E ,
则称A为E的聚点(极限点).
0,有 :
(E的聚点A的任意邻域内,都有无穷多个E的点)
AE
0
• A
定义 E平面点集,点A E,如果 如果0 0,使 :
U (A,0) E ,
则称A为E的孤立点.
说明: i). E的聚点A,可能 E,亦可能 E. ii). 孤立点是边界点. iii). 内点是聚点;非孤立的边界点是聚点. iv). 既非孤立点,又非聚点,则必是外点.

平面点集与多元函数.ppt

平面点集与多元函数.ppt

聚点也可定义为: 若点 P 的任何邻域 U (P) 内都含有点集 E 的无穷多个点, 则称 P 为 E
的聚点。
注: 聚点可以属于E, 也可以不属于E。
如:设平面点集
E {( x, y) |1 x2 y2 4}
满足1 x2 y2 4 的一切点 ( x, y) 都是 E 的
内点; 满足 x2 y2 1的一切点( x, y)都是 E
D {( x, y) | x 0, y 0}
2. 邻域
设P0 ( x0 , y0 )是 xoy平面上的一个点,d 是某
一正数,与点 P0 ( x0 , y0 ) 距离小于 d 的点 P( x, y) 的全体,称为 点P0的d邻域.记作U (P0,d ), 即
U(P0 ,d ) P | PP0 | d
的边界点, 它们不属于 E ;满足 x2 y2 4
的一切点( x, y)也都是 E 的边界点,它们都属
于 E ; 点集 E 的内点以及它的
y
边界 E上的一切点都是 E的
聚点。
o
x
4. 平面区域
开集: 若点集 E 的所有点都是E 的内点, 则 称 E 为开集。
闭集:若点集 E的余集 EC 为开集,则称E( x1, x2 , , xn ),
数 xi 称为该点的第 i 个坐标或 n维向量的第 i 个
分量。
Rn 中点 x ( x1, x2 ,, xn ) 和点 y ( y1, y2 ,, yn )
间的距离,记作 ( x, y) ,规定
( x, y) ( y1 x1)2 ( y2 x2 )2 ( yn xn )2 .
设 E 是平面 R2上的一个点集, P 是平面 R2 上的一个点, 则点 P 与点集 E 之间必有以

高等数学:第1节:多元函数的概念

高等数学:第1节:多元函数的概念

例如, E {( x, y) | 0 x2 y2 1}
y
(0,0) 是聚点但不属于E.

x
又如, E {( x, y) | x2 y2 1} • E中任何一点都是 E 的边界点, • E 中的任何一点都是 E 的聚点。
y
E
•P
o 1x
思考题:边界点是否一定是聚点?反之,聚点是否 一定是边界点?
如果点集E的点都是内点,
•P
则称E为开集.
例如,E1 {( x, y)1 x2 y2 4}
E
即为开集.

边界点: 如果点 P 的任一个邻域内既有属于 E 的点,
也有不属于 E 的点(点 P 本身可以属于E , 也可以不属于E),则称 P 为 E 的边界点.
E 的边界点的全体称为 E 的边界, 记为E.
0
4) (2
0 4) 4
四、多元函数的连续性
一元函数连续性回顾: 设 y f ( x), x0 D
若 lim x x0
f ( x) f ( x0 ),
则称
f ( x)在 x0处连续.
二元函数的连续性
设 z f ( x, y), P0 ( x0 , y0 ) D,且为聚点.
若 lim x x0
例5:求极限 lim x0 y0
x2 y2 sin x2 y2
3
(x2 y2) 2
解:令: x2 y2 , 当( x, y) (0,0)时, 0,
lim x0 y0
x2 y2 sin x2 y2
3
(x2 y2) 2
lim
0
sin 3
lim
0
1
cos
3 2
lim sin 1 0 6 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1平面点集与多元函数 平面点集 R2上的完备性定理
二元函数
n元函数
例1 设平面点集(见图 16 – 3)
D ( x, y) 1 x2 y2 4 . (4)
y
满足 1 x2 y2 4 的一切点都 是 D 的内点; 满足 x2 y2 1
O 12x
的一切点是 D 的界点, 它们都属 于D; 满足 x2 y2 4 的一切点也 是 D 的界点, 但它们都不属于 D.
与 ( x, y) | x x0 | , | y y0 | ( 方形 ).
§1平面点集与多元函数 平面点集 R2上的完备性定理
y
C
O
rx
(a) 圆 C
二元函数
y d
n元函数
S
Oa
bx
c
(b)矩形 S
y
•A
O
x
(a) 圆邻域
y
A •
O
x
(b) 方邻域
§1平面点集与多元函数 平面点集 R2上的完备性定理
(ii) 圆: C ( x, y) x2 y2 r2 .
(2)
(iii) 矩形: S ( x, y) a x b, c y d , (3)
ቤተ መጻሕፍቲ ባይዱ
也常记作: S [a,b][c,d].
(iv) 点 A( x0 , y0 )的 邻域:
( x, y) ( x x0 )2 ( y y0 )2 2 ( 圆形 )
二元函数
n元函数
由于点 A 的任意圆邻域可以包含在点 A 的某一
方邻域之内(反之亦然), 因此通常用“点 A 的 邻
域” 或 “点 A 的邻域” 泛指这两种形状的邻域,
并用记号U( A; ) 或 U( A) 来表示.
点 A 的空心邻域是指:
( x, y) 0 ( x x0 )2 ( y y0 )2 2 ( 圆 )
图 16 – 3
§1平面点集与多元函数 平面点集 R2上的完备性定理
二元函数
n元函数
点 A 与点集 E 的上述关系是按 “内-外” 来区分的. 此外,还可按 “疏-密” 来区分即,在点 A 的近旁 是否密集着 E 中无穷多个点而构成另一类关系: (i) 聚点—— 若在点 A 的任何空心邻域 U o( A)内都 含有 E 中的点,则称点 A 是点集 E 的聚点. 注1 聚点本身可能属于E,也可能不属于E. 注2 聚点的上述定义等同于: “在点 A 的任何邻域 U( A) 内都含有 E 中的无穷多个点”.
§1平面点集与多元函数 平面点集 R2上的完备性定理
二元函数
n元函数
注3 E 的全体聚点所构成的集合称为 E 的导集, 记 作 Ed(或 E) ; 又称 E U Ed 为 E 的闭包, 记作E . 例如, 对于例1 中的点集 D, 它的导集与闭包同为
Dd ( x, y) 1 x2 y2 4 D .
数学分析 第十六章 §1 平面点集与
多元函数的极限与连续
多元函数
多元函数是一元函 数的推广, 它保留着一元函 数的许多性质, 同时又因自 变量的增多而产生了许多 新的性质, 读者对这些新性 质尤其要加以注意. 下面着 重讨论二元函数, 由二元函 数可以方便地推广到一般 的多元函数中去.
一、平面点集 二、R2上的完备性定理 三、二元函数 四、 n元函数
( x, y) 0 | x x0 | , 0 | y y0 | .
2.点和点集之间的关系 任意一点 A R2与任意一个点集 E R2之间必有
以下三种关系之一 :
(i) 内点——若 0, 使 U ( A; ) E, 则称点 A
是 E 的内点; 由 E 的全体内点所构成的集合称为

( x, y) | x x0 | , | y y0 | ,( x, y) ( x0, y0 ) (方),
并用记号 U o( A; ) ( 或 U o( A) ) 来表示.
§1平面点集与多元函数 平面点集 R2上的完备性定理
二元函数
n元函数
注意: 不要把上面的空心方邻域错写成 : ( 请指出 错在何处? )
*点击以上标题可直接前往对应内容
§1平面点集与多元函数 平面点集 R2上的完备性定理
二元函数
n元函数
平面点集
1.平面点集的一些基本概念 由于二元函数的定
义域是坐标平面上的点集, 因此在讨论二元函数
之前,有必要先了解平面点集的一些基本概念.
在平面上确立了直角坐标系之后, 所有有序实数
对 ( x, y) 与平面上所有点之间建立起了一一对应.
E 的内部, 记作 int E.
§1平面点集与多元函数 平面点集 R2上的完备性定理
二元函数
n元函数
(ii) 外点——若 0, 使 U ( A; ) E , 则称
点 A 是 E 的外点;由 E 的全体外点所构成的集合 称为 E 的外部.
(iii) 界点—— 若 0, 恒有 U( A; ) I E 且 U( A; ) I Ec
其中满足 x2 y2 4 的那些聚点不属于D, 而其余
所有聚点都属于 D. (ii) 孤立点—— 若点 A E, 但不是 E 的聚点(即
有某δ > 0, 使得 U o( A; ) I E ), 则称点 A 是
E 的孤立点.
§1平面点集与多元函数 平面点集 R2上的完备性定理
坐标平面上满足某种条件 P 的点的集合, 称为平
面点集, 记作
E ( x, y) ( x, y) 满足条件 P .
后退 前进 目录 退出
§1平面点集与多元函数
例如:
平面点集
R2上的完备性定理
二元函数
n元函数
(i) 全平面:
R2 ( x, y) | x , y . (1)
( 其中 Ec R2 \ E ), 则称点 A 是 E 的界点; 由 E
的全体界点所构成的集合称为 E 的边界; 记作 E.
注 E 的内点必定属于 E; E 的外点必定不属于 E;
E 的界点可能属于 E, 也可能不属于 E. 并请注意:
只有当 E E 时, E 的外部与 Ec 才是两个相同的集合.
相关文档
最新文档