2简单随机抽样的方法
简单随机抽样

一、知识概述1、简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的机会相等,就称这样的抽样为简单随机抽样.注:(1)一般地,用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.介绍:抽样方法在统计学中很多,如果按照抽取样本时总体中的每个个体被抽取的概率是否相等来进行分类,可分为:等概率抽样和不等概率抽样.在等概率抽样中,又可以分为不放回抽样和放回抽样.在实际应用中,使用较多的是不放回抽样,相对来说,放回抽样在理论研究中显得更为重要.2、简单随机抽样的实施方法:(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多时.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:1°.制定随机数表;2°.给总体中各个个体编号;3°.按照一定的规则确定所要抽取的样本的号码.随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.3、简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样.注:抽签法与随机数表法的比较:共同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个数相对较少的时候,所以当总体中的个数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.二、例题讲解例1、某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:(1)1000名考生是总体的一个样本;(2)1000名考生数学成绩的平均数是总体平均数;(3)70000名考生是总体;(4)样本容量是1000,其中正确的说法有()A.1种B.2种C.3种D.4种解:(3)(4)对,故选B.例2、现要从20名学生中抽取5名进行阅卷调查,写出抽取样本的过程.解:①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在一个箱子中进行充分搅拌,力求均匀,然后从箱子中抽取5个号签,这5个号签上的号码对应的学生,即为所求的样本.例3、为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,写出用随机数表法抽取样本的过程.解:第一步,先将40件产品编号,可以编为00,01,02,…,38,39.第二步,利用本节教材中提供的随机数表,任选一个数作为开始,例如从第10行第6列的数字开始.第三步,从选定的数6开始,从左往右读,依次得到样本号码是:24,29,05,28,27,34,32,38,20,00.这10个号码所对应的产品为样本.例4、上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选.选法二将39个白球与1个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?解:选法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的概率都相等,等于.例5、某市通过电话进行民意测验实施某项调查,该市的电话号码有7位,其中首两位为区域代码,只能为2,3,5,7的任意两两组合,后5位取自0~9这10个数字.现在任意选择3个区域,每个区域随机选取5个号码进行调查.请你设计一种抽取方案,选出这15个电话号码.解:首先列出所有由2,3,5,7两两组合而成的区域代码共16个,用抽签法随机选取3个;然后制作一张0~99999的随机数表,方法是用抽签法或计算机生成法产生若干个0~9之间的随机整数,5个一组,构成0~99999之间的随机数表;最后用随机数表法选出15个5位号码,分成3组,第1组前加上用抽签法选出的第1个区域代码,第2,3组前分别加上选出的第2,3个区域代码.。
第2章简单随机抽样

称简单随机抽样,所得的样本称为不放回的
简单随机样本,简称简单随机样本
精选可编辑ppt
2
简单随机抽样的实施方法:将总体中的单元 依次从1到N进行编号,然后利用抽签法或随 机数法来进行简单随机抽样
抽签法:一般用于总体所含单元不多的情况, 首先做N个签并依次写上1至N的号码,然后 将签充分混合均匀,再一次抽取其中的n个 签或逐个不放回地抽取n个签,则编号为这n 个签上的号码的单元就构成一个简单随机样 本
注3: V(y),V(Yˆ) 中的 S
2 Y
一般是未知的,因此需要通
过样本进行估计
精选可编辑ppt
14
定理2.2.3
在简单随机抽样中,样本方差
s
2 y
是总体方差
S
2 Y
的无偏估计量,样本协方差 s y x
是总体协方差 S Y X 的无偏估计量
推论2.2.1 在简单随机抽样中,
Vˆ(y) ˆ 1 f n
在一定条件下,利用辅助指标的信息可以提 高对主要指标的估计的精度
一般地,辅助指标可以是主要指标的前期资 料,也可以是表示单元规模的量,或者是单 元的某个易测指标,等等
精选可编辑ppt
31
如果主要指标Y与辅助指标X之间有正相关关 系,就可以构造比估计量
在简单随机抽样中,称 YˆR ˆ yR ˆ RˆX 为总体均 值 Y 的比估计量,称 YˆRˆ NyRRˆX为总体总 值 Y 的比估计量,其中 X 或 X 必须已知
sy2
是
V
(
y
) 的无偏估计量
Vˆ(Yˆ)ˆ N21f n
sy2 是 V
( Yˆ )
的无偏估计量
注:把 Vˆ(y), Vˆ(Yˆ) 分别作为 V(y), V(Yˆ) 的估计 量,都称为标准差估计量
第二章 简单随机抽样-2.1-2.2-1

3 估计量的性质
(3)比例估计量的性质
性质8
ˆ E ( P) E ( p) P
N n P(1 P) 性质9 样本比例p的方差为 V ( p) N 1 n
性质10 V(p)的无偏估计为
1 f v( p ) p(1 p) n 1
作业
设总体单元为N=6,单元的取值分别为3、4、
第二章 简单随机抽样
第一节 第二节 第三节 第四节 引言 估计量及其性质 样本量的确定 子总体的估计
第一节 引言
1 简单随机抽样的定义 2 简单随机样本的性质 3 简单随机样本的实现方法
1 简单随机抽样的定义 定义: 每次都是从剩下的总体单元中随机抽 取1个单元,相继依次抽取n次,得到n个单 元组成的样本,叫做不放回简单随机样本。
1
1 简单随机抽样的几个重要结论
(1)单元入样概率的一个重要结论
定理1 :对总体 U {Y1 ,, YN } 的一个样本量为n的无重 复样本,有
(1) k n
k 1 N
(2) kj (n 1) j , 对固定的j
k 1 k j
N
1 简单随机抽样的几个重要结论
(2) 简单估计量
设 y1 ,, yn 是总体{Y1 , ,YN }的一个简单随机样本,则
ˆ (1) Y
y
ˆ (2)Y Ny ˆ (3)P p
3 估计量的性质
(1)均值估计量的性质
性质1
设y1 ,, yn 是总体{Y1 , ,YN }的一个简单随机样本,则
ˆ ) E( y ) Y E (Y
3 简单随机样本的实现方法
首先将N个总体单元编号为:1,2,,N,每一单元对应 一个号码,若抽到某号,则相应单元入样。
三种抽样方法(全)

8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样
抽样技术第二章_简单随机抽样

目前,世界上已编有许多种随机数表。其中较 大的有兰德公司编制,1955年出版的100万数 字随机数表,它按五位一组排列,共有20万组 ;肯德尔和史密斯编制,1938年出版的10万 数字随机数表,它也按五位一组排列,共有 25000组。我国常用的是中国科学院数学研究 所概率统计室编印的《常用数理统计表》中的 随机数表。
率都等于1/ CNn,这种抽样称为简单随机抽样。
注意:定义2.1与定义2.3是等价的。
三个定义之间的联系
简单随机抽样的具体实施方法
常用的有抽签法和随机数法两种。 (一)抽签法 抽签法是先对总体N个抽样单元分别编上1到N的号码,再制作与
之相对应的N个号签并充分摇匀后,从中随机地抽取n个号签(可以 是一次抽取n个号签,也可以一次抽一个号签,连续抽n次),与抽 中号签号码相同的n个单元即为抽中的单元,由其组成简单随机样 本。 抽签法在技术上十分简单,但在实际应用中,对总体各单元编号 并制作号签的工作量可能会很繁重,尤其是当总体容量比较大时 ,抽签法并不是很方便,而且也往往难以保证做到等概率。因此 ,实际工作中常常使用随机数法。
s2 / n
s(y)
y
t
1
2
s(y),y
t
1
2
s(y)
概述
一、简单随机抽样(或单纯随机抽样) 本书一般局限于不放回随机抽样
二、实施方法 三、地位、作用
是其他抽样方法基础
2.1定义与符号
定义2.1 从总体的N个单元中,一次整批抽取n 个单元,使任何一个单元被抽中的概率都相等 ,任何n个不同单元组成的组合被抽中的概率 也都相等,这种抽样称为简单随机抽样.
此外,简单随机抽样要求在抽样前编制出抽样 框,并对每一个总体抽样单元进行编号,而且 当总体抽样单元的分布比较分散时,样本也可 能会比较分散,这些都会给简单随机抽样方法 的运用造成许多的不便,甚至在某些情况下干 脆无法使用。因此,在此基础上研究其它抽样 技术显得更加重要。
简单随机抽样的方法

简单随机抽样的方法
简单随机抽样是一种抽样方式,它是指从总体中以任意的、等概率的方式随机抽取n个样本,使得每个个体都有相同的被抽取概率。
以下是简单随机抽样的方法:
1.概率抽样法:将所有个体从总体中标号为1、2、3、…、N。
使用计算机或随机数字表等随机数生成器生成n个随机数,每个随机数对应一个个体,就是样本。
2.抽签法:将所有个体的编号写在同样大小的纸片上,放进一个容器中,摇匀后抽取n个纸片,就是样本。
3.数表抽样法:将所有个体从总体中标号为1、2、3、…、N。
按照取样比例计算出要取多少个样本,然后从以1~N为首项的数列中隔行抽样取得样本。
4.等距抽样法:将总体中每个个体按照一定的顺序排列,然后按照一定的间隔(例如每隔k个个体抽取一个样本)抽取样本。
需要注意的是,简单随机抽样的方法不适用于总体变异系数较大的情形,因为此时抽样可能会出现偏差;对于总体变异系数较小的总体,简单随机抽样是比较可
靠的抽样方法。
简单随机抽样

简单随机抽样
一般地,设一个总体中含有N个个体,从中 逐个不放回地抽取n个个体作为样本(n≤N),如果 每次抽取时总体内的各个个体被抽到的机会都相 等,就称这样的抽样为简单随机抽样。
注意以下四点:
(1)它要求总体中的个体数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样;
抽签法有什么优点和缺点?
优点: 能保证每个个体被抽中的机会都相等.
缺点: (1) 当总体中的个体数较多时,制作号签的
成本将会增加,费时费力 (2) 号签很多时,要把它们”搅拌均匀”就
比较困难,结果很难保证每个个体入选样本 的可能性相等.
练习:
用抽签法从全班55名同学中选出15个 同学,对看足球比赛的喜爱程度(很喜爱、喜 爱、一般、不喜爱、很不喜爱)进子或计算机产 生的随机数进行抽样。
注:
(1)随机数表是统计工作者用计算机生成的 随机数,由数字0、1、2、···、9组成,并且每个 数字在表中各个位置上出现的机会是一样的(见 附表)。
(2)随机数表并不是唯一的,因此可以任选一 个数作为开始,读数的方向可以向左,也可以向右、 向上、向下等等。
用随机数表进行抽样的步骤:
(1)将总体中的所有N个个体编号 (从0~N-1);
(2)在随机数表中任选一个数作为开 始的数字(确定此数所在的行数和列数);
(3)从选定的数开始按一定的方向读 数,把适合总体编号的每个号码依次取出, 直到达到样本容量的数目为止。
练习:
用随机数表法从全班55名同学中选出 15个同学, 对看足球比赛的喜爱程度(很喜 爱、喜爱、一般、不喜爱、很不喜爱)进 行调查。
规则:
从95页表中第31行第11列数开始,依次向 右读数,直到取足样本。
随机选取样本的方法

随机选取样本的方法1. 介绍在研究和实践中,为了获得对总体的全面认识和准确判断,我们需要从总体中选取一部分样本进行分析和研究。
随机选取样本的方法是一种常用的样本抽样方法,它可以确保样本的代表性和可靠性,从而提高研究和分析的可信度。
本文将详细介绍随机选取样本的方法,包括简单随机抽样、系统抽样、分层抽样和整群抽样四种常见的抽样方法,以及它们的优缺点和适用场景。
2. 简单随机抽样简单随机抽样是最基本也是最常用的一种抽样方法,它的核心思想是从总体中随机选取一部分样本,确保每个样本有相同的被选中的概率。
2.1 简单随机抽样的步骤简单随机抽样的步骤如下:1.确定总体:首先需要明确研究的总体是什么,总体可以是一个人群、一个地区或一个产品等。
2.确定样本大小:根据研究的需要和可行性确定所需样本的大小。
3.编制总体名单:将总体中的个体进行编号,构成总体名单。
4.进行随机抽样:利用随机数表、随机数生成器或抽样软件等工具,从总体名单中随机选择样本。
5.进行样本研究和分析:对选取的样本进行研究和分析,得出相应的结论。
2.2 简单随机抽样的优缺点简单随机抽样的优点如下:•简单易操作:抽样过程相对简单,不需要太多的统计学专业知识。
•代表性强:每个样本被选中的概率相同,可以保证样本的代表性。
•可信度高:样本的随机性保证了研究和分析的可信度。
简单随机抽样的缺点如下:•耗时耗力:如果总体较大,抽样时需要编制总体名单,耗时且工作量大。
•抽样误差无法估计:简单随机抽样无法估计抽样误差,对于抽样结果的置信度无法量化。
3. 系统抽样系统抽样是一种按照一定的规则从总体中选取样本的方法,它可以减少抽样过程中的主观性,确保样本的代表性。
3.1 系统抽样的步骤系统抽样的步骤如下:1.确定总体:同简单随机抽样方法一样,首先需要确定研究的总体。
2.确定样本大小:根据研究的需要和可行性确定所需样本的大小。
3.确定抽样间隔:抽样间隔是指在总体名单上每隔多少个个体选取一个样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5年至10年 10年以上
人数
300
500
200
试利用上述资料设计一个抽样比为1/10的抽样方法。
23
练习、在1000个有机会中奖的号码(编号为 000~999)中,在公证部门的监督下,按随机抽 取的方法确定最后两位数为88的号码为中奖号码, 这是运用那种抽样方法确定中奖号码的?依次写 出这10个中奖号码。
1%的学生进行调
你认为哪些因素影响学生视 查,你认为应当怎
力?抽样要考虑和因素? 样抽取样本? 13
2.1.3 分层抽样
14
一、分层抽样的定义。 一般地,在抽样时,将总体分成互不交叉
的层,然后按照一定的比例,从各层独立地抽 取一定数量的个体,将各层取出的个体合在一 起作为样本,这种抽样的方法叫分层抽样。
号可能是( B )
A.5,10,15,20,25 B、3,13,23,33,43 C、1, 2, 3, 4, 5 D、2, 4, 6, 16,32
10
例3:从2005个编号中抽取20个号码入样,采
用系统抽样的方法,则抽样的间隔为
( C)
A.99
B、99.5
C.100 D、100.5
例4:某小礼堂有25排座位,每排20个座位,一次 心理学讲座,礼堂中坐满了学生,会后为了了解 有关情况,留下座位号是15的所有25名学生进行
分层抽样抽取容量为45的样本,那么高一、高
二、高三各年级抽取的人数分别为(D )
A.15,5,25
B.15,15,15
C.10,5,30
D15,10,20
例2:一个地区共有5个乡镇,人口3万人, 其中人口比例为3:2:5:2:3,从3万人中抽 取一个300人的样本,分析某种疾病的发病率, 已知这种疾病与不同的地理位置及水土有关, 问应采取什么样的方法?并写出具体过程。
统抽样的方法进行,则每人入选的机会( C)
A.不全相等 B.均不相等
C.都相等 D.无法确定
12
探究?
假设某地区有
近视率% 80
高中生2400人,初 中生10900人,小
学生11000人,此
60
地教育部门为了了
40
解本地区中小学的
近视情况及其形成
20
原因,要从本地区
的小学生中抽取
0
小学 初中 高中
2
【探究】:某学校为了了解高一年级学生 对教师教学的意见,打算从高一年级500名学生 中抽取50名进行调查,用简单随机抽样获取样本 方便吗? 你能否设计其他抽取样本的方法?
我们按照下面的步骤进行抽样:
第一步:将这500名学生从1开始进行编号;
第二步:确定分段间隔k,对编号进行分段.由于 k=500/50=10,这个间隔可以定为10;
2.1.2 系统抽样
一、学习目标: 1、知识与技能: (1)正确理解系统抽样的概念; (2)掌握系统抽样的一般步骤; (3)正确理解系统抽样与简单随机抽样的关系;
2、过程与方法:通过对实际问题的探究,归纳应用 数学知识解决实际问题的方法,理解分类讨论的数学 方法,
3、情感态度与价值观:通过数学活动,感受数学对 实际生活的需要,体会现实世界和数学知识的联系。 二、重点与难点:正确理解系统抽样的概念,能够灵 活应用系统抽样的方法解决统计问题。
系统抽样
088,188,288,388,488,588,688,788, 888,988
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______.
【说明】由系统抽样的定义可知系统抽样有以下特证: (1)当总体容量N较大时,采用系统抽样。 (2)将总体平均分成几部分指的是将总体分段,分段的 间隔要求相等,因此,系统抽样又称等距抽样,
N
这时间隔一般为k= n ([x]表示不超过x的最大整数). (3)一定的规则通常指的是:在第1段内采用简单随机
测试,这里运用的是 系统 抽样方法。
11
例5:采用系统抽样从个体数为83的总体中 抽取一个样本容量为10的样本,那么每个个体
10 人样的可能性为 ____8_3____.
例6:从2004名学生中选取50名组成参观 团,若采用下面的方法选取:先用简单随机抽 样从2004人中剔除4人,剩下的2000个再按系
采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
9
例2、从编号为1~50的50枚最新研制 的某种型号的导弹中随机抽取5枚来进行发 射实验,若采用每部分选取的号码间隔一 样的系统抽样方法,则所选取5枚导弹的编
17
解:因为疾病与地理位置和水土均有关系,
所以不同乡镇的发病情况差异明显,因而采用 分层抽样的方法,具体过程如下:
(1)将3万人分为5层,其中一个乡镇为一层。 (2)按照样本容量的比例随机抽取各乡镇应 抽取的样本。 300×3/15=60(人),300×2/15=100(人), 300×2/15=40(人),300×2/15=60(人), 因此各乡镇抽取人数分别为60人、40人、100人、 40人、60 人。 (3)将300人组到一起,即得到一个样本。
D、电影院调查观众的某一指标,通知每排 (每排人数相等)座位号为14的观众留下来座谈。
7
系统抽样与简单随机抽样比较,有何优、缺点?
点评:(1)系统抽样比简单随机抽样更容易实施, 可节约抽样成本;
(2)系统抽样的效果会受个体编号的影响,而简单 随机抽样的效果不受个体编号的影响;系统抽样所得 样本的代表性和具体的编号有关,而简单随机抽样所 得样本的代表性与个体的编号无关.如果编号的个体 特征随编号的变化呈现一定的周期性,可能会使系统 抽样的代表性很差.例如学号按照男生单号女生双号 的方法编排,那么,用系统抽样的方法抽取的样本就可 能会是全部男生或全部女生.
(2)为了保证每个个体等可能入样,所有层应采用 同一抽样比等可能抽样。
(3)在每层抽样时,应采用简单随机抽样或系统抽 样的方法进行抽样。
2、分层抽样的优点是:使样本具有较强的代表性, 并且抽样过程中可综合选用各种抽样方法,因此分层抽 样是一种实用、操作性强、应用比较广泛的抽样方法。
20
探究? 比较简单随机抽样、系统抽样、分
A.简单随机抽样 B.系统抽样 C.分层抽样
D.先从老人中剔除1人,然后再分层抽样
2、某校有500名学生,其中O型血的有200人,A型血
的人有125人,B型血的有125人,AB型血的有50人,为
了研究血型与色弱的关系,要从中抽取一个20人的样本
,按分层抽样,O型血应抽取的人数为
人,A型血
应抽取的人数为 人,B型血应抽取的人数为
人
,AB型血应抽取的人数为 人。
22
3、某中学高一年级有学生600人,高二年级有学生 450人,高三年级有学生750人,若该校取一个容量为n 的样本,每个学生被抽到的可能性均为0.2, 则n= 。
4、对某单位1000名职工进行某项专门调查,调查的 项目与职工任职年限有关,人事部门提供了如下资料:
任职年限 5年以下
练习:分层抽样又称类型抽样,即将相似的个
体归入一类(层),然后每层抽取若干个体构
成样本,所以分层抽样为保证每个个体等可能
入样,必须进行
(c )
A、每层等可能抽样
B、每层不等可能抽样
C、所有层按同一抽样比等可能抽样
16
例1、某高中共有900人,其中高一年级300
人,高二年级200人,高三年级400人,现采用
应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归入一类,即为一层,
分层要求每层的各个个体互不交叉,即遵循不重
复、不遗漏的原则。
(2)分层抽样为保证每个个体等可能入样,需
遵循在各层中进行简单随机抽样,每层样本数量
与每层个体数量的比与这层个体数量与总体容量
的比相等。
15
二、分层抽样的步骤:
(1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。
解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号.
5
〖说明〗(1)分段间隔的确定:
当 N 是整数时,取k= N ;
n
n
当 N 不是整数时,可以先从总体中随机地 n
剔除几个个体,使得总体中剩余的个体数能被样
本容量整除.通常取k=
N n
(2)从系统抽样的步骤可以看出,系统抽样
是把一个问题划分成若干部分分块解决,从而
把复杂问题简单化,体现了数学转化思想。
(3)系统抽样比简单随机抽样的应用范围更广.
8
【例题解析】 例1、某校高中三年级的295名学生已经编
号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。
解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295;
第三步:从号码为1~10的第一个间隔中用简单随机抽样 的方法确定第一个个体编号,假如为6号;