广义逆高斯分布

合集下载

gigpdf matlab 广义逆高斯概率密度

gigpdf matlab 广义逆高斯概率密度

在MATLAB中,要计算广义逆高斯概率密度(GIGPDF),您需要使用一些内置函数和自定义函数。

首先,您需要使用MATLAB的内置函数来生成广义逆高斯分布的随机变量。

MATLAB 提供了一个名为“invweibull”的函数,可以用于生成逆Weibull分布的随机变量。

您可以使用此函数生成具有指定形状参数和尺度参数的随机变量。

接下来,您需要使用自定义函数来计算广义逆高斯概率密度。

您可以使用MATLAB 的“fplot”函数来绘制概率密度函数的图像。

您需要定义一个函数,该函数接受形状参数、尺度参数和随机变量作为输入,并返回概率密度值。

然后,您可以使用“fplot”函数将该函数绘制为图像。

在此示例中,我们定义了一个名为“prob_density”的函数,该函数接受形状参数、尺度参数和随机变量作为输入,并返回概率密度值。

然后,我们使用“fplot”函数将该函数绘制为图像。

文献综述报告

文献综述报告

文献综述报告姓名:韩鹏学号:S310080092导师:姜弢专业:通信与信息系统学院:信息与通信工程学院导师组评审意见:成绩:导师组专家签字:文献综述报告利用目标的电磁散射特性发现和识别目标是雷达的基本工作机理,而目标存在或隐蔽于周围环境之中,环境电磁散射对雷达目标信号检测产生的干扰称为雷达杂波。

雷达下视照射时,面临的主要困难就是来自于各种地、海杂波干扰。

杂波建模与仿真技术的研究有助于目标检测方法的选取,从而保证乃至提高雷达整体性能,这是雷达实际应用中急需解决的问题。

通过对雷达杂波特性的深入研究,目前已经取得了若干有意义的成果。

但是,雷达技术的进步使得雷达分辨力不断地提高,常规Rayleigh分布、Log-Normal分布、Weibull分布以及复合K分布杂波模型已经越来越不能满足应用的需要,为了更精确地与观测结果相吻合,一些新的杂波模型不断被提出,广义复合杂波模型就是一种适用范围比较广泛的分布模型,它既可以比较准确描述高分辨雷达杂波分布情况,也包含了常规的杂波统计模型。

在杂波的建模、仿真以及杂波的分类中,杂波模型参数估计一直是非常重要的研究内容。

针对常规杂波模型的参数估计已经比较成熟,目前采用的经典参数估计方法难以满足广义复合杂波模型的参数估计精度、运算时间的要求,需要进一步研究。

近年来,反舰导弹重点打击目标已转向近海岸以及沿岸工事,近海岸环境是一个较为复杂的区域,在近海岸背景下,基于单类散射体的杂波模型通常不能有效地描述其杂波分布特性。

为有效提高反舰导弹突防能力和精确打击能力,加强对该特定环境下的杂波以及在该杂波背景下的目标检测方法研究已刻不容缓。

另外,随着神经网络、混沌和分形理论以及其它非线性理论的发展,产生了对雷达杂波进行分析的新方法。

特别是针对高分辨雷达所收集到的海杂波,已有许多学者从实验和散射机理方面进行了详细研究,指明高分辨雷达海杂波确实存在混沌现象。

此后,众多学者从这一结论出发,构造了大量混沌背景下的雷达目标非线性检测方法。

广义逆简介

广义逆简介
广义逆简介
广义逆的思想可追溯到 1903 年弗雷德霍姆(E. I. Fredholm)的工作,他讨论了关于积分算子的一种 广义逆(他称之为伪逆)。1904 年,希尔伯特(D. Hilbert)在广义格林函数的讨论中,含蓄地提出了微 分算子的广义逆。而任意矩阵的广义逆定义最早是 由摩尔(E. H. Moore)在 1920 年提出的,他以抽象 的形式发表在美国数学会会刊上。当时人们对此似 乎很少注意,这一概念在以后 30 年中没有多大发 展,只有曾远荣在 1933 年,默里(F. J. Murray)和 冯·诺伊曼(John von Neumann)在 1936 年对希尔伯 特空间中线性算子的广义逆作过一些讨论。
美国的数学水平就在他们这一代与欧洲先 进国家并驾齐驱,他们的学生也不必再到欧洲 游学了。
⇐返回
曾远荣介绍 曾远荣(1903~1994),国立中央大学教授, 数学家,我国泛函分析第一代著名学者。
曾远荣字桂冬,1903 年 10 月生,四川南溪 人。出生 8 个月父曾绍芬弃独子而逝,9 岁又丧 母,自幼住外婆家。1919 年 7 月曾远荣在成都 考取了清华学校留美预备部后,一直读到 1927 年 8 月去美国留学,先后在芝加哥大学、普林 斯顿大学、耶鲁大学学习研究数学。1930 年在 1930 芝加哥大学获硕士学位,1933 年获博士学位。5 月回国,8 月受聘为中央大学教授。1934 年 8 月至 1942 年 7 月一直任教于清华大学。1942 年 秋至 1945 年 7 月被成都燕京大学聘为客座教授。
国际数学会与 Klein 的演讲轰动整个美国数 学界,芝加哥大学很快就变成美国的数学重镇。 Moore 本身的研究非常出色,但更重要的是他教 出了许多更出色的学生,其中最有名的是 Dickson(1874 ~ 1954 年 , 研 究 数 论 与 群 论 ) 、 Veblen(1880 ~ 1960 年 , 研 究 几 何 学 ) 及 G. D. Birkhoff(1884~1944年,研究分析学)。日后他 们分别在芝加哥大学、普林斯顿大学及哈佛大 学带动研究,使这三个地方成为二十世纪上半 叶美国的数学重镇,而他们本身的研究也是世 界级的。

中学数学教学论文题目

中学数学教学论文题目

中学数学论文题目总集1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利与弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练与培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博与概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明与应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用“1”的妙用“数形结合”在解题中的应用“数学化”及其在数学教学中的实施“一题多解与一题多变”在培养学生思维能力中的应用《几何画板》与数学教学《几何画板》在圆锥曲线中的应用举例Cauchy中值定理的证明及应用Dijkstra最短路径算法的一点优化与改进Hamilton图的一个充分条件HOLDER不等式的推广与应用n阶矩阵m次方幂的计算及其应用R积分与L积分的联系与区别Schwarz积分不等式的证明与应用Taylor公式的几种证明及若干应用Taylor公式的若干应用Taylor公式的应用Taylor公式的证明及其应用Vandermonde行列式的应用及推广艾滋病传播的微分方程模型把数学与生活融合起来伴随矩阵的秩与特殊值保持函数凸性的几种变换变量代换在数学中的应用不变子空间与若当标准型之间的关系不等式的几种证明方法及简单应用不等式的证明方法探索不等式证明的若干方法不等式证明中导数有关应用不同型余项泰勒公式的证明与应用猜想,探求,论证彩票中的数学常微分方程的新的可解类型常微分方程在一类函数项级数求与中的应用抽奖活动的概率问题抽屉原理及其应用抽屉原理及其应用抽屉原理思维方式的若干应用初等变换在数论中的应用初等数学命题推广的几种方式传染病模型及其应用从趣味问题剖析概率统计的解题技巧从双曲线到双曲面的若干性质推广从统一方程看抛物线、椭圆与双曲线的关系存贮模型的若干讨论带peano余项的泰勒公式及其应用单调有界定理及其应用导数的另外两个定义及其应用导数在不等式证明中的应用导数在不等式证明中的应用导数在不等式证明中的应用等价无穷小在求函数极限中的应用及推广迪克斯特拉(Dijkstra)算法及其改进第二积分中值定理“中间点”的性态对均值不等式的探讨对数学教学中开放题的探讨对数学教学中开放题使用的几点思考对现行较普遍的彩票发行方案的讨论对一定理证明过程的感想对一类递推数列收敛性的讨论多扇图与多轮图的生成树计数多维背包问题的扰动修复多项式不可约的判别方法及应用多元函数的极值多元函数的极值及其应用多元函数的极值及其应用多元函数的极值问题多元函数极值问题二次曲线方程的化简二元函数的单调性及其应用二元函数的极值存在的判别方法二元函数极限不存在性之研究反对称矩阵与正交矩阵、对角形矩阵的关系反循环矩阵与分块对称反循环矩阵范德蒙行列式的一些应用方差思想在中学数学中的应用及探讨方阵A的伴随矩阵放缩法及其应用分块矩阵的应用分块矩阵行列式计算的若干方法分析近年三角各种题型,提高学生三角问题解决能力分形几何进入高中数学课程的尝试辅助函数的应用辅助函数在数学分析中的应用辅助元法在中学数学中的应用复合函数的可测性概率的趣味应用概率方法在其他数学问题中的应用概率论的发展简介及其在生活中的若干应用概率论在彩票中的应用概率统计在彩票中的应用概率统计在实际生活中的应用概率在点名机制中的应用概率在中学数学中的应用高等几何知识对初等几何的指导作用高等数学在不等式证明中的应用高观点下的中学数学高阶等差数列的通项,前n项与公式的探讨及应用高中数学教学中的类比推理高中数学开放题及其编制问题高中数学实践“问题解决”的几点思考高中数学研究性学习的课题选择高中数学研究性学习教学及其设计给定点集最小覆盖快速近似算法的进一步研究及其应用构建数学建模意识培养创新思维构造的艺术关联矩阵的一些性质及其应用关于2004年全国高教杯大学生数学建模竞赛题的探究与拓展关于2循环矩阵的特征值关于Gauss整数环及其推广关于g-循环矩阵的逆矩阵关于不等式在中学的选修的处理关于不等式证明的高等数学方法关于传染病模型的建立与分析关于二重极限的若干计算方法关于反函数问题的讨论关于非线性方程问题的求解关于函数一致连续性的几点注记关于矩阵的秩的讨论_关于两个特殊不等式的推广及应用关于幂指函数的极限求法关于扫雪问题的数学模型关于实数完备性及其应用关于数列通项公式问题探讨关于椭圆性质及其应用地探究、推广关于线性方程组的迭代法求解关于一类非开非闭的商映射的构造关于一类生态数学模型的几点思考关于圆锥曲线中若干定值问题的求解初探关于置信区间与假设检验的研究关于中学数学中的图解方法关于周期函数的探讨哈密尔顿图初探函数的一致连续性及其应用函数定义的发展函数级数在复分析中与在实分析中的关系函数极值的求法函数幂级数的展开与应用函数项级数的收敛判别法的推广与应用函数项级数一致收敛的判别函数最值问题解法的探讨蝴蝶定理的推广及应用化归中的矛盾分析法研究环上矩阵广义逆的若干性质积分中值定理的再讨论积分中值定理正反问题‘中间点’的渐近性基于高中新教材的概率学习基于集合论的中学数学基于最优生成树的海底油气集输管网策略分析级数求与的常用方法与几个特殊级数与级数求与问题的几个转化级数在求极限中的应用极限的求法与技巧极值的分析与运用极值思想在图论中的应用集合论悖论几个广义正定矩阵的内在联系及其区别几个特殊不等式的巧妙证法及其推广应用几个学科的孙子定理几个重要不等式的证明及应用几个重要不等式在数学竞赛中的应用几何CAI课堂教学软件的设计几何画板与圆锥曲线几何画板在高中数学教学中的应用几类数学期望的求法几类特殊线性非齐次微分方程的特殊解法几种特殊矩阵的逆矩阵求法假设检验与统计推断简单平面三角剖分图交错级数收敛性判别法及应用交通问题中的数学模型解题教学换元思想能力的培养解析几何中的参数观点经济学中蛛网模型的数学分析居民抵押贷款购房决策模型矩阵变换在求多项式最大公因式中的应用矩阵的单侧逆矩阵方幂的正反问题及其应用矩阵分解矩阵可交换成立的条件与性质矩阵秩的一些性质与某些数学分支的联系矩阵中特征值、特征向量的几个问题的思考具有不同传染率的SI流行病模型的研究均值不等式在初高等数学中的应用均值极限及stolz定理开放性问题编制的原则柯西不等式的推广及其应用柯西不等式的应用与推广柯西不等式的证明及妙用柯西不等式的证明及应用空间曲线积分与曲面积分的若干计算方法空间旋转曲面面积的计算拉格朗日中值定理n元上推广立体几何的平面化思考利用导数解题的综合分析与探讨利用级数求极限连锁经营企业效益模型邻接矩阵在判断Hamilton性质中的一些应用留数定理及应用论辅助函数的运用论概率论的产生及概率对实际问题解释与应用论数学分析课程对中学数学的功能及应用论数学史及其应用罗尔定理的几种类型及其应用幂级数与欧拉公式幂零矩阵的性质与应用幂零矩阵的性质及其应用幂零矩阵的性质及其应用模糊集合与经典集合的简单比较模糊数学在学校教学评估中应用平面与空间中的Pick定理齐次马尔柯夫链在教学评估中的应用浅谈导数在中学数学教学中的应用浅谈分类讲座及其解题应用浅谈极值问题及其解法浅谈在解题中构造“抽屉浅谈中学生数学解题能力的培养求极限的若干方法求极值的若干方法全概率公式的推广与应用全概率公式的优化及应用人口性别比例的统计与概率分析若干问题的概率解法若干问题的概率论解法的探索三对角行列式及其应用三角函数的解题应用三角函数最值问题的研究三种积分概念的极限式定义与确界式定义的比较山核桃造林及管理的数学模型上、下极限的定义、性质及其应用实变方法在经典微积分中的应用实分析计算中的几种方法实际问题解决中数学语言能力的培养实数完备性定理的等价性证明及其应用试论四分块矩阵试以斐波那契数列为例谈谈中学生数学兴趣的培养输电阻塞模型的灵敏度分析及算法的改进树在数据结构中的简单应用数理统计在教育管理中的应用数理统计在生产质量管理中的两个应用数列求与问题的探讨数学变式教学的认识与实践数学猜想及其培养途径数学的对称美及其在中学数学解题中的应用数学分析中的化归思想数学分析思想在中学数学解题中的应用数学分析在初等数学中的应用数学分析中求极限的方法数学高考内容分布及命题趋向数学归纳法的初探数学归纳法的七种变式及其应用数学归纳法的原理推广及应用数学归纳法及其一些非常见形式与归纳途径数学建模在生物领域的应用(没做)数学建模中的排队论模型数学竞赛的解题策略数学竞赛中的抽屉原理数学竞赛中的图论问题数学开放题的设计与教学建议数学开放性问题的编拟与解决数学课程改革与教师观念的转变数学模型方法在教学中的应用及其价值数学模型在人口问题中的应用数学认知结构与数学教学数学史对数学教育的启示数学史上对方程求根公式的探索及其现代意义数学史在中学数学教学中的运用数学文化在中学数学教学中的渗透数学问题提出与CPFS结构关系的研究数学游戏及其价值数学中的游戏因素及其对于数学的影响四面体中不等式的探究泰勒公式的应用泰勒公式及其应用泰勒公式及其应用泰勒公式在若干数学分支中的应用泰勒展开的应用探讨导数在函数单调性中的应用探讨平面三角的实际应用探讨线性规划最优整数解的解法特殊欧拉图的判定同余理论在数学竞赛中的应用头脑风暴法及其在数学课堂教学的运用凸函数的若干性质凸函数的拓展凸函数的性质及其应用凸函数的性质与应用凸函数及其在不等式证明中的应用凸函数以及一类内积表达的函数的凸性凸函数在不等式中的一个特殊应用图的余树是树的条件研究图与矩阵的运算图解法在资源分配中的应用浅析图论在高中数学中的若干应用图论在数学模型中的应用图论在中学数学竞赛中的应用椭圆的几个特征及其在天体、物理中的应用网络可靠度计算新法微分方程平衡点的稳定性及在力学中的应用微分中值定理的背景及证明微分中值定理的逆问题及其渐近性微分中值定理的探讨及应用微分中值定理的推广及其应用微分中值定理的证明及其应用微积分的某些实际应用微积分理论在中等数学中的影响及其应用微积分在行列式计算中的应用、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利与弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练与培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博与概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵与应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用7、坐标方法在中学数学中的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、的变形推广及应用19、网络优化20、泰勒公式及其应用21、浅谈中学数学中的反证法22、数学选择题的利与弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策28、中学数学教学中的创造性思维的培养29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型31、中学数学教学设计前期分析的研究32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练与培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博与概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;75、中学数学教育中的素质教育的内涵;76、数学中的美;77、数学的与谐与统一----谈论数学中的美;78、推测与猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;85、中学数学教学与学生应用意识培养;86、关于培养与提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;92、在中学数学教学中的应用93、最优增长模型94、学生数学素养的培养初探95、浅析先行中学数学教育的弊端96、城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研104、对中学数学研究性学习开展过程及其途径的思考105、数列运算的顺序交换及条件106、歇定理的推广与应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究113、近世代数在中学数学中的应用114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义117、中学数学竞赛中参数问题118、例谈培养数学思维的深刻性119、圆周率与中学数学史120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问与思维能力的培养124、数学高考试题的演变看中学数学教育改革125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练130、简述期望的性质及其作用131、简述概率论与数理统计的思想与方法132、穷乘积133、递推式求数列的通项及与134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明138、直觉思维在中学数学中的应用139、高等数学在中学数学中的应用140、充分挖掘例题的数学价值与智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用146、中学数学教学中创新思维的培养策略147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用151、复均方可积随机变量空间的讨论152、浅谈中学数学的等价转换153、车灯线光源的优化设计模型154、中学数学中的变式教学设计155、欧几里得第五公设产生背景及其对数学发展影响156、中学数学问题解决的学习策略研究分法157、抽屉原理的应用及推广158、浅议函数迭代及其表达式159、加强数形结合,提高解题能力160、函数性质的应用161、初等函数的值域162、中学数学应用意识的研究163、中数学新课程空间与图形学习策略与研究164、谈分类讨论及解题应用165、排序方法及其应用166、数学应用意识的培养看数学基础教育改革167、函数的凸性及其在不等式中的应用168、建构主义理论指导下的数学教学案例169、中学课程数学教学思想方法教学初探170、大学生数学素质教育思考171、数学归纳法教学探究172、师范学生高等数学课程内容设置的探讨173、统计学在证券市场中的应用174、关于全概率公式及其应用的研究175、数学开放式教学的基本理念与策略176、变量代换法与常微分方程的求解177、奥赛中组合计算方法及应用178、代数结构中同态及同构的性质179、综述十八世纪著名数学家及其工作180、谈谈不定方程181、从不定方程到孙子兵法182、略谈我国古代的数学成就。

混合泊松分布及其性质

混合泊松分布及其性质
汪明j混合泊松分布类相对其强度分布类的随机控制序失效率序是保随机控制序失效率序的通过反例证明了强度分布类相对其混合泊松分布类的随机控制序却小一定是保随机控制序的
上海大学 硕士学位论文 混合泊松分布及其性质 姓名:郁美玲 申请学位级别:硕士 专业:运筹学与控制论 指导教师:王汉兴
20070401
上海大学硕士学位论文
chamcter of Poisson distribution is that it'摹failare rate fanction is increasing,but a counterexample is given that the failure rate fanotion ofthe mixed Poisson distribution may not
摘要
混合泊松分布在生物学、风险理论和精算数学等众多领域中有者广泛的应用。研究 混合泊松分布自然具有重要的理论和实际意义。
第一章,简单回顾了混合泊松分布的研究历史和一些相关问题的研究情况。 第二章,主要研究混合泊松分布类的随机控制序、失效率序及失效率函数。汪明J, 混合泊松分布类相对其强度分布类的随机控制序(失效率序)是保随机控制序(失效率序) 的,通过反例证明了强度分布类相对其混合泊松分布类的随机控制序却小一定是保随机控 制序的。熟知,泊松分布的另一简单而重要的性质是其失效率函数总足递增函数,通过反 例证明了混合泊松分布的失效率函数却不一定都是递增函数。 用混合泊松随机变量的观察值来估计其随机强度无论在理论和实际问题中都具有重 要的意义.但却是一个困难的问题。第三章简单地概述了随机强度的渐近估计、最优线性 估计和贝叶斯线性估计等基本结果:给出了一类混合泊松分布类的随机强度的姒叶斯估计 特征刻划。进而把混合泊松分布类的随机强度的贝叶斯估计特征刻划拓广剑较一般情形. 拓广了Johnson的工作:将随机强度的最优线性估计拓腱到最优多项式估计。 在风险理论、保险精算等研究领域和实际问题中.经常会碰到混合泊松分布列的计算 问题。Willmot于1993年给出了强度分布密度满足特定一阶齐次微分方程的混合泊松分布 列的递推式,即著名的W'fllmot递推式.第四章的主要工作足推广了Willmot的结渠,给 出了强度分布密度满足更一般的一阶微分方程情形的混合泊松分布列的递推式。

布鲁克斯情报学思想及其对我国情报学发展的影响

布鲁克斯情报学思想及其对我国情报学发展的影响
D cmna in ou etto) ),他 于 1 7 — 9 5 间在 9 018年
13 2 篇文 献 ,但这 并未 含盖 他 的 全部 著 述 。 Boks r oe 的著 述先 后 被 翻译 成 多种 文 字 ,传 偏 世 界 各 地 。 同 时 , B o k s 足 迹 也 踏 r oe 的 遍 了世 界 。他 曾在 美 国 、加 拿 大 , 巴基 斯 坦 ,莫 斯 科 、加 纳 、尼 日利 亚 、南 非 、 比 利 时 、丹 麦 、瑞 典 、德 国 、意 大 利 ,芬 兰 等 国开 会 、讲 学 或 从 事 研 究 。 l他 所 教 过 2 的 学 生 更 是 来 自世 界 各 地 : 中国 、 日本 、 加拿 大 、土 尔 其 等 。 2 布 鲁 克斯 的情报 学 思 想 . B ok s 生提 出过许 多 问题 ,他的 生前 ro e- 好友,加拿大西安大略湖大学的Ja au- en Tge S tlfe u cif 归纳 了如 下 1个 方面 : () 么是 2 1什 情 报 ? () 么 是 知 识 ? () 报 与知 识 之 2什 3情 间的 关 系是 怎样 的 ? () 报科 学 与情 报 研 4情 究 有什 么不 同? () 5 我们 怎样 去理 解 情报 ? () 们 该 怎 样 去 计量 情 报 ? () 们 需 要 6我 7我 在 定 量 分 析 那 些 超 出常 规 的 设 计 时 进 行 新 的探 讨 吗 ? () 8 是什 么 现 象使 情 报 学家 发 生 兴 趣 ? () 报 科 学 有 理 论 框 架 吗 ?如 果 9情 有 , 那 么 它 是什 么 ? (O 什 么 是 我 们 的 哲 1) 学 基础 ? (1 对 于 实 践 者 来 说 , 情 报 科 学 1) 的价值 是什 么? (2 我们对人类的知识是 1) 否 作 出 了贡献 ? B ok s r o e 在探 讨 和 回答 这 些 问题 的 过 程 中 , 逐 渐 形 成 了 一 系 列成 熟 的情 报 学理 论和 思想 。 2 1文献 计 量 学 . 布鲁克斯对 情报 学的研究开始于对文 献 计 量 学 方 面 ,可 以被 看 做 是 文 献 计 量 学 界 的绝 对 权 威 。 16 年布 鲁 克 斯发 表 了他 98 的第 一 篇 关 于 “ 拉 德 福 定 律 ” 的论 文 , 布 此 后 布 鲁 克 斯 的名 字 就 经 常 出现 在 书 目计 量 学 中 “ 拉 德 福 定 律 ”这 一 课 题 的书 目 布 中 。在 后 来 的二 十 几 年 中他 发 表 了几 十 篇 情 报 计 量 学 的 论 文 , 一 直  ̄ 1 8 年 他 仍 在 J 19 7 此 方 面 有 所 著 述 ,他 为 文 献 计 量 学 的发 展 和 应 用 作 出 了杰 出的 贡 献 。布 鲁 克 斯 的 大 学 数 学 和 物 理 专 业 知 识 , 以及 他 对 统 计 学 的 兴 趣 使 得 他 在 文 献 计 量 研 究 中 得 心 应

西北工业大学考博基础理论课考试大纲--盛世清北

西北工业大学考博基础理论课考试大纲--盛世清北

基础理论课考试大纲(2020)《高等电磁理论》考试大纲考试内容:Maxwell方程组,平面电磁波,复杂媒质中的电磁波,各项异性媒质,导波理论,金属波导理论,介质波导理论,谐振腔,谐振腔的微扰,电磁波的辐射与反射,口面天线理论。

参考书目:1.Fields & Waves in Communication Electronics S.Ramo & J.Whinnery John Wiley & Sons;2.导波场论 R.E.柯林著上海科学技术出版社。

3.正弦场电磁场哈林顿著上海科学技术出版社(2021)《信号检测与估计》考试大纲考试内容:1.随机信号分析平稳随机信号与非平稳随机信号,随机信号的数字特征,平稳随机过程,复随机过程,随机信号通过线性系统。

2.信号检测信号检测的基本概念,确知信号的检测(包括匹配滤波原理、高斯白噪声中已知信号检测、简单二元检测)3.信号估计信号参数(包括贝叶斯估计、最大似然估计、线性均方估计和最小二乘估计),信号波形估计(主要指卡尔曼滤波)。

参考书目:1.景占荣,羊彦,信号检测与估计,化学工业出版社 20042.赵树杰,信号检测与估计理论,西安电子科技大学出版社 2001(2022)《现代网络分析》考试大纲考试内容:1.网络元件和网络特性:二端元件的参数与性质、二端口元件、性质及六组参数、受控电源、网络特性。

2.网络图论:图的概念与定义、节点关联矩阵、回路关联矩阵、割集关联矩阵、独立变量组、非基本关联矩阵、图形的树数、求全部树、由矩阵求图。

3.网络方程:支路电流方程和支路电压方程、回路电流方程和网孔电流方程、割集电压方程和节点电位方程、混合方程、含受控源网络和理想运放器网络的节点方程。

4.网络的拓扑分析:割集方程和回路方程的拓扑解、驱动点函数的拓扑公式、传输函数的拓扑公式、含受控源网络的传输导纳、节点方程的拓扑解。

5.信号流图:信号流图基本概念、信号流图的构成方法、梅森公式、状态变换图解、线图到流图、Shannon-Happ公式、Coates公式。

精选-数字信号处理-谱估计基础及仿真分析

精选-数字信号处理-谱估计基础及仿真分析

谱估计基础及仿真分析0引言 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N 个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。

它是数字信号处理的重要研究内容之一。

功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。

功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。

一 相关的数学基础 1.1 概率论:1.1.1多维高斯分布高斯分布公式:22()2()x p x μσ--=(1)3σ准则为:(,)σσ-内68.26%;2σ:95.44%;3σ:99.74%。

向量的形式的公式为:11/21/211()exp[()()](2)||2T x xx x N xx p x x C x C μμπ--=---vv v v v (2) 其中[()()]Txx x x C E x x μμ=--v v v v;[]{[[]][[]]}xx ij i i j j C E x E x x E x =--(3)1.1.2 mont-carlo 仿真1ln ,(0,1)y u u λ=-∈为指数分布,y σ=1.2 随即过程平稳随即过程:多维联合概率密度和时间起点无关,狭义的平稳。

数字特征: ()[()]t E x t μ=相关函数:1212(,)[()()]xx r t t E x t x t =(4) 协方差:121122(,){[()()][()()]}xx x x C t t E x t t x t t μμ=--(5) 广义的平稳:1221(,)()()xx xx xx r t t r t t r τ=-=,12(,)()xx xx C t t C τ=(6)各态历经性:时间平均代替集平均。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广义逆高斯分布
一、广义逆高斯分布
1、定义
广义逆高斯分布(Generalized Inverse Gaussian Distribution,GIG)是一种指数族的分布。

它的参数主要有三个,分别为α、β和λ,分别表示分布的形状参数、平移参数和尺度参数。

其中α和λ均为正数,β可为正负数。

它在统计学和数学里都有较广泛的应用。

2、性质
(1)它的概率密度函数为:
$$f(x; \alpha, \lambda, \beta) = \frac{\alpha ^{\frac{1}{\beta}} x^{-
(\frac{1}{\beta}+1)}exp (-\frac{1}{2x} (\alpha x^{- \beta} + \lambda
^{\beta} x^{\beta}) \)}{2K_{\frac{1}{\beta}} ( \sqrt{\alpha
\lambda})\gamma( \frac{1}{\beta})}$$
(2)它的期望和方差分别有:
$$E[X]=\frac{\lambda}{\alpha-\beta}、 Var[X]=\frac{\lambda^2 \beta (2 \alpha \beta - \alpha - \beta ^2)}{(\alpha-\beta)^2 (\alpha -2\beta)^2}$$ (3)它在特殊情况β=0时为威布尔分布,在β=1时为指数分布。

三、应用
(1)广义逆高斯分布是表示金融市场中收益率序列的一种分布,是从
金融市场中抽取收益率的概率密度函数,深入分析其参数的变动对市场的影响。

(2)在风险管理领域中,由于风险价值的随机性和收益率的变动,应用广义逆高斯分布可以很好地评估其交易的风险。

(3)广义逆高斯分布也可以用于统计分析中的拟合,由于其分布有三个形状参数,因此拟合数据时比较灵活。

(4)在生物学领域中,由于很多实验和观察结果是分布服从广义逆高斯分布,应用它可以更深入地探索生物机制。

(5)广义逆高斯分布还有在零件缺陷预测、测试诊断学、图像搜索、数字图像处理等领域的应用。

相关文档
最新文档