四边形综合经典难题
特殊平行四边形难题综合训练(含答案)

特殊平⾏四边形难题综合训练(含答案)第五章特殊平⾏四边形难题综合训练1、正⽅形ABCD ,正⽅形BEFG 和正⽅形RKPF 的位置如图所⽰,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正⽅形BEFG 的边长为4,则△DEK 的⾯积为() A .10B .12C .14D .162、如图,在正⽅形ABCD 内有⼀折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正⽅形的边长为 .第1题第2题第3题第4题 3、如图,平⾯内4条直线l 1、l 2、l 3、l 4是⼀组平⾏线,相邻2条平⾏线的距离都是1个单位长度,正⽅形ABCD 的4个顶点A 、B 、C 、D 都在这些平⾏线上,其中点A 、C 分别在直线l 1、l 4上,该正⽅形的⾯积是平⽅单位. 4、如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连结菱形 ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形 A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是;四边形A 2013B 2013C 2013D 2013的周长是 . 5、如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点,若BE =1,AG =4,则AB 的长为 .6、如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的⾯积为8,则BE =() A .2 B .3 C .22 D .32第5题第6题第7题第8题7、如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕原点顺时针旋转105°⾄OA ′B ′C ′的位置,则点B ′的坐标为()A 、(2,2-)B 、(2,2-)C 、(3,3-)D 、(2,2--)8、如图,正⽅形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折⾄△AFE ,延长EF 交边BC 于A .①②B .①③C .②③D .①②③ 9、如图,在正⽅形ABCD 中,点O 为对⾓线AC 的中点,过点0作射线OM 、ON 分别交AB 、BC 于点E 、F ,且∠EOF =90°,BO 、EF 交于点P .则下列结论中:(1)图形中全等的三⾓形只有两对;(2)正⽅形ABCD 的⾯积等于四边形OEBF ⾯积的4倍;(3)BE +BF =20A ;(4)AE 2+CF 2=20POB .正确的结论有()个. A .1B .2C .3D .410、如图,在矩形ABCD 中,由8个⾯积均为1的⼩正⽅形组成的L 型模板如图放置,则矩形ABCD 的周长为 .11、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N .(1)如图11-1,当点M 在AB 边上时,连接BN .求证:ABN ADN △≌△;(2)如图11-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12).试问:x 为何值时,△ADN 为等腰三⾓形.12、如图所⽰,正⽅形ABCD 的边CD 在正⽅形ECGF 的边CE 上,连接BE DG ,. (1)求证:BE DG .(2)图中是否存在通过旋转能够互相重合的两个三⾓形若存在,说出旋转过程;若不存在,请说明理由. CMBNAD(图11-2)CB M AND(图11-1)13、请阅读,完成证明和填空.数学兴趣⼩组在学校的“数学长廊”中兴奋地展⽰了他们⼩组探究发现的结果,内容如下:(1)如图13-1,正三⾓形ABC 中,在AB AC 、边上分别取点M N 、,使BM AN =,连接BN CM 、,发现BN CM =,且60NOC ∠=°.请证明:60NOC ∠=°.(2)如图13-2,正⽅形ABCD 中,在AB BC 、边上分别取点M N 、,使AM BN =,连接AN DM 、,那么AN = ,且DON ∠=度.(3)如图13-3,正五边形ABCDE 中,在AB BC 、边上分别取点M N 、,使AM BN =,连接AN EM 、,那么AN = ,且EON ∠= 度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请⼤胆猜测,⽤⼀句话概括你的发现:. 14、ABC △是等边三⾓形,点D 是射线BC 上的⼀个动点(点D 不与点B C 、重合),ADE △是以AD 为边的等边三⾓形,过点E 作BC 的平⾏线,分别交射线AB AC 、于点F G 、,连接BE . (1)如图(a )所⽰,当点D 在线段BC 上时.A A A BBB CCC DDO OOM M M NNN E图13-1图13-2图13-3…(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形并说明理由.15、如图,ABC △中,点O 是边AC 上⼀个动点,过O 作直线MN BC ∥,设MN 交BCA ∠的平分线于点E ,交BCA ∠的外⾓平分线于点F .(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗若是,请证明,若不是,则说明理由; (3)当点O 运动到何处,且ABC △满⾜什么条件时,四边形AECF 是正⽅形16、如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G、都在x 轴上,且点G 与点B 重合.(1)求ABC △的⾯积;AG CD BF E 图(a )ADCBFEG图(b )AF N DC B M EO17、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转⾓α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系并证明你的结论; (2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由18、在菱形ABCD 中,对⾓线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E .(1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.ADBECF 1AADBECF 1A 1C19、如图,在平⾯直⾓坐标系中,矩形AOBC在第⼀象限内,E是边OB上的动点(不包括端点),作∠AEF = 90,使EF交矩形的外⾓平分线BF于点F,设C(m,n).(1)若m = n时,如图,求证:EF = AE;(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE若存在,请求出点E的坐标;若不存在,请说明理由.(3)若m = tn(t>1)时,试探究点E在边OB 的何处时,使得EF =(t + 1)AE成⽴并求出点E的坐标.20、如图,将正⽅形沿图中虚线(其中x<y)剪成①②③④四块图形,⽤这四块图形恰.能拼成⼀个.....矩形(⾮正⽅形).(1)画出拼成的矩形的简图;(2)求x的值.A Q DEB P COxO E BAyCFxO E BAyCFO E BAyCF21、如图所⽰,在矩形ABCD 中,1220AB AC ==,,两条对⾓线相交于点O .以OB 、OC 为邻边作第1个平⾏四边形1OBBC ;对⾓线相交于点1A ;再以11A B 、1A C 为邻边作第2个平⾏四边形111A B C C ,对⾓线相交于点1O ;再以11O B 、11O C 为邻边作第3个平⾏四边形1121O B B C ……依次类推. (1)求矩形ABCD 的⾯积;(2)求第1个平⾏四边形11OBB C 、第2个平⾏四边形111A B C C 和第6个平⾏四边形的⾯积.22、如图(22),直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平⾏于直线l 的直线m 从原点O 出发,沿x 轴的正⽅形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;(2)⽤含t 的代数式表⽰MON △的⾯积1S ;A 1 A 2B 2C 2C 1 B 1O 1 DABC O①当2t ≤4时,试探究2S 与t 之间的函数关系式;②在直线m 的运动过程中,当t 为何值时,2S 为OAB △⾯积的51623、如图15,在四边形ABCD 中,E 为AB 上⼀点,△ADE 和△BCE 都是等边三⾓形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论. OMAP N y l mx BO MAP N y l mxBE PF 图2224、数学课上,张⽼师出⽰了问题:如图1,四边形ABCD 是正⽅形,点E 是边BC 的中点.90AEF ∠=,且EF交正⽅形外⾓DCG ∠的平⾏线CF 于点F ,求证:AE =EF .经过思考,⼩明展⽰了⼀种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进⼀步的研究:(1)⼩颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意⼀点”,其它条件不变,那么结论“AE =EF ”仍然成⽴,你认为⼩颖的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由;(2)⼩华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意⼀点,其他条件不变,结论“AE =EF ”仍然成⽴.你认为⼩华的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由.25、如图,ABCD 是正⽅形,点G 是BC 上的任意⼀点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF BF EF =+. ADF CGE B图1 ADF C GE B 图2 ADFC GE B图3DCBA EF G参考答案1、D2、1043、5或94、2010052355 5、15 6、C 7、A 8、B 9、C 10、5811、(1)证明:∵四边形ABCD 是菱形∴AB = AD ,∠1 =∠2⼜∵AN = AN ∴△ABN ≌△ADN (2)解:∵∠ABC =90°,∴菱形ABCD 是正⽅形此时,∠CAD =45°.下⾯分三种情形:Ⅰ)若ND =NA ,则∠ADN =∠NAD =45°.此时,点M 恰好与点B 重合,得x =6;∴∠3=∠4,从⽽CM =CN ,易求AC =62,∴CM =CN =AC -AN =62-6,故x = 12-CM =12-(62-6)=18-62综上所述:当x = 6或12 或18-62时,△ADN 是等腰三⾓形12、(1)因为ABCD 是正⽅形,所以BC =CD 。
特殊四边形难题整理(附答案)

解答:(1)如图①,过A. D分别作AK⊥BC于K,DH⊥BC于H,则四边
形ADHK是矩形。
∴KH=AD=3. 在Rt△ABK中,AK=AB⋅sin45∘=42√⋅2√2=4BK=AB⋅cos45∘=42√⋅2√2=4, 在Rt△CDH中,由勾股定理得,HC=52−42−−−−−−−√=3. ∴BC=BK+KH+HC=4+3+3=10. (2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边 形。 ∵MN∥AB, ∴MN∥DG. ∴BG=AD=3. ∴GC=10−3=7. 由题意知,当M、N运动到t秒时,CN=t,CM=10−2t. ∵DG∥MN,∴∠NMC=∠DGC. 又∵∠C=∠C,∴△MNC∽△GDC.∴CNCD=CMCG,即t5=10−2t7.解 得,t=5017.
6.已知,如图,矩形ABCD中,BC=2,AE⊥BD于E,∠BAE=30°,那么 △ECD的面积是( )
7、如图,正方形ABCD的周长为4a,四边形EFGH的四个顶点E、F、G、 H分别在AB、BC、CD、DA上滑动,在滑动过程中,始终有 EH∥BD∥FG,且EH=FG,问:是否可求出四边形EFGH的周长?若能求 出,它的周长是多少?若不能求出,请说明理由.
(3)分三种情况讨论: ①当NC=MC时,如图③,即t=10−2t,∴t=103.
②当MN=NC时,如图④,过N作NE⊥MC于E. 解法一:由等腰三角形三线合一性质得EC=12MC=12(10−2t)=5−t. 在Rt△CEN中,cosC=ECNC=5−tt, 又在Rt△DHC中,cosC=CHCD=35, ∴5−tt=35.解得t=258. 解法二:∵∠C=∠C,∠DHC=∠NEC=90∘,∴△NEC∽△DHC. ∴NCDC=ECHC,即t5=5−t3.∴t=258. ③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=12NC=12t. 解法一:(方法同②中解法一)cosC=FCMC=12t10−2t=35,
四边形难题50道

1.如图,正方形ABCD中,AB= 3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15度.(1)求证:DF+BE=EF;(2)则∠EFC的度数为度;(3)则△AEF的面积为.2.如图,将矩形ABCD沿对角线BD折叠,C点与E点重合,若AB=3,BC=9,则折叠后重叠部分(△BDF)的面积是.3.如图①E、F、G、H为正方形ABCD各边延长线上的点,CE=BC,DF=CD,AG=DA,BH=AB,若正方形ABCD的面积等于1.(1)则四边形EFGH的面积为;(2)如图②,图③,若将正方形ABCD变为矩形和菱形,其他条件仍然不变,则四边形EFGH的面积分别为,.(3)如图④,若将正方形ABCD变为任意四边形,其他条件仍然不变,请你猜想四边形EFGH的面积为,并说明理由.4.(1)如图1矩形ABCD中,AB=8,AD=5,M为AB中点,则S阴影=,S矩形ABCD=.(2)如图2,在直角梯形ABCD中,AD⊥AB,BC⊥BA,AB=8,BC=4,AD=5,M为AB中点,S阴影= ,S梯形ABCD=.(3)如图3在平行四边形ABCD中,∠A=120°,∠B=60°,AB=8,AB的中点为M,AD=5,S阴影=,S四边形ABCD=.解决问题:如图4有一四边形菜地ABCD,其中AD∥BC,在AB的中点M处有一口井,现要将这块地等分给两家,且都能用井浇地,请你设计方案并说明理由.5.已知:如图,在长方形ABCD中,AB=3,BC=4将△BCD沿BD所在直线翻折,使点C落在点F上,如果BF交AD于E,则AE=.6.(1998•台州)如图,矩形ABCD的长、宽分别为5和3,将顶点C折过来,使它落在AB上的C′点(DE为折痕),那么,阴影部分的面积是.7.如图,将矩形ABCD折叠,使A与C重合,折痕为EF,若AB=3,AD=4,则折痕EF=.8.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)则FD为;(2)则△BEC的面积为.9.在平行四边形ABCD中,AE,CF分别平分∠BAD和∠BCD,(1)AC与EF互相平分吗?;(2)若∠B=60°,BE=2CE,AB=4,则四边形AECF的周长为,面积为.10.如图,等边△ABC以2m/s的速度沿直线l向菱形DCEF移动,直到AB与CD重合,其中∠DCE=60°,设x s时,三角形与菱形重叠部分的面积为y m2.(1)则y与x的关系表达式是.(2)当x=0.5时,y=;当x=1时,y=.(3)当重叠部分的面积是菱形面积一半时,三角形移动了s.11.如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠DBC=45°,点F 在AB边上,点E在BC边上,将△BFE沿折痕EF翻折,使点B落在点D处.若AD=1,BC=5.则:(1)BD的长为;(2)∠C的正切值是.12.(2005•新疆)如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E 为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈cm.(结果精确到0.1cm)13.(2010•吉林)如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.EF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FG=ycm.解答下列问题:(1)直接写出当x=3时y的值是;(2)y与x之间的函数关系式是,并写出自变量x的取值范围;(3)当x取时,图形M成为等腰梯形;(4)线段PQ在运动过程中所能扫过的区域的面积为cm2.14.(2001•黑龙江)如图,在平行四边形ABCD中,AB=4cm,BC=1cm,E 是CD边上一动点,AE、BC的延长线交于点F.设DE=x(cm),BF=y(cm).(1)y(cm)与x(cm)之间的函数关系式为,自变量x的取值范围是;(2)画出此函数的图象.15.如图,正方形纸片ABCD的边BC上有一点E,AE=8cm,若把纸片对折,使点A与点E重合,则纸片折痕的长是cm.16.如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,则梯形ABCD的面积为17.(2010•北京)阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°的方向作直线运动,…,如图1所示,问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折迭,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E.请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰次;P点从A点出发到第一次与D点重合时所经过的路径的总长是cm;(2)近一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB:AD的值为.18.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,则DG的长为;(2)当△FCG的面积为1时,则DG的长为(3)当△FCG的面积最小时,则DG的长为.19.如图①,平面直角坐标系中的▱AOBC,∠AOB=60°,OA=8cm,OB=10cm,点P从A点出发沿AC 方向,以1cm/s速度向C点运动;点Q从B点同时出发沿BO方向,以3cm/s的速度向原点O运动.其中一个动点到达端点时,另一个动点也随之停止运动.(1)则A点的坐标是,C点的坐标是;(2)如图②,从运动开始,经过s,四边形AOQP是平行四边形;(3)在点P、Q运动的过程中,四边形AOQP成为直角梯形.此时t=s(若能,求出运动时间;若不能,填不存在).(图③供解题时用)20.用同样大小的平行四边形按下列图案中的规律摆放:第1个图案有平行四边形3个,第2个图案有平行四边形11个,第3个图案有平行四边形21个,…(1)第4个图案中平行四边形的个数是;(2)第n个(n是大于1的正整数)图案中平行四边形的个数是.21.(2010•汕头)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:△EGB是等腰三角形;(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)).则此梯形的高为.22.如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.连接DE,若BE=4CE,CD=2,则DE=.23.(2005•无锡)已知正方形ABCD的边长AB=k(k是正整数),正△PAE的顶点P在正方形内,顶点E在边AB上,且AE=1.将△PAE在正方形内按图1中所示的方式,沿着正方形的边AB、BC、CD、DA、AB、…连续地翻转n次,使顶点P第一次回到原来的起始位置.(1)如果我们把正方形ABCD的边展开在一直线上,那么这一翻转过程可以看作是△PAE在直线上作连续的翻转运动.图2是k=1时,△PAE沿正方形的边连续翻转过程的展开示意图.请你探索:若k=1,则△PAE沿正方形的边连续翻转的次数n=时,顶点P第一次回到原来的起始位置.(2)若k=2,则n=时,顶点P第一次回到原来的起始位置;若k=3,则n=时,顶点P第一次回到原来的起始位置.(3)请你猜测:使顶点P第一次回到原来的起始位置的n值与k之间的关系是(请用含k的代数式表示n).24.如图,以平行四边形ABCD的对称中心为坐标原点,建立平面直角坐标系,A点坐标为(-4,3),且AD与x轴平行,AD=6,则B点、C点、D点坐标分别是、、25.如图,在等腰梯形ABCD中,AB∥DC,AB=9cm,CD=3cm,AD=6cm.点P从点A出发,以2cm/s 的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD向终点D运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒.(1)当DQ=AP时,四边形APQD是平形四边形,则t=s;(2)当PQ将梯形ABCD分成一个平形四边形和一个等边三角形时,则t=s;(3)当t=s时,四边形PBCQ的面积是梯形ABCD面积的一半.26.(2010•河源)如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;(3)若在AC边上存在点P,使四边形AECF是正方形,且APBC=2.此时∠A的度数为度.27.如图,正方形ABCD中,E、F分别在边BC、CD上,∠EAF=45°,BE=2,CF=3,则正方形的边长为.28.已知:如图,点P是平行四边形ABCD的边DC上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求证:AP⊥PB(2)如果AD=5,AP=8,那么△APB的面积是.29.如图,有两条笔直的公路(BD和EF,其宽度不计)从一块矩形的土地ABCD中穿过,已知:EF是BD的垂直平分线,有BD=400m,EF=300m,则这块矩形土地ABCD的面积为m2.30.如图,在梯形ABCD,AD∥BC,AB=CD,上底AD=227),(1)则C坐标为,D坐标;(2)将梯形ABCD向左平移2个单位长度,所得四边形的四个顶点的坐标为:A,B,C,D;(3)梯形ABCD的面积为.31.(2004•三明)动手操作:将一张边长为10cm的正方形纸片ABCD,按如图去折叠,使D点与AB的中点E重合,度量出有关线段的长度(精确到1cm)后,算出图中阴影部分四边形EFGH的面积为cm2.32.如图,在梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,E是CD的中点,AB=2AD=4,则BE=.33.如图,直角梯形的两底为AD=17cm,BC=25cm,斜腰AB=10cm,AB的垂直平分线EF交DC的延长线于F,则EF的长为cm.34.如图,四边形ABCD为直角梯形,∠C=90°,CD=10cm,AD=30 cm,BC=36 cm,点P从D出发,以2 cm/s的速度向A运动,点Q从B同时出发,以4 cm/s的速度向C运动.其中一个点到达端点时,另一个动点也随之停止运动.(1)从运动开始,经过s,四边形PQBA为平行四边形;(2)从运动开始,经过s,四边形PQBA为等腰梯形.35.试画出如图所示的图案,则阴影部分的面积为.36.如图,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.(1)求证:AB-OF=12AC;(2)点A1、点C1分别同时从A、C两点出发,以相同的速度运动相同的时间后同时停止,如图,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E⊥A1C1,垂足为E,请猜想EF1,AB与12A1C1三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=6,C1E1=4时,则BD的长为.37.如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=10cm,BC=30cm,动点P从点A开始沿AD边向点以每秒1cm的速度运动,同时动点Q从点C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(1)当t=s时,四边形ABQP是平行四边形;(2)当t=s时,四边形ABQP能成为等腰梯形.38.如图,已知AD∥BC,AB=CD,对角线CA平分∠BCD,AD=5,tanB=43,则BC=.39.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).四边形ABCD的面积是.40.已知正方形ABCD的边长为4cm,E,F分别为边DC,BC上的点,BF=1cm,CE=2cm,BE,DF 相交于点G,则四边形CEGF的面积为cm2.41.(2006•邵阳)如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)则EF=;(2)则梯形ABCE的面积是.42.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,则FC= cm,EF=43.(2002•青海)已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,则D点坐标是(,).44.如图:在△ABC中,点D、E、F分别在边AB、BC、CA上,已知AB=12,AC=8,四边形ADEF是菱形,则菱形ADEF的边长为.45.已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连接DF、CF分别交AB于G、H点,若∠E=60°,且AE=8时,则梯形AECD的面积是.46.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE 折叠,点B落在四边形AECD内,记为点B′.则线段B′C=47.(2003•随州)已知:如图,梯形ABCD中,AD∥BC,DC⊥BC.沿对角线BD折叠,点A恰好落在DC上,记为A′.若AD=4,BC=6,则A′B=.48.如图,在直角梯形ABCD中.AB∥CD,AB=12cm,CD=6cm,DA=3cm,∠D=∠A=90°,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D 开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t表示移动的时间(单位:秒),并且0≤t≤3.(1)当t=s时,△QAP为等腰三角形;(2)不论t取何值,四边形QAPC的面积是一个定值,则这个定值为cm2;(3)当t=s时,△PBC是直角三角形.49.如图,要设计一个等腰梯形的花坛,花坛上底长12米,下底长18米,高8米.(1)梯形的中位线的长是米;(2)在梯形两腰中点连线(虚线)处有一条横向通道,上下底之间有两条纵向通道,各条通道的宽度均为x米.①若通道的总面积等于42平方米,通道的宽是米;②按要求通道的宽不能超过1米,且修建三条通道应付的工资合计为2533元,当通道的宽度为米时,所建花坛应付的总工资最少,最少工资是元.50.如图,在矩形ABCD中,AB=6,BC=12.动点M、N分别从点B、D同时出发,以每秒1个单位长度的速度运动.其中点M沿BC向终点C运动,点N沿DA向终点A运动,过点N作NP⊥BC于点Q,交AC于点P,连接MP.设动点运动的时间为t秒.(1)当t=6时,PM=;(2)t=时,△PMC的面积等于矩形ABCD面积的19.。
四边形经典综合难题(含答案)汇编

四边形综合经典难题1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。
2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。
3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。
4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。
5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB ,AC 平分∠A ,又∠B=60︒,梯形的周长是20cm, 求:AB 的长。
6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。
7、已知:梯形ABCD 的对角线的交点为EBC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF_ D_ C_B _ C _ A _ B_ A _B_ E_A _ B_ A_ B8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。
9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。
10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。
11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。
四边形难题汇编附答案

四边形难题汇编附答案一、选择题1.如图,在 Y ABCD 中, AC8, BD 6, AD 5 ,则 YABCD 的面积为 ()A .6B . 12C . 24D . 48【答案】 C 【分析】 【剖析】由勾股定理的逆定理得出 AOD90o ,即 ACBD ,得出 Y ABCD 是菱形,由菱形面积公式即可得出结果. 【详解】∵四边形 ABCD 是平行四边形,∴ OCOC1AC4, OBOD1BD 3 ,22∴ OA 2 OD 225 AD 2,∴ AOD 90o ,即 AC BD ,∴ Y ABCD 是菱形,∴ Y ABCD 的面积1 1 AC BD86 24;22应选 C . 【点睛】本题考察平行四边形的性质、勾股定理的逆定理、菱形的判断与性质,娴熟掌握平行四边 形的性质,证明四边形ABCD 是菱形是解题的重点.2.如图,已知 AD 是三角形纸片 ABC 的高,将纸片沿直线 EF 折叠,使点 A 与点 D 重合,给出以下判断:① EF 是 V ABC 的中位线;② VDEF 的周长等于 VABC 周长的一半:③ 若四边形 AEDF 是菱形,则 AB AC ;④ 若 BAC 是直角,则四边形 AEDF 是矩形.此中正确的选项是 ( )A .①②③B . ①②④C . ②④D . ①③④【答案】 A【分析】【剖析】依据折叠可得 EF 是 AD 的垂直均分线,再加上条件 AD 是三角形纸片 ABC 的高能够证明 EF∥BC ,从而可得 △AEF ∽△ ABC ,从而得AEAFAO 1 ,从而获得 EF 是 △ABC 的中ABAC AD2位线;再依据三角形的中位线定理可判断出 △AEF 的周长是 △ABC 的一半,从而获得 △DEF的周长等于 △ABC 周长的一半;依据三角形中位线定理可得1 1 AE= AB , AF= AC ,若四边形22AEDF 是菱形则 AE=AF ,即可获得 AB=AC .【详解】解:∵ AD 是 △ABC 的高,∴AD ⊥ BC ,∴∠ ADC=90°,依据折叠可得: EF 是 AD 的垂直均分线,∴AO=DO= 1AD , AD ⊥ EF ,2∴∠ AOF=90°,∴∠ AOF=∠ADC=90°,∴ E F ∥ BC ,∴△ AEF ∽△ ABC ,AEAF AO 1 ABACAD,2∴ E F 是 △ABC 的中位线,故① 正确;∵EF 是 △ABC 的中位线,∴△ AEF 的周长是 △ABC 的一半,依据折叠可得 △AEF ≌△ DEF ,∴△ DEF 的周长等于 △ABC 周长的一半,故② 正确;∵EF 是△ABC的中位线,∴A E= 1AB, AF=1AC,22若四边形AEDF是菱形,则 AE=AF,∴A B=AC,故③ 正确;依据折叠只好证明∠ BAC=∠ EDF=90°,不可以确立∠ AED 和∠ AFD 的度数,故④错误;应选: A.【点睛】本题主要考察了图形的翻折变换,以及三角形中位线的性质,重点是掌握三角形中位线定理:三角形的中位线平行于第三边,而且等于第三边的一半.3.如图,在菱形ABCD中,点E在边AD上,BE AD, BCE30 .若 AE 2 ,则边 BC的长为( )A.5B.6C.7D.22【答案】 B【分析】【剖析】由菱形的性质得出AD∥ BC, BC=AB=AD,由直角三角形的性质得出AB=BC= 3 BE,在Rt△ABE中,由勾股定理得:BE2+22=(3 BE)2,解得:BE=2,即可得出结果.【详解】∵四边形 ABCD 是菱形,∴ AD∥ BC,BC ∵ BE AD.∴ BE AB . BC .∴BCE 30 ,∴ EC 2BE ,∴AB BCEC2 BE23BE .在 Rt△ABE 中,由勾股定理得BE2222 3BE ,解得BE2,∴ BC3BE 6 .应选 B.【点睛】本题考察菱形的性质,含30°角的直角三角形的性质,勾股定理,娴熟掌握菱形的性质,由勾股定理得出方程是解题的重点.4.如图 ,矩形 ABCD 中, AB >AD , AB=a ,AN 均分∠ DAB , DM ⊥AN 于点 M ,CN ⊥ AN 于点 N.则 DM+CN 的值为(用含 a 的代数式表示) ( )A . a4 C .2 a D .3 aB . a522【答案】 C【分析】【剖析】依据 “AN 均分∠ DAB , DM ⊥ AN 于点 M , CN ⊥ AN 于点 N ”得∠ MDC=∠ NCD=45°,cos45 °=DMCN,因此DM+CN=CDcos45°;再依据矩形ABCD ,AB=CD=a ,DM+CN 的值即DECE可求出.【详解】∵AN 均分∠ DAB , DM ⊥ AN 于点 M , CN ⊥ AN 于点 N ,∴∠ ADM=∠ MDC=∠ NCD=45°,∴DM 0CN0 =CD ,cos45 cos45在矩形 ABCD 中, AB=CD=a ,∴DM+CN=acos45° = 2a.2应选 C.【点睛】本题考察矩形的性质,解直角三角形,解题重点在于获得cos45°=DMCNDECE5.如图,在菱形ABCD 中,对角线AC = 8, BD = 6,点E ,F 分别是边 AB , BC 的中点,点P 在AC 上运动,在运动过程中,存在PE + PF 的最小值,则这个最小值是()A.3B.4C.5D.6【答案】 C【分析】【剖析】先依据菱形的性质求出其边长,再作 E 对于 AC 的对称点E′,连结 E′F,则 E′F即为 PE+PF 的最小值,再依据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6, BD=8,∴A B= 3242 =5,作 E 对于 AC 的对称点 E′,连结 E′F,则 E′F即为 PE+PF的最小值,∵AC 是∠ DAB 的均分线, E 是 AB 的中点,∴E′在 AD 上,且 E′是 AD 的中点,∵AD=AB,∴AE=AE′,∵F 是 BC的中点,∴E′F=AB=5.应选 C.6.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD 的均分线AG 交 BC于点E,若BF=6, AB=5,则AE 的长为()A.4B.8C.6D.10【答案】 B【分析】【剖析】【详解】解:设 AG 与 BF 交点为 O,∵ AB=AF, AG 均分∠ BAD, AO=AO,∴可证△ABO≌△ AFO,∴BO=FO=3,∠ AOB=∠ AOF=90o, AB=5,∴ AO=4,∵ AF∥ BE,∴可证△AOF≌△ EOB,AO=EO,∴ AE=2AO=8,应选 B.【点睛】本题考察角均分线的作图原理和平行四边形的性质.7.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O , AC AB,E是BC 中点,△ AOD 的周长比 VAOB 的周长多3cm,则AE的长度为()A. 3cm B.4cm C.5cm D.8cm【答案】 B【分析】【剖析】依据题意,由平行四边形的周长获得AB AD13,由△ AOD 的周长比 VAOB 的周长多 3cm,则AD AB 3 ,求出AD的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是 26cm,126 13,∴AB AD2∵BD 是平行四边形的对角线,则BO=DO,∵△ AOD 的周长比 VAOB 的周长多3cm,∴ (AO OD AD ) (AO OB AB) AD AB3,∴AB 5, AD 8,∴BC AD 8,∵ AC AB ,点E是BC中点,∴ AE 11BC8 4 ;22应选: B.【点睛】本题考察了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的重点是娴熟掌握平行四边形的性质进行解题.8.如图,在菱形ABCD中, AB= 10,两条对角线订交于点O,若 OB= 6,则菱形面积是()A . 60B . 48C . 24D . 96【答案】 D【分析】【剖析】由菱形的性质可得AC ⊥BD , AO = CO , BO = DO =6,由勾股定理可求【详解】解:∵四边形 ABCD 是菱形,∴AC ⊥BD , AO = CO , BO = DO = 6,AO 的长,即可求解.∴AO = AB 2OB2100 36 8,∴AC =16,BD =12,∴菱形面积=1216=96,2应选: D . 【点睛】本题考察了菱形的性质,勾股定理,掌握菱形的对角线相互垂直均分是本题的重点.9.如图,小莹用一张长方形纸片ABCD 进行折纸,已知该纸片宽 AB 为 8cm ,BC 长为10cm .当小莹折叠时,极点 D 落在 BC 边上的点 F 处 (折痕为 AE).则此时 EC=()cmA .4B .2 C .2 2D .3【答案】 D【分析】【剖析】依据矩形的性质得AB=CD=8, BC=AD=10,∠ B=∠ C=90°,再依据折叠的性质得 AF=AD=10,DE=EF ,在 Rt △ABF 中,利用勾股定理计算出 BF=6,则 CF=BC ﹣ BF=4,设 CE=x ,则 DE=EF=8﹣ x ,在 Rt △CEF 中利用勾股定理获得 :42+x 2=( 8﹣ x ) 2,而后解方程即可.【详解】解:∵四边形 ABCD 为矩形,∴ AB=CD=8, BC=AD=10,∠ B=∠ C=90°.∵长方形纸片 ABCD 折纸,极点 D 落在 BC 边上的点 F 处(折痕为 AE ),∴ A F=AD=10, DE=EF ,在 Rt △ABF 中, AB=8, AF=10,∴ BF= AF 2 AB 2 6 ∴ C F=BC ﹣ BF=4.设 CE=x ,则 DE=EF=8﹣x ,在 Rt △CEF 中,∵ CF 2 2 2, +CE=EF∴ 42+x 2 =( 8﹣ x ) 2,解得 x=3 ∴EC 的长为 3cm .应选: D【点睛】本题考察了折叠的性质、矩形的性质、勾股定理的综合运用;娴熟掌握折叠的性质和矩形的性质,依据勾股定理得出方程是解题重点.10. 如图 11-3-1,在四边形 ABCD 中,∠ A=∠ B=∠ C ,点 E 在边 AB 上,∠ AED=60°,则必定有( )A .∠ ADE=20°B .∠ ADE=30°C .∠ ADE=1 ∠ ADCD .∠ ADE=1∠ ADC23【答案】 D 【分析】【剖析】【详解】设∠ ADE=x ,∠ ADC=y ,由题意可得,∠ ADE+∠AED+∠ A=180°,∠ A+∠ B+∠C+∠ADC=360°,即 x+60+∠ A=180① , 3∠ A+y=360② ,由①×3-② 可得 3x-y=0,因此 x1y ,即∠ ADE= 1∠ ADC .33故答案选 D .考点:三角形的内角和定理;四边形内角和定理.11.如图,在 ? ABCD中, BM 是∠ ABC 的均分线交 CD于点 M ,且 MC=2, ? ABCD的周长是在 14,则 DM 等于()A.1B.2C.3D.4【答案】 C【分析】试题剖析:∵ BM 是∠ ABC 的均分线,∴∠ ABM=∠ CBM,∵ AB∥ CD,∴∠ ABM=∠ BMC,∴∠BMC=∠ CBM,∴ BC=MC=2,∵ ? ABCD的周长是 14,∴ BC+CD=7,∴ CD=5,则 DM=CD﹣MC=3,应选 C.考点:平行四边形的性质.12.如图,四边形 ABCD的对角线为 AC、 BD,且 AC=BD,则以下条件能判断四边形 ABCD 为矩形的是()A. BA=BCB. AC、 BD 相互均分C. AC⊥ BDD. AB∥ CD【答案】 B【分析】试题剖析:依据矩形的判断方法解答.解:能判断四边形ABCD是矩形的条件为AC、 BD 相互均分.原因以下:∵ AC、 BD 相互均分,∴四边形ABCD是平行四边形,∵AC=BD,∴? ABCD是矩形.其余三个条件再加上AC=BD均不可以判断四边形ABCD是矩形.应选 B.考点:矩形的判断.13.如图,□ ABCD的对角线AC、BD 交于点 O, AE 均分 BAD 交 BC 于点 E,且∠ ADC=160°, AB=BC,连结 OE.以下结论:① AE=CE;②S△ABC=AB?AC;③S△ABE=2S△AOE;21④ OE =BC,建立的个数有()4A.1 个B.2 个C.3 个D.4【答案】 C【分析】【剖析】利用平行四边形的性质可得∠ABC=∠ ADC=60°,∠ BAD=120°,利用角均分线的性质证明1△ABE 是等边三角形,而后推出AE=BE=BC,再联合等腰三角形的性质:等边平等角、三2线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ ABC=∠ ADC=60°,∠ BAD=120°,∵AE 均分∠ BAD,∴∠ BAE=∠ EAD=60°∴△ ABE 是等边三角形,∴A E=AB=BE,∠ AEB=60°,∵A B= 1BC,2∴A E=BE=1BC,2∴A E=CE,故①正确;∴∠ EAC=∠ ACE=30°∴∠ BAC=90°,=AB?AC,故②错误;∴S△ABC12∵BE=EC,∴E 为 BC 中点, O 为 AC 中点,∴S △ABE =S △ACE=2 S △AOE ,故 ③ 正确;∵四边形 ABCD 是平行四边形,∴AC=CO ,∵ AE=CE , ∴EO ⊥ AC ,∵∠ ACE=30°,∴EO= 1EC ,21 ∵ E C= AB ,2∴OE= 1BC ,故 ④ 正确;4故正确的个数为 3 个,应选: C .【点睛】本题考察平行四边形的性质,等边三角形的判断与性质.注意证得 △ABE 是等边三角形是解题重点.14. 如图,在 V ABC 中, D ,E 是 AB ,AC 中点,连结 DE 并延伸至 F ,使 EFDE,CF ADCF()连结 AF , CD , .增添以下条件,可使四边形为菱形的是A . AB AC B . AC BC C . CD AB D . AC BC【答案】 D【分析】【剖析】依据 AE = CE , EF = DE 可证得四边形 A DCF 为平行四边形,再利用中位线定理可得DE ∥ BC联合 AC ⊥ BC 可证得 AC ⊥ DF ,从而利用对角线相互垂直的平行四边形是菱形即可得证.【详解】解:∵点 E 是 AC 中点,∴AE = CE ,∵AE = CE , EF = DE ,∴四边形 ADCF 为平行四边形,∵点 D 、 E 是 AB 、 AC 中点,∴DE 是 △ABC 的中位线,∴DE ∥BC ,∴∠ AED=∠ ACB,∵AC⊥BC,∴∠ ACB= 90°,∴∠ AED=90°,∴AC⊥ DF,∴平行四边形ADCF为菱形应选: D.【点睛】本题考察了菱形的判断,三角形的中位线性质,娴熟掌握有关图形的性质及判断是解决本题的重点.15.如图,将一个大平行四边形在一角剪去一个小平行四边形,假如用直尺画一条直线将其节余部分切割成面积相等的两部分,这样的不一样的直线一共能够画出()A.1 条B.2 条C.3 条D.4 条【答案】 C【分析】【剖析】利用平行四边形的性质切割平行四边形即可.【详解】解:以下图,这样的不一样的直线一共能够画出三条,故答案为: 3.【点睛】本题考察平行四边形的性质,解题的重点是掌握平行四边形的中心对称性.16.如图,矩形纸片ABCD中, AB=6cm, BC=8cm.现将其沿AE 对折,使得点 B 落在边AD 上的点B1处,折痕与边BC 交于点E,则CE的长为()A.6cm B. 4cm C. 3cm D. 2cm【答案】 D【分析】剖析:依据翻折的性质可得∠ B=∠ AB1E=90°,AB=AB1,而后求出四边形 ABEB1是正方形,再依据正方形的性质可得 BE=AB,而后依据 CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE 对折点 B 落在边 AD 上的点 B1处,∴∠ B=∠AB1E=90°, AB=AB1,又∵∠ BAD=90°,∴四边形ABEB1是正方形,∴B E=AB=6cm,∴CE=BC-BE=8-6=2cm.应选: D.点睛:本题考察了矩形的性质,正方形的判断与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的重点.17.如图点P是矩形ABCD的对角线AC上一点,过点P作EF//BC,分别交AB、CD 于点 E、F,连结PB、PD,若 AE1, PF8 ,则图中暗影部分的面积为()A.5B.6C.8D.9【答案】 C【分析】【剖析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【详解】作 PM⊥AD 于 M,交 BC于 N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,S△ADC=S△ABC,S△AMP=S△AEP, S△PBE=S△PBN, S△PFD=S△PDM, S△PFC=S△PCN,∴S△△1DFP=S PBE=× 1× 8=4,2∴S 阴 =4+4=8,应选: C.【点睛】本题考察矩形的性质、三角形的面积,解题的重点是证明S△PEB=S△PFD.18.以下说法正确的选项是()A.对角线相等的四边形必定是矩形B.随意掷一枚质地平均的硬币 10 次,必定有 5 次正面向上C.假如有一组数据为 5,3 ,6, 4, 2,那么它的中位数是 6D.“用长分别为5cm、 12cm、6cm的三条线段能够围成三角形”这一事件是不行能事件【答案】 D【分析】【剖析】依据矩形的判断定理,数据出现的可能性的大小,中位数的计算方法,不行能事件的定义挨次判断即可 .【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 随意掷一枚质地平均的硬币10 次,不必定有 5 次正面向上,故该项错误;C. 一组数据为5, 3, 6,4, 2,它的中位数是4,故该项错误;D.用“长分别为 5cm、12cm、 6cm 的三条线段能够围成三角形”这一事件是不行能事件,正确,应选: D.【点睛】本题矩形的判断定理,数据出现的可能性的大小,中位数的计算方法,不行能事件的定义,综合掌握各知识点是解题的重点.19.在四边形 ABCD中, AD∥ BC,要使四边形ABCD是平行四边形,可增添的条件不正确的是()A. AB∥ CD B.∠ B=∠ D C. AD= BC D. AB= CD【答案】 D【分析】【剖析】依据平行四边形的判断解答即可.【详解】∵AD∥ BC, AB∥ CD,∴四边形ABCD是平行四边形,故 A 正确;∵AD∥ BC, AD=BC,∴四边形ABCD是平行四边形,故 C 正确;∵AD∥ BC,∴∠ D+∠ C=180°,∵∠ B=∠D,∴∠ B+C=180°,∴AB∥ CD,∴四边形ABCD是平行四边形,故 B 正确;应选: D.【点睛】本题考察平行四边形的判断,解题重点是依据平行四边形的判断解答.20.如图,四边形ABCD的对角线订交于点O,且点 O 是 BD 的中点,若AB= AD= 5, BD =8,∠ ABD=∠ CDB,则四边形ABCD的面积为()A.40B. 24C. 20D. 15【答案】 B【分析】【剖析】依据等腰三角形的性质获得AC⊥ BD,∠ BAO=∠ DAO,获得 AD=CD,推出四边形A BCD是菱形,依据勾股定理获得AO=3,于是获得结论.【详解】∵AB= AD,点 O 是 BD 的中点,∴AC⊥ BD,∠ BAO=∠ DAO,∵∠ ABD=∠ CDB,∴AB∥ CD,∴∠ BAC=∠ ACD,∴∠ DAC=∠ ACD,∴AD= CD,∴AB= CD,∴四边形ABCD是菱形,∵AB= 5, BO 1BD= 4,2∴AO= 3,∴AC= 2AO= 6,∴四边形 ABCD的面积16×8= 24,2应选: B.【点睛】本题考察了菱形的判断和性质,等腰三角形的判断和性质,平行线的判断和性质,正确的辨别图形是解题的重点.。
四边形难题汇编及答案

四边形难题汇编及答案一、选择题1.如图,在菱形ABCD 中,AB =10,两条对角线相交于点O ,若OB =6,则菱形面积是( )A .60B .48C .24D .96【答案】D【解析】【分析】 由菱形的性质可得AC ⊥BD ,AO =CO ,BO =DO =6,由勾股定理可求AO 的长,即可求解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO =6,∴AO =22100368AB OB -=-=,∴AC =16,BD =12, ∴菱形面积=12162⨯=96, 故选:D .【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.2.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .3B .2C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2, ∴22213CO =-=;∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.3.如图,若OABC Y 的顶点O ,A ,C 的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为( )A .(4,1)B .(5,3)C .(4,3)D .(5,4)【答案】B【解析】【分析】 根据平行四边形的性质,以及点的平移性质,即可求出点B 的坐标.【详解】解:∵四边形OABC 是平行四边形,∴OC ∥AB ,OA ∥BC ,∴点B 的纵坐标为3,∵点O 向右平移1个单位,向上平移3个单位得到点C ,∴点A 向右平移1个单位,向上平移3个单位得到点B ,∴点B 的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.4.若菱形的对角线分别为6和8,则这个菱形的周长为( )A .10B .20C .40D .48 【答案】B【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】如图所示,根据题意得AO=12×8=4,BO=12×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD ,∴△AOB 是直角三角形,∴AB=22169AO BO +=+=5,∴此菱形的周长为:5×4=20.故选:B .【点睛】此题考查菱形的性质,利用勾股定理求出菱形的边长是解题的关键.5.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点, 32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,<Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.6.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点为顶点画平行四边形,则第四个顶点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】A 点在原点上,B 点在横轴上,C 点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C7.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A .4B .8C .6D .10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.8.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( )A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA= OC, OB=OD,∴四边形ABCD是平行四边形,又∵OA=OC=OD=OB,∴AC=BD,∴四边形ABCD是矩形.故选D.【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.∠=()9.如图,把矩形ABCD沿EF对折后使两部分重合,若150∠=o,则AEFA.110°B.115°C.120°D.130°【答案】B【解析】【分析】根据翻折的性质可得∠2=∠3,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形ABCD 沿EF 对折后两部分重合,150∠=o ,∴∠3=∠2=180-502︒︒=65°, ∵矩形对边AD ∥BC , ∴∠AEF=180°-∠3=180°-65°=115°.故选:B .【点睛】本题考查了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的关键.10.如图,平行四边形ABCD 的周长是26,cm 对角线AC 与BD 交于点,,O AC AB E ⊥是BC 中点,AOD △的周长比AOB V 的周长多3cm ,则AE 的长度为( )A .3cmB .4cmC .5cmD .8cm【答案】B【解析】【分析】 根据题意,由平行四边形的周长得到13AB AD +=,由AOD △的周长比AOB V 的周长多3cm ,则3AD AB -=,求出AD 的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是26cm ,∴126132AB AD +=⨯=, ∵BD 是平行四边形的对角线,则BO=DO ,∵AOD △的周长比AOB V 的周长多3cm ,∴()()3AO OD AD AO OB AB AD AB ++-++=-=,∴5AB =,8AD =,∴8BC AD ==,∵AC AB ⊥,点E 是BC 中点, ∴118422AE BC ==⨯=; 故选:B .【点睛】 本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.11.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD≌△ECD.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S 矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.13.如图,在矩形ABCD中,2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质14.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.15.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12 BC,∴AE=BE=12 BC,∴AE=CE,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S△ABC=12AB•AC,故②错误;∵BE=EC,∴E为BC中点,O为AC中点,∴S△ABE=S△ACE=2 S△AOE,故③正确;∵四边形ABCD是平行四边形,∴AC=CO,∵AE=CE,∴EO⊥AC,∵∠ACE=30°,∴EO=12EC , ∵EC=12AB , ∴OE=14BC ,故④正确; 故正确的个数为3个,故选:C .【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE 是等边三角形是解题关键.16.已知ABCD Y (AB BC >),用尺规在ABCD 内作菱形,下列作法错误的是( )A .如图1所示,作对角线AC 的垂直平分线EF ,则四边形AECF 为所求B .如图2所示,在AB DC ,上截取AE AD DF DA ==,,则四边形AEFD 为所求 C .如图3所示,作ADC ABC ∠∠、的平分线DE BF ,,则四边形DEBF 为所求 D .如图4所示,作BDE BDC DBF DBA ∠=∠∠=∠,,则四边形DEBF 为所求【答案】C【解析】【分析】根据平行四边形的性质及判定、菱形的判定逐个判断即可.【详解】解:A 、根据线段的垂直平分线的性质可知AB =AD ,一组邻边相等的平行四边形是菱形;符合题意;B 、根据四条边相等的四边形是菱形,符合题意;C 、根据两组对边分别平行四边形是平行四边形,不符合题意;D 、根据一组邻边相等的平行四边形是菱形,符合题意.故选:C .【点睛】本题考查了复杂作图,解决本题的关键是利用平行四边形的性质及判定、菱形的判定.17.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.18.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条B.2条C.3条D.4条【答案】C【解析】【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:3.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.19.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连结BF,交AC于点M,连结DE,BO.若∠BOC=60°,FO=FC,则下列结论:①AE=CF;②BF 垂直平分线段OC;③△EOB≌△CMB;④四边形是BFDE菱形.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【分析】利用ASA定理证明△AOE≌△COF,从而判断①;利用线段垂直平分线的性质的逆定理可得结论②;在△EOB和△CMB中,对应直角边不相等,则两三角形不全等,从而判断③;连接BD,先证得BO=DO, OE=OF,进而证得OB⊥EF,因为BD、EF互相垂直平分,即可证得四边形EBFD是菱形,从而判断④.【详解】解:∵矩形ABCD中,O为AC中点∴∠DCA=∠BAC,OA=OC,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,故①正确∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故②正确;∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故③错误;连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,且BO=DO由①可知△AOE≌△COF,∴OE=OF∴四边形EBFD是平行四边形由②可知,OB=CB,OF=FC又∵BF=BF∴△OBF≌△OCF∴BD⊥EF∴平行四边形EBFD是菱形,故④正确所以其中正确结论的个数为3个;故选:C.【点睛】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.20.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.。
(专题精选)初中数学四边形难题汇编及答案
(专题优选)初中数学四边形难题汇编及答案一、选择题1.如图,在菱形ABCD中,对角线AC= 8, BD= 6,点 E, F 分别是边A B, BC的中点,点P 在 AC上运动,在运动过程中,存在PE+ PF 的最小值,则这个最小值是()A.3B.4C.5D.6【答案】 C【分析】【剖析】先依据菱形的性质求出其边长,再作 E 对于 AC 的对称点E′,连结 E′F,则 E′F即为 PE+PF 的最小值,再依据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6, BD=8,∴A B= 3242 =5,作 E 对于 AC 的对称点 E′,连结 E′F,则 E′F即为 PE+PF的最小值,∵AC 是∠ DAB 的均分线, E 是 AB 的中点,∴E′在 AD 上,且 E′是 AD 的中点,∵AD=AB,∴AE=AE′,∵F 是 BC的中点,∴E′F=AB=5.应选 C.2.如图,把矩形ABCD 沿 EF 对折后使两部分重合,若 1 50o,则AEF =()A.110 °B. 115 °C. 120 °D. 130 °【答案】 B【分析】【剖析】依据翻折的性质可得∠2=∠ 3,再求出∠ 3,而后依据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形 ABCD 沿 EF 对折后两部分重合, 1 50 o,180 -50=65 °,∴∠ 3=∠ 2=2∵矩形对边 AD∥ BC,∴∠ AEF=180°-∠ 3=180°-65 °=115°.应选: B.【点睛】本题考察了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的重点.AB 为8cm,BC 长为3.如图,小莹用一张长方形纸片ABCD进行折纸,已知该纸片宽AE).则此时EC=()cm 10cm.当小莹折叠时,极点 D 落在BC 边上的点F处 (折痕为A.4B.2C.22D.3【答案】 D【分析】【剖析】DE=EF,在 Rt△ABF中,利用勾股定理计算出BF=6,则 CF=BC﹣ BF=4,设 CE=x,则 DE=EF=8﹣x,在 Rt△CEF中利用勾股定理获得 :42+x2=( 8﹣ x)2,而后解方程即可.【详解】解:∵四边形 ABCD为矩形,∴ AB=CD=8, BC=AD=10,∠ B=∠C=90°.∵长方形纸片 ABCD折纸,极点 D 落在 BC 边上的点 F 处(折痕为AE),∴AF=AD=10, DE=EF,在 Rt△ABF 中, AB=8, AF=10,∴ BF=AF 2AB26∴C F=BC﹣ BF=4.设 CE=x,则 DE=EF=8﹣x,在 Rt△CEF中,∵ CF2 2 2, +CE=EF∴42+x2 =( 8﹣ x)2,解得 x=3∴EC的长为 3cm .应选: D【点睛】本题考察了折叠的性质、矩形的性质、勾股定理的综合运用;娴熟掌握折叠的性质和矩形的性质,依据勾股定理得出方程是解题重点.4.以下命题错误的选项是()A.平行四边形的对角线相互均分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】 D【分析】【剖析】依据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可获得答案.【详解】解: A、平行四边形的对角线相互均分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D 错误;D、若两实数的平方相等,则这两个实数相等或互为相反数,故应选: D.【点睛】本题考察了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的重点是娴熟掌握所学的性质进行解题.5.如图,若Y OABC的极点O ,A , C 的坐标分别为(0,0), (4,0), (1,3) ,则极点BA.(4,1)B.(5,3)C.(4,3)D.(5, 4)【答案】 B【分析】【剖析】依据平行四边形的性质,以及点的平移性质,即可求出点B的坐标 .【详解】解:∵四边形OABC是平行四边形,∴OC∥ AB, OA∥ BC,∴点 B 的纵坐标为3,∵点 O 向右平移 1 个单位,向上平移∴点 A 向右平移 1 个单位,向上平移3 个单位获得点3 个单位获得点C,B,∴点 B 的坐标为:( 5, 3);应选: B.【点睛】本题考察了平行四边形的性质,点坐标平移的性质,解题的重点是娴熟掌握平行四边形的性质进行解题 .6.如图,已知AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A与点D重合,给出以下判断:① EF 是V ABC的中位线;② VDEF 的周长等于VABC周长的一半:③若四边形 AEDF 是菱形,则 AB AC ;④若 BAC 是直角,则四边形AEDF是矩形.此中正确的选项是()A.①②③B.①②④C.②④D.①③④【答案】 A【分析】依据折叠可得 EF 是 AD 的垂直均分线,再加上条件 AD 是三角形纸片 ABC 的高能够证明 EF∥BC ,从而可得 △AEF ∽△ ABC ,从而得AEAF AO 1 ,从而获得 EF 是 △ABC 的中 ABAC AD 2位线;再依据三角形的中位线定理可判断出△AEF 的周长是 △ABC 的一半,从而获得 △DEF的周长等于 △ABC 周长的一半;依据三角形中位线定理可得AE=1AB , AF=1 AC ,若四边形22AEDF 是菱形则 AE=AF ,即可获得 AB=AC .【详解】解:∵ AD 是 △ABC 的高,∴AD ⊥ BC ,∴∠ ADC=90°,依据折叠可得: EF 是 AD 的垂直均分线,∴AO=DO= 1AD , AD ⊥ EF ,2∴∠ AOF=90°,∴∠ AOF=∠ADC=90°,∴ E F ∥ BC ,∴△ AEF ∽△ ABC ,AEAF AO 1 ABACAD,2∴ E F 是 △ABC 的中位线,故① 正确;∵EF 是 △ABC 的中位线,∴△ AEF 的周长是 △ABC 的一半,依据折叠可得 △AEF ≌△ DEF ,∴△ DEF 的周长等于 △ABC 周长的一半,故② 正确;∵EF 是 △ABC 的中位线,∴ A E= 1 AB , AF= 1AC ,2 2若四边形 AEDF 是菱形,则 AE=AF ,∴AB=AC ,故③ 正确;依据折叠只好证明∠BAC=∠ EDF=90°,不可以确立∠ AED 和∠ AFD 的度数,故④错误;应选: A.【点睛】本题主要考察了图形的翻折变换,以及三角形中位线的性质,重点是掌握三角形中位线定理:三角形的中位线平行于第三边,而且等于第三边的一半.7.如图,点M 是正方形ABCD边 CD 上一点,连结AM ,作 DE⊥ AM 于点 E, BF⊥AM 于点F,连结 BE,若 AF= 1,四边形ABED的面积为6,则∠ EBF的余弦值是()A.2 13B.3 13C.2D.131313313【答案】 B【分析】【剖析】第一证明△ABF≌△ DEA获得 BF=AE;设 AE=x,则 BF=x, DE=AF=1,利用四边形ABED的面积等于△ABE 的面积与△ADE 的面积之和获得1x 获得 AE=BF=3,?x?x+?x × 1=6,解方程求出2则 EF=x-1=2,而后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA= AD,∠ BAD= 90°,∵DE⊥AM 于点 E, BF⊥ AM 于点 F,∴∠ AFB= 90°,∠ DEA= 90°,∵∠ ABF+∠ BAF= 90°,∠ EAD+∠ BAF=90°,∴∠ ABF=∠ EAD,在△ABF 和△DEA 中BFA DEAABF EADAB DA∴△ ABF≌△ DEA( AAS),∴B F= AE;设 AE= x,则 BF= x,DE= AF= 1,∵四边形 ABED的面积为 6,∴11 x 13 x 2 4x xx 1 6 ,解得=﹣= ,(舍去),22∴ E F = x ﹣ 1=2,在 Rt △BEF 中, BE22 32 13 ,BF3 3 13 ∴cos EBF13.BE13应选 B . 【点睛】本题考察了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形拥有四边形、平行四边形、矩形、菱形的全部性质.会运用全等三角形的知识解决线段相等的问题.也考察认识直角三角形.8.在平面直角坐标系中, A , B , C 三点坐标分别是( 0,0),( 4,0),( 3, 2),以A ,B ,C 三点为极点画平行四边形,则第四个极点不行能在( ) .A .第一象限 【答案】 CB .第二象限C .第三象限D .第四象限【分析】A 点在原点上,B 点在横轴上,C 点在第一象限,依据平行四边形的性质:两组对边分别平 行,可知第四个极点可能在第一、二、四象限,不行能在第三象限,应选C9.已知,如图,在V ABC中,ACB90,A 30,求证:BC1AB.在证明2该结论时,需增添协助线,则作法不正确的选项是( )A .延伸 BC 至点 D ,使 CDBC ,连结 AD B .在 ACB 中作 BCEB ,CE 交 AB 于点 EC .取 AB 的中点 P ,连结 CPD .作 ACB 的均分线 CM ,交 AB 于点 M 【答案】 D【分析】【剖析】分别依据各选项的要求进行证明,推出正确结论,则问题可解.解:选项 A : 如图,由协助线可知,VABC ; ADC ,则有 AB=AD ,再由ACB 90 ,由 BAC 30,则 B 60,∴ △ABD 是等边三角形∴BC1DB1AB22应选项 A 正确;选项 B:如图,由协助线可知, △ EBD 是等边三角形则BECEAC ECA 60 ,BE=EC∵A 30∴ECAA 30∴ A E=EC∴ BC 1AB2应选项 B 正确选项 C 如图,有协助线可知, CP 为直角三角形斜边上的中线∴ A P=CP=BP∵ A 30∴ B 60∴VPBC 是等边三角形1∴BC BP AB综上可知选项 D 错误故应选 D【点睛】本题主要考察了全等三角形的判断,等边三角形的判断与性质的综合应用,依据条件选择正确的证明方法是解题的重点.10.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是 ()A.8B. 9C. 10D. 12【答案】 A【分析】试题剖析:设这个多边形的外角为x°,则内角为3x°,依据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除之外角度数即可获得边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得: x+3x=180,解得 x=45,这个多边形的边数:360°÷45=8°,应选 A.考点:多边形内角与外角.11.在四边形 ABCD中, AD∥ BC,要使四边形ABCD是平行四边形,可增添的条件不正确的是()A. AB∥ CD B.∠ B=∠ D C. AD= BC D. AB= CD【答案】 D【分析】【剖析】依据平行四边形的判断解答即可.【详解】∵AD∥ BC, AB∥ CD,∴四边形ABCD是平行四边形,故 A 正确;∵AD∥ BC, AD=BC,∴四边形ABCD是平行四边形,故 C 正确;∵AD∥ BC,∴∠ D+∠ C=180°,∵∠ B=∠D,∴∠ B+C=180°,∴AB∥ CD,∴四边形ABCD是平行四边形,故 B 正确;应选: D.【点睛】本题考察平行四边形的判断,解题重点是依据平行四边形的判断解答.12.以下说法中正确的选项是()A.有一个角是直角的四边形是矩形B.两条对角线相互垂直的四边形是菱形C.两条对角线相互垂直均分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】 D【分析】【剖析】本题考察了菱形,矩形,正方形的判断方法,娴熟掌握菱形,矩形,正方形的判断方法是解题的重点 .【详解】A. 有一个角是直角的四边形是矩形,错误;B.两条对角线相互垂直的四边形是菱形,错误;C.两条对角线相互垂直均分的四边形是正方形,错误;D.两条对角线相等的菱形是正方形,正确.应选 D.【点睛】本题考察了菱形,矩形,正方形的判断方法,娴熟掌握菱形,矩形,正方形的判断方法是解题的重点,考察了学生娴熟运用知识解决问题的能力.13.如图,△ABC中, AB= AC= 10,BC= 12, D 是 BC的中点, DE⊥AB 于点 E,则 DE 的长为()681224 A.B.C.D.5555【答案】 D【分析】【剖析】连结 AD,依据已知等腰三角形的性质得出三角形的面积公式求出即可.【详解】解:连结ADAD⊥ BC 和 BD=6,依据勾股定理求出AD,依据∵A B=AC,D 为BC 的中点,BC=12,∴AD⊥ BC, BD=DC=6,在 Rt△ADB 中,由勾股定理得:2222AD=AB BD10 6 8,∵S△ADB= 1× AD× BD=1× AB×,DE 22∴DE= ADBD8 624,AB105应选 D.【点睛】本题考察了等腰三角形的性质(等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解本题的重点.14.如图,菱形 OBCD在平面直角坐标系中的地点如下图,极点B(0,2 3),∠DOB=60 °P是对角线OC上的一个动点,已知A10AP+BP的最小值为,点(﹣,),则()A.4B.5C.33D.19【答案】 D【分析】【剖析】点 B 的对称点是点D,连结 AD,则 AD 即为 AP+BP的最小值,求出点 D 坐标解答即可.【详解】解:连结AD,如图,∵点 B 的对称点是点 D ,∴AD 即为 AP+BP 的最小值,∵四边形 OBCD 是菱形,极点 B ( 0, 2 3 ),∠ DOB=60°,∴点 D 的坐标为( 3,3 ),∵点 A 的坐标为(﹣ 1, 0),∴AD= ( 3)24219,应选: D .【点睛】本题考察菱形的性质,重点是依据两点坐标得出距离.15. 用三种边长相等的正多边形地砖铺地,其极点拼在一同,恰好能完整铺满地面.已知正多边形的边数为1 1 1 )x , y , z ,则y的值为(xzA .121 1B .C .D .323【答案】 C 【分析】剖析:依据边数求出各个多边形的每个内角的度数,联合镶嵌的条件列出方程,从而即可求出答案.详解:由题意知,这 3 种多边形的 3 个内角之和为 360 度,已知正多边形的边数为 x 、 y 、z ,那么这三个多边形的内角和可表示为:( x 2) 180 (y2) 180 ( z 2) 180180 得: 1﹣2 2 +y+=360,两边都除以+1﹣+1﹣xzxy21 1 1 1 .z =2,两边都除以2 得: x + y + z = 2应选 C .点睛:解决本题的重点是知道这 3 种多边形的3 个内角之和为360 度,据此进行整理剖析得解.16. 如图,在 □ ABCD 中, E 、F 分别是边 BC 、CD 的中点, AE 、 AF 分别交 BD 于点 G 、 H ,则图中暗影部分图形的面积与 □ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】 B【分析】【剖析】依据已知条件想方法证明 BG=GH=DH ,即可解决问题;【详解】解:∵四边形 ABCD 是平行四边形,∴AB ∥ CD , AD ∥ BC , AB=CD , AD=BC ,∵ D F=CF , BE=CE ,∴ DHDF1 , BG BE 1 , HBAB 2 DG AD 2∴ DHBG 1 , BDBD3∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形 ABCD =6 S △AGH ,∴S △AGH : S平行四边形 ABCD =1: 6, ∵E 、 F 分别是边 BC 、 CD 的中点 ,∴EF 1, BD 2S VEFC1∴S V BCDD 4,SVEFC1∴8 ,S 四边形 ABCDS V AGH S VEFC 1 1 7∴6 824 =7∶24,S四边形ABCD应选 B.【点睛】本题考察了平行四边形的性质、平行线分线段成比率定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.17. 如图,在矩形 ABCD 中, AD=2 AB ,∠ BAD 的均分线交 B C 于点 E ,DH ⊥ AE 于点 H ,连结 BH 并延伸交 CD 于点 F ,连结 DE 交 BF 于点 O ,以下结论: ① ∠ AED=∠ CED ;②OE=OD;③ BH=HF ;④ BC ﹣ CF=2HE;⑤ AB=HF,此中正确的有()A.2 个B.3 个C.4 个D.5 个【答案】 C【分析】【剖析】【详解】试题剖析:∵在矩形ABCD中, AE 均分∠ BAD,∴∠ BAE=∠ DAE=45°,∴△ ABE 是等腰直角三角形,∴A E= 2 AB,∵A D= 2 AB,∴AE=AD,又∠ ABE=∠ AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ ADE=∠ AED= 1( 180°﹣45°)=67.5 °,2∴∠ CED=180°﹣ 45°﹣ 67.5 °=67.5 °,∴∠ AED=∠ CED,故①正确;∵∠ AHB=1( 180°﹣ 45°) =67.5 °,∠ OHE=∠AHB(对顶角相等),2∴∠ OHE=∠ AED,∴OE=OH,∵∠ OHD=90°﹣ 67.5 °=22.5 °,∠ ODH=67.5°﹣45°=22.5 °,∴∠ OHD=∠ ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠ EBH=90°﹣ 67.5 °=22.5 °,∴∠ EBH=∠ OHD,又 BE=DH,∠ AEB=∠HDF=45°∴△ BEH≌△ HDF( ASA),∴BH=HF,HE=DF,故③正确;由上述①、② 、③可得 CD=BE、 DF=EH=CE, CF=CD-DF,∴BC-CF=(CD+HE) -( CD-HE)=2HE,因此④正确;∵A B=AH,∠ BAE=45°,∴△ABH 不是等边三角形,∴AB≠BH,∴即 AB≠HF,故⑤错误;综上所述,结论正确的选项是①②③④共4个.应选 C.【点睛】考点: 1、矩形的性质; 2、全等三角形的判断与性质; 3、角均分线的性质; 4、等腰三角形的判断与性质18.如图,△ABC中, AB=4, AC=3, AD、 AE 分别是其角均分线和中线,过点 C 作 CG⊥ AD 于 F,交 AB 于 G,连结 EF,则线段EF的长为()A.1321 B.C.D.432【答案】 D【分析】【剖析】由等腰三角形的判断方法可知△AGC是等腰三角形,因此 F 为 GC 中点,再由已知条件可得EF 为△CBG的中位线,利用中位线的性质即可求出线段EF的长.【详解】∵AD 是△ABC 角均分线, CG⊥AD 于 F,∴△ AGC是等腰三角形,∴AG=AC=3, GF=CF,∵AB=4, AC=3,∴B G=1,∵AE 是△ABC 中线,∴B E=CE,∴E F 为△CBG的中位线,∴E F=1BG=1,22应选: D.【点睛】本题考察等腰三角形的判断和性质、三角形的中位线性质定理,解题重点在于掌握三角形的中位线平行于第三边,而且等于第三边的一半.19.以下结论正确的选项是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等【答案】 CD.平行四边形的对角互补,邻角相等【分析】【剖析】分别利用平行四边形的性质和判断逐项判断即可.【详解】A、平行四边形不必定是轴对称图形,故 A 错误;B、平行四边形的对角线不相等,故 B 错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故应选: C.D 错误.【点睛】本题考察平行四边形的性质,掌握特别平行四边形与一般平行四边形的差别是解题的重点.20.如图,矩形ABCD的对角线 AC、 BD 订交于点O, AB: BC= 2:1,且 BE∥ AC, CE∥DB,连结 DE,则 tan ∠ EDC=()11C.23A.B.6D.4610【答案】 B【分析】【剖析】过点 E 作 EF⊥直线 DC 交线段 DC 延伸线于点 F,连结 OE 交 BC 于点 G.依据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与 BC垂直均分,易得EF=1 x,2CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD 订交于点O, AB: BC= 2: 1,∴BC= AD,设 AB= 2x,则 BC= x.如图,过点 E 作 EF⊥直线 DC 交线段 DC延伸线于点F,连结 OE交 BC于点 G.∵BE∥AC, CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB= OC,∴四边形BOCE是菱形.∴OE 与 BC 垂直均分,∴E F=1AD=1x, OE∥ AB,22∴四边形AOEB是平行四边形,∴OE=AB= 2x,∴C F=1OE= x.2∴tan ∠ EDC=EF=1x=12.DF2x x6应选: B.【点睛】本题考察矩形的性质、平行四边形的判断与性质、菱形的判断与性质以及解直角三角形,解题的重点是娴熟掌握矩形的性质和菱形的判断与性质,属于中考常考题型.。
(专题精选)初中数学四边形难题汇编附解析
(专题精选)初中数学四边形难题汇编附解析一、选择题1.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.2.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.3.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC .22aD .32a 【答案】C【解析】【分析】根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE = ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°,∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =4.如图所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD=DE ,连结BE 交CD 于点O ,连结AO ,下列结论不正确的是( )A .△AOB ≌△BOCB .△BOC ≌△EOD C .△AOD ≌△EOD D .△AOD ≌△BOC【答案】A【解析】根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥 即可:∵AD=DE ,DO ∥AB ,∴OD 为△ABE 的中位线.∴OD=OC .∵在Rt △AOD 和Rt △EOD 中,AD=DE ,OD=OD ,∴△AOD ≌△EOD (HL ).∵在Rt △AOD 和Rt △BOC 中,AD=BC ,OD=OC ,∴△AOD ≌△BOC (HL ).∴△BOC ≌△EOD .综上所述,B 、C 、D 均正确.故选A .5.如图,菱形ABCD 中,点P 是CD 的中点,∠BCD=60°,射线AP 交BC 的延长线于点E ,射线BP 交DE 于点K ,点O 是线段BK 的中点,作BM ⊥AE 于点M ,作KN ⊥AE 于点N ,连结MO 、NO ,以下四个结论:①△OMN 是等腰三角形;②tan ∠3③BP=4PK ;④PM•PA=3PD 2,其中正确的是( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据菱形的性质得到AD ∥BC ,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP ≌△ECP ,由相似三角形的性质得到AD=CE ,作PI ∥CE 交DE 于I ,根据点P 是CD 的中点证明CE=2PI ,BE=4PI ,根据相似三角形的性质得到1=4KP PI KB BE =,得到BP=3PK ,故③错误;作OG ⊥AE 于G ,根据平行线等分线段定理得到MG=NG ,又OG ⊥MN ,证明△MON 是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠OMN=33,故②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD 2,故④正确.【详解】解:作PI ∥CE 交DE 于I ,∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠DAP=∠CEP ,∠ADP=∠ECP ,在△ADP 和△ECP 中, DAP CEP ADP ECP DP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△ECP ,∴AD=CE , 则PI PD CE DC =,又点P 是CD 的中点, ∴1=2PI CE , ∵AD=CE , ∴1=4KP PI KB BE =, ∴BP=3PK ,故③错误;作OG ⊥AE 于G ,∵BM丄AE于M,KN丄AE于N,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即△MON是等腰三角形,故①正确;由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=3,则AP=7,根据三角形面积公式,BM=2217,∵点O是线段BK的中点,∴PB=3PO,∴OG=13BM=22121,MG=23MP=27,tan∠OMN=3=OGMG,故②正确;∵∠ABP=90°,BM⊥AP,∴PB2=PM•PA,∵∠BCD=60°,∴∠ABC=120°,∴∠PBC=30°,∴∠BPC=90°,∴PB=3PC,∵PD=PC,∴PB2=3PD,∴PM•PA=3PD2,故④正确.故选B.【点睛】本题考查相似形综合题.6.如图,平行四边形ABCD 的周长是26,cm 对角线AC 与BD 交于点,,O AC AB E ⊥是BC 中点,AOD △的周长比AOB V 的周长多3cm ,则AE 的长度为( )A .3cmB .4cmC .5cmD .8cm【答案】B【解析】【分析】 根据题意,由平行四边形的周长得到13AB AD +=,由AOD △的周长比AOB V 的周长多3cm ,则3AD AB -=,求出AD 的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是26cm , ∴126132AB AD +=⨯=, ∵BD 是平行四边形的对角线,则BO=DO ,∵AOD △的周长比AOB V 的周长多3cm ,∴()()3AO OD AD AO OB AB AD AB ++-++=-=,∴5AB =,8AD =,∴8BC AD ==,∵AC AB ⊥,点E 是BC 中点,∴118422AE BC ==⨯=; 故选:B .【点睛】 本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.7.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.8.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】 依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选:C .【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=o ,则AEF ∠=( )A .110°B .115°C .120°D .130°【答案】B【解析】【分析】根据翻折的性质可得∠2=∠3,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形ABCD沿EF对折后两部分重合,150∠=o,∴∠3=∠2=180-502︒︒=65°,∵矩形对边AD∥BC,∴∠AEF=180°-∠3=180°-65°=115°.故选:B.【点睛】本题考查了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的关键.10.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S 矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.11.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.12.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x,y,z,则111x y z++的值为()A.1 B.23C.12D.13【答案】C【解析】分析:根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.详解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x 、y 、z ,那么这三个多边形的内角和可表示为:2180x x -⨯()+2180y y -⨯()+2180z z ()-⨯=360,两边都除以180得:1﹣2x+1﹣2y +1﹣2z =2,两边都除以2得:1x +1y +1z =12. 故选C .点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.13.已知ABCD Y (AB BC >),用尺规在ABCD 内作菱形,下列作法错误的是( )A .如图1所示,作对角线AC 的垂直平分线EF ,则四边形AECF 为所求B .如图2所示,在AB DC ,上截取AE AD DF DA ==,,则四边形AEFD 为所求 C .如图3所示,作ADC ABC ∠∠、的平分线DE BF ,,则四边形DEBF 为所求 D .如图4所示,作BDE BDC DBF DBA ∠=∠∠=∠,,则四边形DEBF 为所求【答案】C【解析】【分析】根据平行四边形的性质及判定、菱形的判定逐个判断即可.【详解】解:A 、根据线段的垂直平分线的性质可知AB =AD ,一组邻边相等的平行四边形是菱形;符合题意;B 、根据四条边相等的四边形是菱形,符合题意;C 、根据两组对边分别平行四边形是平行四边形,不符合题意;D 、根据一组邻边相等的平行四边形是菱形,符合题意.故选:C .【点睛】本题考查了复杂作图,解决本题的关键是利用平行四边形的性质及判定、菱形的判定.14.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF=12,AB=10,则AE 的长为( )A .13B .14C .15D .16【答案】D【解析】【分析】 先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形ABEF 是菱形,得出AE ⊥BF ,OA=OE ,OB=OF=12BF=6,由勾股定理求出OA ,即可得出AE 的长. 【详解】如图所示:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE=∠AEB ,∵∠BAD 的平分线交BC 于点E ,∴∠DAE=∠BAE ,∴∠BAE=∠BEA ,∴AB=BE ,同理可得AB=AF ,∴AF=BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形,∴AE ⊥BF ,OA=OE ,OB=OF=12BF=6, ∴2222=106AB OB --=8,∴AE=2OA=16.故选D .【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.15.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分【答案】C【解析】【分析】根据矩形和平行四边形的性质进行解答即可.【详解】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.16.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD 上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解析】分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:D.点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.17.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.18.在四边形ABCD中,AD∥BC,要使四边形ABCD是平行四边形,可添加的条件不正确的是()A.AB∥CD B.∠B=∠D C.AD=BC D.AB=CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,故A正确;∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,故C正确;∵AD∥BC,∴∠D+∠C=180°,∵∠B=∠D,∴∠B+C=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故B正确;故选:D.【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.19.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C.考点:平行四边形的性质.20.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是()A.60 B.48 C.24 D.96【答案】D【解析】【分析】由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=6,∴AO22100368AB OB-=-=,∴AC=16,BD=12,∴菱形面积=12162⨯=96,故选:D.【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.。
四边形难题50道
1.如图,正方形ABCD中,AB= 3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15度.(1)求证:DF+BE=EF;(2)则∠EFC的度数为度;(3)则△AEF的面积为.2.如图,将矩形ABCD沿对角线BD折叠,C点与E点重合,若AB=3,BC=9,则折叠后重叠部分(△BDF)的面积是.3.如图①E、F、G、H为正方形ABCD各边延长线上的点,CE=BC,DF=CD,AG=DA,BH=AB,若正方形ABCD的面积等于1.(1)则四边形EFGH的面积为;(2)如图②,图③,若将正方形ABCD变为矩形和菱形,其他条件仍然不变,则四边形EFGH的面积分别为,.(3)如图④,若将正方形ABCD变为任意四边形,其他条件仍然不变,请你猜想四边形EFGH的面积为,并说明理由.4.(1)如图1矩形ABCD中,AB=8,AD=5,M为AB中点,则S阴影=,S矩形ABCD=.(2)如图2,在直角梯形ABCD中,AD⊥AB,BC⊥BA,AB=8,BC=4,AD=5,M为AB中点,S阴影= ,S梯形ABCD=.(3)如图3在平行四边形ABCD中,∠A=120°,∠B=60°,AB=8,AB的中点为M,AD=5,S阴影=,S四边形ABCD=.解决问题:如图4有一四边形菜地ABCD,其中AD∥BC,在AB的中点M处有一口井,现要将这块地等分给两家,且都能用井浇地,请你设计方案并说明理由.5.已知:如图,在长方形ABCD中,AB=3,BC=4将△BCD沿BD所在直线翻折,使点C落在点F上,如果BF交AD于E,则AE=.6.(1998•台州)如图,矩形ABCD的长、宽分别为5和3,将顶点C折过来,使它落在AB上的C′点(DE为折痕),那么,阴影部分的面积是.7.如图,将矩形ABCD折叠,使A与C重合,折痕为EF,若AB=3,AD=4,则折痕EF=.8.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)则FD为;(2)则△BEC的面积为.9.在平行四边形ABCD中,AE,CF分别平分∠BAD和∠BCD,(1)AC与EF互相平分吗?;(2)若∠B=60°,BE=2CE,AB=4,则四边形AECF的周长为,面积为.10.如图,等边△ABC以2m/s的速度沿直线l向菱形DCEF移动,直到AB与CD重合,其中∠DCE=60°,设x s时,三角形与菱形重叠部分的面积为y m2.(1)则y与x的关系表达式是.(2)当x=0.5时,y=;当x=1时,y=.(3)当重叠部分的面积是菱形面积一半时,三角形移动了s.11.如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠DBC=45°,点F 在AB边上,点E在BC边上,将△BFE沿折痕EF翻折,使点B落在点D处.若AD=1,BC=5.则:(1)BD的长为;(2)∠C的正切值是.12.(2005•新疆)如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E 为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈cm.(结果精确到0.1cm)13.(2010•吉林)如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.EF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FG=ycm.解答下列问题:(1)直接写出当x=3时y的值是;(2)y与x之间的函数关系式是,并写出自变量x的取值范围;(3)当x取时,图形M成为等腰梯形;(4)线段PQ在运动过程中所能扫过的区域的面积为cm2.14.(2001•黑龙江)如图,在平行四边形ABCD中,AB=4cm,BC=1cm,E 是CD边上一动点,AE、BC的延长线交于点F.设DE=x(cm),BF=y(cm).(1)y(cm)与x(cm)之间的函数关系式为,自变量x的取值范围是;(2)画出此函数的图象.15.如图,正方形纸片ABCD的边BC上有一点E,AE=8cm,若把纸片对折,使点A与点E重合,则纸片折痕的长是cm.16.如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,则梯形ABCD的面积为17.(2010•北京)阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°的方向作直线运动,…,如图1所示,问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折迭,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E.请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰次;P点从A点出发到第一次与D点重合时所经过的路径的总长是cm;(2)近一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB:AD的值为.18.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,则DG的长为;(2)当△FCG的面积为1时,则DG的长为(3)当△FCG的面积最小时,则DG的长为.19.如图①,平面直角坐标系中的▱AOBC,∠AOB=60°,OA=8cm,OB=10cm,点P从A点出发沿AC 方向,以1cm/s速度向C点运动;点Q从B点同时出发沿BO方向,以3cm/s的速度向原点O运动.其中一个动点到达端点时,另一个动点也随之停止运动.(1)则A点的坐标是,C点的坐标是;(2)如图②,从运动开始,经过s,四边形AOQP是平行四边形;(3)在点P、Q运动的过程中,四边形AOQP成为直角梯形.此时t=s(若能,求出运动时间;若不能,填不存在).(图③供解题时用)20.用同样大小的平行四边形按下列图案中的规律摆放:第1个图案有平行四边形3个,第2个图案有平行四边形11个,第3个图案有平行四边形21个,…(1)第4个图案中平行四边形的个数是;(2)第n个(n是大于1的正整数)图案中平行四边形的个数是.21.(2010•汕头)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:△EGB是等腰三角形;(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)).则此梯形的高为.22.如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.连接DE,若BE=4CE,CD=2,则DE=.23.(2005•无锡)已知正方形ABCD的边长AB=k(k是正整数),正△PAE的顶点P在正方形内,顶点E在边AB上,且AE=1.将△PAE在正方形内按图1中所示的方式,沿着正方形的边AB、BC、CD、DA、AB、…连续地翻转n次,使顶点P第一次回到原来的起始位置.(1)如果我们把正方形ABCD的边展开在一直线上,那么这一翻转过程可以看作是△PAE在直线上作连续的翻转运动.图2是k=1时,△PAE沿正方形的边连续翻转过程的展开示意图.请你探索:若k=1,则△PAE沿正方形的边连续翻转的次数n=时,顶点P第一次回到原来的起始位置.(2)若k=2,则n=时,顶点P第一次回到原来的起始位置;若k=3,则n=时,顶点P第一次回到原来的起始位置.(3)请你猜测:使顶点P第一次回到原来的起始位置的n值与k之间的关系是(请用含k的代数式表示n).24.如图,以平行四边形ABCD的对称中心为坐标原点,建立平面直角坐标系,A点坐标为(-4,3),且AD与x轴平行,AD=6,则B点、C点、D点坐标分别是、、25.如图,在等腰梯形ABCD中,AB∥DC,AB=9cm,CD=3cm,AD=6cm.点P从点A出发,以2cm/s 的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD向终点D运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒.(1)当DQ=AP时,四边形APQD是平形四边形,则t=s;(2)当PQ将梯形ABCD分成一个平形四边形和一个等边三角形时,则t=s;(3)当t=s时,四边形PBCQ的面积是梯形ABCD面积的一半.26.(2010•河源)如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:PE=PF;(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;(3)若在AC边上存在点P,使四边形AECF是正方形,且APBC=2.此时∠A的度数为度.27.如图,正方形ABCD中,E、F分别在边BC、CD上,∠EAF=45°,BE=2,CF=3,则正方形的边长为.28.已知:如图,点P是平行四边形ABCD的边DC上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求证:AP⊥PB(2)如果AD=5,AP=8,那么△APB的面积是.29.如图,有两条笔直的公路(BD和EF,其宽度不计)从一块矩形的土地ABCD中穿过,已知:EF是BD的垂直平分线,有BD=400m,EF=300m,则这块矩形土地ABCD的面积为m2.30.如图,在梯形ABCD,AD∥BC,AB=CD,上底AD=227),(1)则C坐标为,D坐标;(2)将梯形ABCD向左平移2个单位长度,所得四边形的四个顶点的坐标为:A,B,C,D;(3)梯形ABCD的面积为.31.(2004•三明)动手操作:将一张边长为10cm的正方形纸片ABCD,按如图去折叠,使D点与AB的中点E重合,度量出有关线段的长度(精确到1cm)后,算出图中阴影部分四边形EFGH的面积为cm2.32.如图,在梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,E是CD的中点,AB=2AD=4,则BE=.33.如图,直角梯形的两底为AD=17cm,BC=25cm,斜腰AB=10cm,AB的垂直平分线EF交DC的延长线于F,则EF的长为cm.34.如图,四边形ABCD为直角梯形,∠C=90°,CD=10cm,AD=30 cm,BC=36 cm,点P从D出发,以2 cm/s的速度向A运动,点Q从B同时出发,以4 cm/s的速度向C运动.其中一个点到达端点时,另一个动点也随之停止运动.(1)从运动开始,经过s,四边形PQBA为平行四边形;(2)从运动开始,经过s,四边形PQBA为等腰梯形.35.试画出如图所示的图案,则阴影部分的面积为.36.如图,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.(1)求证:AB-OF=12AC;(2)点A1、点C1分别同时从A、C两点出发,以相同的速度运动相同的时间后同时停止,如图,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E⊥A1C1,垂足为E,请猜想EF1,AB与12A1C1三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=6,C1E1=4时,则BD的长为.37.如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=10cm,BC=30cm,动点P从点A开始沿AD边向点以每秒1cm的速度运动,同时动点Q从点C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(1)当t=s时,四边形ABQP是平行四边形;(2)当t=s时,四边形ABQP能成为等腰梯形.38.如图,已知AD∥BC,AB=CD,对角线CA平分∠BCD,AD=5,tanB=43,则BC=.39.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).四边形ABCD的面积是.40.已知正方形ABCD的边长为4cm,E,F分别为边DC,BC上的点,BF=1cm,CE=2cm,BE,DF 相交于点G,则四边形CEGF的面积为cm2.41.(2006•邵阳)如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)则EF=;(2)则梯形ABCE的面积是.42.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,则FC= cm,EF=43.(2002•青海)已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,则D点坐标是(,).44.如图:在△ABC中,点D、E、F分别在边AB、BC、CA上,已知AB=12,AC=8,四边形ADEF是菱形,则菱形ADEF的边长为.45.已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连接DF、CF分别交AB于G、H点,若∠E=60°,且AE=8时,则梯形AECD的面积是.46.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE 折叠,点B落在四边形AECD内,记为点B′.则线段B′C=47.(2003•随州)已知:如图,梯形ABCD中,AD∥BC,DC⊥BC.沿对角线BD折叠,点A恰好落在DC上,记为A′.若AD=4,BC=6,则A′B=.48.如图,在直角梯形ABCD中.AB∥CD,AB=12cm,CD=6cm,DA=3cm,∠D=∠A=90°,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D 开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t表示移动的时间(单位:秒),并且0≤t≤3.(1)当t=s时,△QAP为等腰三角形;(2)不论t取何值,四边形QAPC的面积是一个定值,则这个定值为cm2;(3)当t=s时,△PBC是直角三角形.49.如图,要设计一个等腰梯形的花坛,花坛上底长12米,下底长18米,高8米.(1)梯形的中位线的长是米;(2)在梯形两腰中点连线(虚线)处有一条横向通道,上下底之间有两条纵向通道,各条通道的宽度均为x米.①若通道的总面积等于42平方米,通道的宽是米;②按要求通道的宽不能超过1米,且修建三条通道应付的工资合计为2533元,当通道的宽度为米时,所建花坛应付的总工资最少,最少工资是元.50.如图,在矩形ABCD中,AB=6,BC=12.动点M、N分别从点B、D同时出发,以每秒1个单位长度的速度运动.其中点M沿BC向终点C运动,点N沿DA向终点A运动,过点N作NP⊥BC于点Q,交AC于点P,连接MP.设动点运动的时间为t秒.(1)当t=6时,PM=;(2)t=时,△PMC的面积等于矩形ABCD面积的19.。
四边形综合经典难题
1。
已知:如图,在△ABC中,∠ACB=90o,CD⊥AB于D,BF平分∠ABC,且与CD相交于G,GE ∥CA交AB于E点,求证:四边形CFEG是菱形.2. 已知:如图,EG、FH过正方形ABCD的对角线交点O,EG⊥FH,求证:四边形EFGH是正方形.3. 如图,三角形ABC中,AB=AC,角A=108 o,BD平分角ABC交AC于D,求证:BC=AB+CD. 4。
在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,求∠A的度数。
5。
已知在平行四边形ABCD中,AB=6cm,AD=10cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.6. 如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)7。
如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.8. 已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,求阴影部分的面积.9. 已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的角平分线,BE,CF相交于点O.(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)10. 在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ 是否相等?并说明理由.11。
如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,AD=2,求四边形ABCD的面积。
12. 已知,在四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN 的两边分别交AD,DC(或它们的延长线)于E,F两点.(1)当AE=CF时(如图1),求证:AE+CF=EF;(2)当AE≠CF时,在图2和图3这两种情况下,AE+CF=EF是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需要证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形压轴经典题型1.已知:如图,在△ABC中,∠ACB=90o,CD⊥AB于D,BF平分∠ABC,且与CD相交于G,GE∥CA交AB于E点,求证:四边形CFEG是菱形.2. 已知:如图,EG、FH过正方形ABCD的对角线交点O,EG⊥FH,求证:四边形EFGH是正方形.3. 如图,三角形ABC中,AB=AC,角A=108 o,BD平分角ABC交AC于D,求证:BC=AB+CD.4.在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,求∠A的度数.5.已知在平行四边形ABCD中,AB=6cm,AD=10cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.6.如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)7. 如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.8. 已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,求阴影部分的面积.9. 已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的角平分线,BE,CF相交于点O。
(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)10. 在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ 是否相等?并说明理由.11.如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,AD=2,求四边形ABCD的面积.12. 已知,在四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN 的两边分别交AD,DC(或它们的延长线)于E,F两点.(1)当AE=CF时(如图1),求证:AE+CF=EF;(2)当AE≠CF时,在图2和图3这两种情况下,AE+CF=EF是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需要证明。
13.在直角梯形ABCD中,∠B=90°,AD∥BC,AB=BC=8,CD=10,求梯形面积.14. 如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.15. 两个大小相同且含30°角的三角板ABC和DEC如图①摆放,使直角顶点重合.将图①中△DEC绕点C逆时针旋转30°得到图②,点F、G分别是CD、DE与AB的交点,点H是DE 与AC的交点.(1)不添加辅助线,写出图②中所有与△BCF全等的三角形;(2)将图②中的△DEC绕点C逆时针旋转45°得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程;(3)在(2)的条件下,若D1E1与CE 交于点I,求证:G1I=CI.16.在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有多少个?17.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M。
(1)求证:△ABD≌△FBC;(2)如图(2),已知AD=6,求四边形AFDC的面积;(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2。
在任意△ABC中,c2=a2+b2+k。
就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可)。
18.如图所示,DE为△ABC的中位线,点F在DE上,且BF平分∠ABC,若AB=5,BC=8,求EF长.19. 如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部份面积。
20.如图两个边长为2的正方形重叠在一起,O是其中一个正方形的中点,求阴影部分的面积。
21.如图,正方形ABCD的边长为2,E是CD的中点,在对角线AC上有一动点P,求PD+PE的最小值.22.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,求DE最小的值.23. 如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.24. 如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,求PQ的长.25.如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE于点G,AD=BE=6,求AC的长.26.已知:如图,在△ABC中,CD⊥AB垂足为D,BE⊥AC垂足为E,连接DE,点G、F分别是BC、DE的中点.求证:GF⊥DE.27. 如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC于点A,(1)求∠BAD的度数;(2)证明:DC=2BD.28. 如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC 于点D,CD=3,求BC的长.29.如图,在Rt△ABC中,∠BAC=90°,D是BC上一点,且∠BAD=2∠C.求证:∠B=∠ADB.30. 如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC 上,与点B′重合,AE为折痕,求EB′的长。
31. 如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE,则:(1)∠ADE= °;(2)AE EC;(填“=”、“>”或“<”)(3)当AB=3,AC=5时,求△ABE的周长.32. 如图,在Rt△ABC∠B=90°中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,求AC的长.33. 如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,求△ACD的面积.34.如图,AB=5,AC=3,BC边上的中线AD=2,求△ABC的面积.35.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,求线段DF的长.36.如图,过边长为1的△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于D,求 DE的长.37. 如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.38.如图,AE、OB、OC分别平分∠BAC、∠ABC、∠ACB,OD⊥BC,求证:∠1=∠2.39. 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC 长.40.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,求两平行线AD与BC间的距离.41. 如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.42. 如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,求EF的值.43. 已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是______;②当∠BAD=∠ABD时,x=______;当∠BAD=∠BDA时,x=______.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.44. 探索归纳:(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于( )A. 90°B. 135°C. 270°D. 315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=_______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是________________(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.45. 在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.46. 如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,求▱ABCD的周长.47.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.48. 如图,▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,求AB 的长.49.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,求CE的长.50. 如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,求∠BOE的度数.51. 如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,求∠CBO度数.52. 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.求:(1)∠ABC的度数;(2)对角线AC的长;(3)菱形ABCD的面积.53. ,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求PD。