江西省百所名校2020届高三第四次联考数学(理)试题数学理科答案

合集下载

江西省南昌市2019-2020学年高考第四次大联考数学试卷含解析

江西省南昌市2019-2020学年高考第四次大联考数学试卷含解析

江西省南昌市2019-2020学年高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()ln af x x a x =-+在[]1,e x ∈上有两个零点,则a 的取值范围是( ) A .e ,11e ⎡⎤-⎢⎥-⎣⎦B .e ,11e ⎡⎫⎪⎢-⎣⎭C .e ,11e ⎡⎫-⎪⎢-⎣⎭D .[)1,e - 【答案】C 【解析】 【分析】对函数求导,对a 分类讨论,分别求得函数()f x 的单调性及极值,结合端点处的函数值进行判断求解. 【详解】 ∵()21a f x x x +'== 2x ax +,[]1,e x ∈. 当1a ≥-时,()0f x '≥,()f x 在[]1,e 上单调递增,不合题意. 当a e ≤-时,()0f x '≤,()f x 在[]1,e 上单调递减,也不合题意.当1e a -<<-时,则[)1,x a ∈-时,()0f x '<,()f x 在[)1,a -上单调递减,(],e x a ∈-时,()0f x '>,()f x 在(],a e -上单调递增,又()10f =,所以()f x 在[]1,e x ∈上有两个零点,只需()10a f e a e =-+≥即可,解得11e a e≤<--. 综上,a 的取值范围是e ,11e ⎡⎫-⎪⎢-⎣⎭. 故选C. 【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.2.在直角坐标系中,已知A (1,0),B (4,0),若直线x+my ﹣1=0上存在点P ,使得|PA|=2|PB|,则正实数m 的最小值是( )A .13B .3C D【答案】D 【解析】 【分析】设点()1,P my y -,由2PA PB =,得关于y 的方程.由题意,该方程有解,则0∆≥,求出正实数m 的取值范围,即求正实数m 的最小值.【详解】由题意,设点()1,P my y -.222,4PA PB PA PB =∴=Q ,即()()222211414my y my y ⎡⎤--+=--+⎣⎦,整理得()2218120m y my +++=, 则()()22841120m m ∆=-+⨯≥,解得3m ≥或3m ≤-.min 0,3,3m m m >∴≥∴=Q .故选:D . 【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122 B .112 C .102 D .92【答案】D 【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.4.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40 B .60C .80D .100【答案】D 【解析】 【分析】由正态分布的性质,根据题意,得到(110)(60)P X P X ≥=≤,求出概率,再由题中数据,即可求出结果. 【详解】由题意,成绩X 近似服从正态分布()285,N σ,则正态分布曲线的对称轴为85x =,根据正态分布曲线的对称性,求得(110)(60)0.50.30.2P X P X ≥=≤=-=, 所以该市某校有500人中,估计该校数学成绩不低于110分的人数为5000.2100⨯=人, 故选:D . 【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.5.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( ) A .0 B .1C .2D .4【答案】A 【解析】 【分析】根据2m =或22m +=,验证交集后求得m 的值. 【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题. 6.已知等差数列{}n a 的公差不为零,且11a ,31a ,41a 构成新的等差数列,n S 为{}n a 的前n 项和,若存在n 使得0n S =,则n =( ) A .10 B .11C .12D .13【答案】D 【解析】 【分析】利用等差数列的通项公式可得16a d =-,再利用等差数列的前n 项和公式即可求解. 【详解】 由11a ,31a ,41a 构成等差数列可得 31431111a a a a -=- 即13341413341422a a a a d da a a a a a a a ----=⇒=⇒=又()4111323a a d a a d =+⇒=+ 解得:16a d =- 又[]12(1)(12(1))(13)222n n n nS a n d d n d d n =+-=-+-=- 所以0n S =时,13n =. 故选:D 【点睛】本题考查了等差数列的通项公式、等差数列的前n 项和公式,需熟记公式,属于基础题. 7.已知向量()()1,2,2,2a b λ==-r r ,且a b ⊥r r,则λ等于( )A .4B .3C .2D .1【答案】D 【解析】 【分析】由已知结合向量垂直的坐标表示即可求解. 【详解】因为(1,2),(2,2)a b λ==-r r ,且a b ⊥r r ,·22(2)0a b λ=+-=rr ,则1λ=. 故选:D . 【点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题. 8.过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若3AF =,则直线AB 的斜率为( )A .B .C .D .±【答案】D 【解析】 【分析】根据抛物线的定义,结合||3AF =,求出A 的坐标,然后求出AF 的斜率即可. 【详解】解:抛物线的焦点(1,0)F ,准线方程为1x =-,设(,)A x y ,则||13AF x =+=,故2x =,此时y =±(2,A ±.则直线AF 的斜率21k ±==±-. 故选:D . 【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题.9.已知(1,3),(2,2),(,1)a b c n ===-r r r ,若()a c b -⊥r r r,则n 等于( )A .3B .4C .5D .6【答案】C 【解析】 【分析】先求出(1,4)a c n -=-r r ,再由()a c b -⊥r r r,利用向量数量积等于0,从而求得n .【详解】由题可知(1,4)a c n -=-r r,因为()a c b -⊥r r r,所以有()12240n -⨯+⨯=,得5n =,故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.10.设集合{|0}A x x =>,{}2|log (31)2B x x =-<,则( ). A .50,3A B ⎛⎫= ⎪⎝⎭I B .10,3A B ⎛⎤= ⎥⎝⎦I C .1,3A B ⎛⎫⋃=+∞ ⎪⎝⎭D .(0,)A B =+∞U【答案】D 【解析】 【分析】根据题意,求出集合A ,进而求出集合A B U 和A B I ,分析选项即可得到答案. 【详解】根据题意,{}215|log (31)2|33B x x x x ⎧⎫=-<=<<⎨⎬⎩⎭则15(0,),,33A B A B ⎛⎫⋃=+∞⋂= ⎪⎝⎭故选:D 【点睛】此题考查集合的交并集运算,属于简单题目, 11.双曲线22:21C x y -=的渐近线方程为( ) A.0x ±= B .20x y ±= C0y ±= D .20x y ±=【答案】A 【解析】 【分析】将双曲线方程化为标准方程为22112y x -=,其渐近线方程为2212y x -=,化简整理即得渐近线方程. 【详解】双曲线22:21C x y -=得22112y x -=,则其渐近线方程为22012y x -=,整理得0x =. 故选:A 【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.12.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( ) A .14种 B .15种C .16种D .18种【答案】D 【解析】 【分析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起 【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种; 情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种. 综上所述,共有14+4=18种. 故选:D 【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题 二、填空题:本题共4小题,每小题5分,共20分。

2020届江西省名校联盟高三第四次调研考试数学(理)试卷

2020届江西省名校联盟高三第四次调研考试数学(理)试卷

2020届江西省名校联盟高三第四次调研考试数学试卷(理科)★祝考试顺利★ 注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(1iz i i =-是虚数单位),则z 的共轭复数z = ( ) A .1i +B .1i -C .1i -+D .1i --2.已知集合{}1,2,3,4,5A =,且A B A =,则集合B 可以是 ( )A .{}21xxB .{}21x xC .{}2log 1x xD .{}1,2,33.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为 ( )A.(3π-B.1)πC.1)πD.2)π4.设{}n a 是由正数组成的等比数列,且5681a a =,那么3132310log a log a log a ⋯+++的值是 ( ). A .30B .20C .10D .55.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A-⋅⋅=-⋅⋅,则ABC △的形状为( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移6π个单位长度后,所得图象的一个对称中心为 ( )A .,012π⎛⎫⎪⎝⎭B .,04π⎛⎫ ⎪⎝⎭C .,03π⎛⎫ ⎪⎝⎭D .,02π⎛⎫ ⎪⎝⎭7.已知定义域为[]4,22a a --的奇函数()32020sin 2f x x x b =-++,则()()f a f b +的值为( ) A .0B .1C .2D .不能确定8.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为12,约为0.618,这一比值也可以表示为a =2cos2︒= ( )A.2B.1C.12D.149.给定两个长度为1的平面向量OA 和OB ,它们的夹角为90︒,点C 在以O 为圆心的圆弧AB 上运动,若OC xOA yOB =+,其中, x y R ∈,则35x y +的最大值为 ( )B.5D.610.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则 ( )A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>11.已知函数()y f x =,对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,其中()f x '是函数()f x 的导函数,则下列不等式成立的是 ( )A 34f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B 34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C 34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D 34f ππ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭12.已知函数()()211e ,ln 2x f x g x x -==+,若()()f m g n =,则m n -的最大值是 ( )A.ln 212+- B.12C.ln(2e)2-12第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分.13.已知()()321233f x x mx m x =++++在R 上不是..单调增函数,那么实数m 的取值范围是____.14.若关于x 的不等式112log (42)0x xλ++⋅<在0x >时恒成立,则实数λ的取值范围是___________15.设单调函数()y p x =的定义域为,值域为,如果单调函数()y q x =使得函数(())y p q x =的值域也是,则称函数()y q x =是函数()y p x =的一个“保值域函数”.已知定义域为[],a b 的函数2()3h x x =-,函数()f x 与()g x 互为反函数,且()h x 是()f x 的一个“保值域函数”,()g x 是()h x 的一个“保值域函数”,则b a -=__________.16.若关于x 的方程20x ax b ++=(,a b ∈R )在区间[]13,有实根,则22(2)a b +-最小值是____.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知0a >,设p :实数x 满足22430x ax a -+<, q :实数满足31x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.18. (本小题满分12分)已知函数()cos sin 3f x x x π⎛⎫=+ ⎪⎝⎭ ()21R x x +-∈. (1)求()f x 的最小正周期;(2)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值,并分别写出相应的x 的值.19. (本小题满分12分)已知函数2'()(4)(),,(1)0.f x x x a a R f =--∈-=且 (1)讨论函数()f x 的单调性;(2)求函数()f x 在[]2,2-上的最大值和最小值.20.(本小题满分12分)在ABC ∆中,,,a b c 分别是角,,A B C 的对边()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求2a b -的范围.21.(本小题满分12分)已知向量2(3,1),(,)a x b x y =-=-,(其中实数x 和y 不同时为零),当2x <时,有a b ⊥,当2x ³时,//a b . (1)求函数式()y f x =;(2)求函数()f x 的单调递减区间;(3)若对[)(,2]2,x ∀∈-∞-⋃+∞,都有230mx x m +-≥,求实数m 的取值范围.22. (本小题满分12分)已知函数()22ln .f x a x x =-()1讨论函数()f x 的单调性;()2当0a >时,求函数()f x 在区间()21,e 上的零点个数.数学试卷参考答案1-5 DAABD 6-10 BACAB 11-12 CA13.(﹣∞,﹣1)∪(2,+∞) 14.3λ≥- 15. 1 16. 92 17【解析】(1)由 得,当时,,即为真时,实数的取值范围是.由,得,即为真时,实数的取值范围是. 因为为真,所以真且真,所以实数的取值范围是;(2)由得, 所以,为真时实数的取值范围是.因为是的必要不充分条件,所以且所以实数的取值范围为:.18【答案】解:(1)()2cos sin 134f x x x x π⎛⎫=++- ⎪⎝⎭21cos sin 12x x x x ⎛⎫=++- ⎪ ⎪⎝⎭,21sin cos 12x x x =--,11cos2sin2142x x +=-+-,1sin2cos2144x x =--, 1sin 2123x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期为22T ππ==. (2)∵,44x ππ⎡⎤∈-⎢⎥⎣⎦,∴52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,当236x ππ-=,即4x π=时, ()max 1131224f x =⨯-=-;当232x ππ-=-,即12x π=-时, ()()min 131122f x =⨯--=-.19(1) 函数),.,解得.则.,令,解得.由得或,此时函数单调递增,由得,此时函数单调递减,即函数的单调递增区间为,单调递减区间为. (2)当时,函数与的变化如下表:由表格可知:当时,函数取得极大值,,当时,函数取得极小值,,又,可知函数的最大值为,最小值为.20解:(1)由题意知()()3a b c a b c ab+++-=,∴222a bc ab+-=,由余弦定理可知,222cos122a b cCab+-==,又∵(0,)Cπ∈,∴3Cπ=.(2)由正弦定理可知,2sin sin sin3a bA Bπ===,即,a Ab B==,∴2a b A B-=2sin()3A Aπ=-2cosA A A=--12cos cos )4sin()26A A A A A π=-=-=-, 又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则62A ππ<<即0A 63ππ<-<,所以,0sin()6A π<-<即04sin(-)6A π<<,综上2a b -的取值范围为(0,.21【解析】((1)当2x <时,由a b ⊥得2(3)0a b x x y ⋅=--=,33y x x =-;(2x <且0x ≠),当2x ³时,由//a b . 得23xy x =--, ∴323,(22,0)(){.(2,2)3x x x x y f x x x x x --<<≠==≥≤--,(2)当2x <且0x ≠时,由2'330y x =-<,解得(1,0)(0,1)x ∈-⋃,,当2x ³时,222222(3)(2)3'0(3)(3)x x x x y x x ---+==>--, ∴函数()f x 的单调减区间为()1,0-和()0,1; (3)对(,2]x ∀∈-∞-[2,)+∞U , 都有230mx x m +-≥即2(3)m x x -≥-, 也就是23xm x ≥-, 对(,2]x ∀∈-∞-[2,)+∞U 恒成立, 由(2)知当2x ³时,222222(3)(2)3'()0(3)(3)x x x x f x x x ---+==>--∴函数()f x 在(,2]-∞-和[2,+)∞都单调递增,又2(2)234f --==-,2(2)234f ==--, 当2x -≤时2()03xf x x =>-, ∴当(,2]x ∈-∞-时,0()2f x <≤同理可得,当2x ≥时, 有2()0f x -≤<, 综上所述得,对(,2]x ∈-∞-[2,)+∞U ,()f x 取得最大值2;∴实数m 的取值范围为2m ≥.22【解析】解:(1) ()22ln f x a x x =-,∴ ()()22a x f x x='-,0x >当0a ≤时,()()220a x f x x-'=<,当0a >时,()()(222x x a x f x xx--==',当0x <<()0f x '>;当x >()0f x '<∴当0a ≤时,()f x 在()0,+∞上单调递减;当0a >时,()f x在(上单调递增,在)+∞上单调递减.(2)由(1)得()()max ln 1f x fa a ==-,当()ln 10a a -<,即0a e <<时,函数()f x 在()21,e 内有无零点;当()ln 10a a -=,即a e =时,函数()f x 在()0,+∞,又21e <=<,所以函数()f x 在()21,e 内有一个零点;当()ln 10a a ->,即a e >时,由于()110f =-<,()ln 10fa a =->,()()()()2244222ln 4f e a e e a e e e =-=-=,若20e <,即44e e a <<时,()20f e <,由函数单调性知(1x ∃∈使得()10f x =,)22x ∃∈使得()20f x =,故此时函数()f x 在()21,e 内有两个零点;若20e ≥22e ≥>()20f e ≥,且20fa e a e ==->,()110f =-<,由函数的单调性可知()f x 在(内有唯一的零点,在)2e 内没有零点,从而()f x 在()21,e 内只有一个零点综上所述,当()0,a e ∈时,函数()f x 在()21,e 内有无零点;当{}4,4e a e ⎡⎫∈⋃+∞⎪⎢⎣⎭时,函数()f x 在()21,e 内有一个零点;当4,4e a e ⎛⎫∈ ⎪⎝⎭时,函数()f x 在()21,e 内有两个零点.。

2020届江西省百所名校高三下学期第四次联考数学(理)试卷及解析

2020届江西省百所名校高三下学期第四次联考数学(理)试卷及解析

2020届江西省百所名校高三下学期第四次联考数学(理)试卷★祝考试顺利★(解析版)一、选择题1.全集U =R ,(){}ln 1A x y x ==+,{}220B x x x =--<,则() U B A =( )A. ()2,+∞B. (),2-∞C. ∅D. ()1,2- 【答案】B【解析】 根据已知条件先求出集合A 和集合B ,再求出集合A 的补集,再运用集合的并集运算即可. 【详解】因为{}1A x x =>-,{}12B x x =-<<, 所以{} 1U A x x =≤-,故(){} 2U B A x x ⋃=<.故选:B2.欧拉是科学史上一位最多产的杰出数学家,为数学界作出了巨大贡献,其中就有欧拉公式:cos sin ix e x i x =+(i 为虚数单位).它建立了三角函数和指数函数间接关系,被誉为“数学中的天桥”.结合欧拉公式,则复数43i z iπ=的模为( )C. D. 2 【答案】B【解析】由题意可得4i e π=,代入43i z i π=+并对其化简,再代入模长计算公式即可.【详解】因为422i e π=+, 所以433112i z e i i i iπ==-++=-,从而5z =.故选:B3.空气质量AQI 指数是反映空气质量状况指数,AQI 指数值越小,表明空气质量越好,其对应关系如表:AQI 指数值 [)0,50[)50,100 [)100,150 [)150,200 [)200,300 [)300,+∞ 空气质量优 良 轻度污染 中度污染 重度污染 严重污染如图所示的是某市11月1日至20日AQI 指数变化的折线图:下列说法不正确的是( )A. 这20天中空气质量为轻度污染的天数占14B. 这20天中空气质量为优和良的天数为10天C. 这20天中AQI 指数值的中位数略低于100D. 总体来说,该市11月上旬的空气质量比中旬的空气质量好【答案】C【解析】根据已知条件对每个选项进行判断即可.【详解】对于A ,20天中AQI 指数值高于100,低于150的天数为5,即占总天数的14,故A 正确; 对于B ,20天中AQI 指数值有10天低于100,故B 正确;对于C ,20天中AQI 指数值有10天低于100,10天高于100,根据图可知中位数略高于100,故C 错误;对于D ,由图可知该市11月上旬的空气质量的确比中旬的空气质量要好些,故D 正确.故选:C。

2020年江西省南昌市高考第四次模拟测试理科数学试题-含答案

2020年江西省南昌市高考第四次模拟测试理科数学试题-含答案

2020年江西省南昌市高考第四次模拟测试理科数学试题本试卷共4页,23小题,满分150分。

考试时间120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填涂在答题卡上,并在相应位置贴好条形码. 2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案信息涂黑:如需改动,用橡皮擦干净后,再选涂其它答案.3.非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液不按以上要求作答无效. 4.考生必须保证答题卡整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12121,,z z i z z z ===⋅,则||z 等于( )A .2B .4CD .2.集合{|},{}A y y x N B x N N =∈=∈,则A B ⋂=( )A .{0,2}B .{0,1,2}C .2}D .∅3.已知,,a b c 是三条不重合的直线,平面,αβ相交于直线c ,,a b αβ⊂⊂,则“,a b 相交”是“,a c 相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知1,1()ln ,1x x f x x x -≤⎧=⎨>⎩,则不等式()1f x >的解集是( )A .(1,)eB .(2,)+∞C .(2, )eD .(,)e +∞5.已知ABC V 中角, , A B C 所对的边分别为,,a b c ,若2,sin 2cos 2a c A C ==,则角A 等于( )A .6π B .2π C .23π D .56π6.已知,a b r r 为不共线的两个单位向量,且a r 在b r上的投影为12-,则|2|a b -=r r ( )A .3B .5C .6D .7 7.函数ln ()xx xf x e=的图象大致为( ) A . B . C . D .8.直线2sin 0x y θ⋅+=被圆222520x y y +-+=截得最大弦长为( )A .25B .23C .3D .229.函数()sin()(0)f x A x ωϕω=+>的部分图象如图所示,则(0)f =( )A .6-B .3C .2-D .6 10.春秋以前中国已有“抱瓮而出灌”的原始提灌方式,使用提水吊杆——桔槔,后发展成辘轳.19世纪末,由于电动机的发明,离心泵得到了广泛应用,为发展机械提水灌溉提供了条件.图形所示为灌溉抽水管道在等高图的上垂直投影,在A 处测得B 处的仰角为37度,在A 处测得C 处的仰角为45度,在B 处测得C 处的仰角为53度,A 点所在等高线值为20米,若BC 管道长为50米,则B 点所在等高线值为(参考数据3sin 375︒=)A .30米B .50米C .60米D .70米11.已知F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,直线3y x =交双曲线于A ,B 两点,若23AFB π∠=,则双曲线的离心率为( ) A 56 C .1022+.52212.已知函数3()sin cos (0)4f x x x a x a π⎛⎫=+--> ⎪⎝⎭有且只有三个零点()123123,,x x x x x x <<,则()32tan x x -属于( ) A .0,2π⎛⎫ ⎪⎝⎭ B .,2ππ⎛⎫ ⎪⎝⎭ C .3,2π⎛⎫+∞ ⎪⎝⎭ D .3,2ππ⎛⎫⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件||1310y x x y ≥-⎧⎨-+≥⎩,则目标函数z x y =+的最小值为______________.14.已知梯形ABCD 中,//,3,4,60,45AD BC AD AB ABC ACB ︒︒==∠=∠=,则DC =_____________.15.已知6270127(1)(21)x x a a x a x a x --=++++L ,则2a 等于_______________.16.已知正四棱椎P ABCD -中,PAC V 是边长为3的等边三角形,点M 是PAC V 的重心,过点M 作与平面PAC 垂直的平面α,平面α与截面PAC 交线段的长度为2,则平面α与正四棱椎P ABCD -表面交线所围成的封闭图形的面积可能为______________.(请将可能的结果序号..填到横线上)①2; ②22; ③3; ④23.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

江西省宜春市2020届高三上学期第四次月考试题 数学(理) Word版含答案

江西省宜春市2020届高三上学期第四次月考试题 数学(理) Word版含答案

高三第四次月考数学(理科)试题一、选择题1.已知集合X ={12xx e >},Y ={260x x x +-≤},则R C X Y I ()=( ) A.[-3,-ln 2) B.[-2,-ln 2] C.[-3,-ln 2] D.[-ln 2,2] 2.复数z 满足:(2)i z z -⋅=(i 为虚数单位),z 为复数z 的共轭复数,则下列说法正确的是( ) A .2z z ⋅=B .22i z =C .||2z =D .0z z +=3.平面直角坐标系xOy 中,点在单位圆O 上,设,若,且,则的值为A. B. C. D.4. 设}{n a 是首项为正数的等比数列,公比为q ,则“0<q ”是“对任意的正整数n ,0212<+-n n a a ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 5.函数的图象是( )A. B. C. D.6.要得到函数y =-2sin3x 的图象,只需将函数y =sin3x +cos3x 的图象A.向右平移34π个单位长度B.向右平移2π个单位长度C.向左平移4π个单位长度D.向左平移2π个单位长度7.已知各项不为0的等差数列{a n }满足a 5-2a 72+2a 8=0,数列{b n }是等比数列且b 7=a 7,则b 2b 12等于( )A.49B.32C.94D.238.某三棱锥的三视图如图所示,则该三棱锥的各个侧面中最大的侧面的面积为( ) A .22B .32C .5D .29.已知变量,x y 满足约束条件6,32,1,x y x y x +≤⎧⎪-≤-⎨⎪≥⎩若目标函数(0,0)z ax by a b =+>>的最小值为2,则13a b+的最小值为( ) A .2+3B .5+26C .8+15D .2310.设S n 为数列{a n }的前n 项和,11a = ,12n n a S +=,则数列1{}n a 与的前20项和为( )A.1931223-⨯B.1971443-⨯C.1831223-⨯D.1871443-⨯11.已知函数2()ln x f x e x x =++与函数2()+2x g x e x ax -=-的图象上存在关于轴对称的点,则实数的取值范围为( )A.-∞(,-e] B. 1-e ∞(,-] C. -∞(,-1] D. 1-2∞(,-] 12.已知定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且对任意的121[0]2x x ∈,,12()x x ≠,都有1212()()f x f x x x π->-.又()sin g x x π=,则关于x 的不等式()()f x g x ≥在区间33[]22-,上的解集为( )A .3[][0]244ππ--U ,,B .3[]24π--, C .3[0]2-, D .3[1][01]2--U ,,13. 已知平面向量满足(cos ,sin )2a b αα==r r ,,且()2a a b +=r r rg ,则向量与夹角的余弦值为__________ 14.设1111()123421f n n =-+-++-L ,则(1)()f k f k +=+ _____.(不用化简) 15.已知函数()x x f x e ae -=+为偶函数,若曲线()y f x =的一条切线的斜率为83,则该切点的横坐标等于______.16.已知ABC ∆为锐角三角形,满足()222sin sin sin sin sin tan B C B C A A =+-,ABC ∆外接圆的圆心为O ,半径为1,则()A A AC OB ⋅+uu u r uu r uuu r的取值范围是______.三、解答题17.已知函数, . (Ⅰ)当时,解关于的不等式;(Ⅱ)若对任意,都存在,使得不等式成立,求实数的取值范围.18.已知函数2()sin ()4f x x π=-。

2020届五省优创名校高三(全国Ⅰ卷)第四次联考数学(理)试题(解析版)

2020届五省优创名校高三(全国Ⅰ卷)第四次联考数学(理)试题(解析版)

2020届五省优创名校高三(全国Ⅰ卷)第四次联考数学(理)试题一、单选题1.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B =( )A .[12]-, B .[-C .(-D .⎡⎣【答案】C【解析】计算A ⎡=⎣,(]1,2B =-,再计算交集得到答案.【详解】{|A x y ⎡==⎣=,(]2{|},1012x x B x -=-+=≤,故(A B -=. 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.2.若202031i i z i+=+,则z 的虚部是( )A .iB .2iC .1-D .1【答案】D【解析】通过复数的乘除运算法则化简求解复数为:a bi +的形式,即可得到复数的虚部. 【详解】由题可知()()()()202022131313123211111i i i i i i i z i i i i i i +-+++-=====++++--, 所以z 的虚部是1. 故选:D. 【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题. 3.cos350sin 70sin170sin 20-=( )A .BC .12D .12-【答案】B【解析】化简得到原式cos10cos 20sin10sin 20=-,再利用和差公式计算得到答案. 【详解】3cos350sin 70sin170sin 20cos10cos 20sin10sin 20cos302-=-==. 故选:B 【点睛】本题考查了诱导公式化简,和差公式,意在考查学生对于三角公式的灵活运用.4.已知()f x 为定义在R 上的偶函数,当()1,0x ∈-时,()433xf x =+,则33log 2f ⎛⎫= ⎪⎝⎭( ) A .2- B .3 C .3- D .2【答案】D【解析】判断321log 03-<<,利用函数的奇偶性代入计算得到答案. 【详解】 ∵321log 03-<<,∴33332224log log log 223333f f f ⎛⎫⎛⎫⎛⎫=-==+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D 【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.5.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知4cos sin b B C =,则B =( )A .6π或56πB .4π C .3π D .6π或3π 【答案】D【解析】根据正弦定理得到4sin cos sin B B C C =,化简得到答案. 【详解】由4cos sin b B C =,得4sin cos sin B B C C =,∴sin 2B =23B π=或23π,∴6B π=或3π.故选:D 【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.6.函数()()2cosln1xf xx x=+-的部分图象大致为()A.B.C.D.【答案】A【解析】判断函数为奇函数排除B,C,计算特殊值排除D,得到答案.【详解】∵()()()()()()222cosln1ln1ln1xf x f xx x x xx x--====-⎡⎤+++--+--⎢⎥⎣⎦,∴()f x为奇函数,排除B,C;又322f fππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,()()()22ln1ln1fπππππ==>+-++,排除D;故选:A【点睛】本题考查了函数图像的识别,确定函数单调性是解题的关键.7.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A .74B .5627C .2D .16481【答案】C【解析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力. 8.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( ) A .9πB .29π C .18π D .24π【答案】C【解析】根据三角函数的变换规则表示出()g x ,根据()g x 是奇函数,可得m 的取值,再求其最小值. 【详解】解:由题意知,将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,得()sin 36y x m π⎡⎤=-+⎢⎥⎣⎦,再将sin 336y x m π⎡⎤=-+⎢⎥⎣⎦图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,1()sin(3)26g x x m π∴=-+,因为()g x 是奇函数, 所以3,6m k k Z ππ-+=∈,解得,183k m k Z ππ=-∈,因为0m >,所以m 的最小值为18π. 故选:C 【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.9.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是,A B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为( )A .22122x y -=B .2213y x -=C .2213x y -=D .22144x y -=【答案】A【解析】点P 的坐标为()2,m ()0m >,()tan tan APB APF BPF ∠=∠-∠,展开利用均值不等式得到最值,将点代入双曲线计算得到答案. 【详解】不妨设点P 的坐标为()2,m ()0m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值, 因为2tan a APF m +∠=,2tan aBPF m-∠=, 所以()2222tan tan 221a aa a m m APB APF BPF a ab b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当2b m m=()0m >,即当m b =时,等号成立,此时APB ∠最大,此时APB 的外接圆面积取最小值,点P 的坐标为()2,b ,代入22221x y a b-=可得a =b ==所以双曲线的方程为22122x y -=.故选:A 【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.10.点O 在ABC ∆所在的平面内,OA OB OC ==,2AB =,1AC =,AO AB AC λμ=+(),R λμ∈,且()420λμμ-=≠,则BC =( )A .73B C .7D 【答案】D【解析】确定点O 为ABC ∆外心,代入化简得到56λ=,43μ=,再根据BC AC AB =-计算得到答案. 【详解】由OA OB OC ==可知,点O 为ABC ∆外心, 则2122AB AO AB ⋅==,21122AC AO AC ⋅==,又AO AB AC λμ=+, 所以2242,1,2AO AB AB AC AB AC AB AO AC AB AC AC AB AC λμλμλμλμ⎧⋅=+⋅=+⋅=⎪⎨⋅=⋅+=⋅+=⎪⎩①因为42λμ-=,② 联立方程①②可得56λ=,43μ=,1AB AC ⋅=-,因为BC AC AB =-, 所以22227BC AC AB AC AB =+-⋅=,即7BC =故选:D 【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.11.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装()2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C【解析】计算球心连线形成的正四面体相对棱的距离为,得到最上层球面上的点距离桶底最远为)()101n+-cm ,得到不等式)101100n +-≤,计算得到答案. 【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为,每装两个球称为“一层”,这样装n 层球,则最上层球面上的点距离桶底最远为)()101n +-cm ,若想要盖上盖子,则需要满足)101100n +-≤,解得113.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球. 故选:C 【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.12.已知函数()ln 2f x x ax =-,()242ln ax g x x x=-,若方程()()f x g x =恰有三个不相等的实根,则a 的取值范围为( ) A .(]0,eB .10,2e ⎛⎤ ⎥⎝⎦C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可将方程转化为ln 422ln x ax a x x -=-,令()ln xt x x=,()()0,11,x ∈+∞,进而将方程转化为()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,即()2t x =-或()2t x a =,再利用()t x 的单调性与最值即可得到结论. 【详解】由题意知方程()()f x g x =在()()0,11,+∞上恰有三个不相等的实根,即24ln 22ln ax x ax x x-=-,①.因为0x >,①式两边同除以x ,得ln 422ln x axa x x-=-. 所以方程ln 4220ln x axa x x--+=有三个不等的正实根. 记()ln xt x x=,()()0,11,x ∈+∞,则上述方程转化为()()4220at x a t x --+=. 即()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,所以()2t x =-或()2t x a =.因为()21ln xt x x-'=,当()()0,11,x e ∈时,()0t x '>,所以()t x 在()0,1,()1,e 上单调递增,且0x →时,()t x →-∞.当(),x e ∈+∞时,()0t x '<,()t x 在(),e +∞上单调递减,且x →+∞时,()0t x →.所以当x e =时,()t x 取最大值1e,当()2t x =-,有一根. 所以()2t x a =恰有两个不相等的实根,所以102a e<<.故选:B. 【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.二、填空题 13.抛物线2112y x =的焦点坐标为______. 【答案】()0,3【解析】变换得到212x y =,计算焦点得到答案. 【详解】 抛物线2112y x =的标准方程为212x y =,6p ,所以焦点坐标为()0,3.故答案为:()0,3 【点睛】本题考查了抛物线的焦点坐标,属于简单题.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 【答案】25-【解析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.在棱长为2的正方体1111ABCD A B C D -中,E 是正方形11BB C C 的中心,M 为11C D 的中点,过1A M 的平面α与直线DE 垂直,则平面α截正方体1111ABCD A B C D -所得的截面面积为______. 【答案】26【解析】确定平面1A MCN 即为平面α,四边形1A MCN 是菱形,计算面积得到答案. 【详解】如图,在正方体1111ABCD A B C D -中,记AB 的中点为N ,连接1,,MC CN NA , 则平面1A MCN 即为平面α.证明如下: 由正方体的性质可知,1A MNC ,则1A ,,,M CN N 四点共面,记1CC 的中点为F ,连接DF ,易证DF MC ⊥.连接EF ,则EF MC ⊥, 所以MC ⊥平面DEF ,则DE MC ⊥. 同理可证,DE NC ⊥,NCMC C =,则DE ⊥平面1A MCN ,所以平面1A MCN 即平面α,且四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面.因为正方体的棱长为2,易知四边形1A MCN 是菱形, 其对角线123AC =,22MN =,所以其面积12223262S =⨯⨯=. 故答案为:26【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力.16.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成33⨯小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______. 【答案】1140【解析】分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可. 【详解】首先,第一行队伍的排法有33A 种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有111333C C C 种;第二行的每个位置的人员安排有111222C C C 种;第三行的每个位置的人员安排有111⨯⨯种.所以来自同一队的战士既不在同一行,也不在同一列的概率311111133332229921140A C C C C C C P A ⋅⋅⋅==. 故答案为:1140. 【点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.三、解答题17.已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<.【答案】(1)352n n a +=(2)证明见解析 【解析】(1)123123252525253n n na a a a ++++=----…,①当2n ≥时,123112311252525253n n n a a a a ---++++=----…,②两式相减即得数列{}n a 的通项公式;(2)先求出()()114411353833538n n a a n n n n +⎛⎫==- ⎪++++⎝⎭,再利用裂项相消法求和证明. 【详解】(1)解:123123252525253n n na a a a ++++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++=----…,②由①-②,得()3522n n a n +=≥, 因为14a =符合上式,所以352n n a +=.(2)证明:()()114411353833538n n a a n n n n +⎛⎫==- ⎪++++⎝⎭12231111n n n T a a a a a a +=+++… 4111111381111143538n n ⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦… 4113838n ⎛⎫=⨯- ⎪+⎝⎭因为1103811n <≤+,所以11226n T ≤<. 【点睛】本题主要考查数列通项的求法,考查数列求和,意在考查学生对这些知识的理解掌握水平. 18.如图,在三棱柱ADEBCF 中,ABCD 是边长为2的菱形,且60BAD ∠=︒,CDEF是矩形,1ED =,且平面CDEF ⊥平面ABCD ,P 点在线段BC 上移动(P 不与C 重合),H 是AE 的中点.(1)当四面体EDPC 的外接球的表面积为5π时,证明://HB .平面EDP(2)当四面体EDPC 的体积最大时,求平面HDP 与平面EPC 所成锐二面角的余弦值. 【答案】(1)证明见解析(2)78【解析】(1)由题意,先求得P 为BC 的中点,再证明平面//HMB 平面EDP ,进而可得结论;(2)由题意,当点P 位于点B 时,四面体EDPC 的体积最大,再建立空间直角坐标系,利用空间向量运算即可. 【详解】(1)证明:当四面体EDPC 的外接球的表面积为5π时. 则其外接球的半径为5. 因为ABCD 时边长为2的菱形,CDEF 是矩形.1ED =,且平面CDEF ⊥平面ABCD .则ED ABCD ⊥平面,5EC =.则EC 为四面体EDPC 外接球的直径. 所以90EPC ∠=︒,即CB EP ⊥. 由题意,CB ED ⊥,EPED E =,所以CB DP ⊥.因为60BAD BCD ∠=∠=︒,所以P 为BC 的中点. 记AD 的中点为M ,连接MH ,MB .则MB DP ,MHDE ,DE DP D ⋂=,所以平面//HMB 平面EDP .因为HB ⊂平面HMB ,所以//HB 平面EDP .(2)由题意,ED ⊥平面ABCD ,则三棱锥E DPC -的高不变. 当四面体EDPC 的体积最大时,DPC △的面积最大. 所以当点P 位于点B 时,四面体EDPC 的体积最大.以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.则()0,0,0D ,()0,0,1E ,)3,1,0B,311,222H ⎛⎫- ⎪⎝⎭,()0,2,0C .所以()3,1,0DB =,311,,22DH ⎛⎫=-⎪⎝⎭,()0,2,1EC =-,()3,1,1EB =-.设平面HDB 的法向量为()111,,m x y z =.则1111130,3110,222DB m x y DH m x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩令11x =,得()1,3,23=--m .设平面EBC 的一个法向量为()222,,n x y z =.则2222220,30,EC n y z EB n x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩令23y =,得()3,3,6n =.设平面HDP 与平面EPC 所成锐二面角是ϕ,则7cos 8ϕ⋅==m n m n. 所以当四面体EDPC 的体积最大时,平面HDP 与平面EPC 所成锐二面角的余弦值为78. 【点睛】本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键,属于基础题.19.某芯片公司对今年新开发的一批5G 手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为[)[)[)[)[]9101011111212131314,,,,,,,,五个小组(所调查的芯片得分均在[]914,内),得到如图所示的频率分布直方图,其中018a b -=..(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替). (2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。

2020届全国大联考高三第四次联考数学(理)试题(解析版)

2020届全国大联考高三第四次联考数学(理)试题(解析版)

2020届全国大联考高三第四次联考数学(理)试题一、单选题1.已知集合{}2|340A x x x =--<,{}|23xB y y ==+,则A B =( )A .[3,4)B .(1,)-+∞C .(3,4)D .(3,)+∞【答案】B【解析】分别求解集合,A B 再求并集即可. 【详解】因为{}2|340{|14}A x x x x x =--<=-<<,{}|23xB y y ==+{|3}y y =>,所以(1,)A B =-+∞.故选:B 【点睛】本题考查集合的运算与二次不等式的求解以及指数函数的值域等.属于基础题.2.若直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为则m =( )A .1B .2C D .3【答案】A【解析】将圆的方程化简成标准方程,再根据垂径定理求解即可. 【详解】圆222230x x y y ++--=的标准方程22(1)(1)5x y ++-=,圆心坐标为(1,1)-,半径因为直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为所以直线20x y m ++=过圆心,得2(1)10m ⨯-++=,即1m =. 故选:A 【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题. 3.抛物线23x ay =的准线方程是1y =,则实数a =( ) A .34-B .34C .43-D .43【答案】C【解析】根据准线的方程写出抛物线的标准方程,再对照系数求解即可. 【详解】因为准线方程为1y =,所以抛物线方程为24x y =-,所以34a =-,即43a =-. 故选:C 【点睛】本题考查抛物线与准线的方程.属于基础题. 4.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】根据诱导公式化简sin cos 2y y π⎛⎫+= ⎪⎝⎭再分析即可. 【详解】 因为cos sin cos 2x y y π⎛⎫=+= ⎪⎝⎭,所以q 成立可以推出p 成立,但p 成立得不到q 成立,例如5coscos33ππ=,而533ππ≠,所以p 是q 的必要而不充分条件. 故选:B 【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.5.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( ) A .15︒ B .30︒C .45︒D .60︒【答案】D【解析】设圆锥的母线长为l ,底面半径为R ,再表达圆锥表面积与球的表面积公式,进而求得2l R =即可得圆锥轴截面底角的大小. 【详解】设圆锥的母线长为l ,底面半径为R ,则有2222R Rl R R ππππ+=+,解得2l R =,所以圆锥轴截面底角的余弦值是12R l =,底角大小为60︒. 故选:D 【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.6.已知F 是双曲线22:4||C kx y k +=(k 为常数)的一个焦点,则点F 到双曲线C 的一条渐近线的距离为( ) A .2k B .4k C .4 D .2【答案】D【解析】分析可得k 0<,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可. 【详解】当0k ≥时,等式224||kx y k +=不是双曲线的方程;当k 0<时,224||4kx y k k +==-,可化为22144y x k -=-,可得虚半轴长2b =,所以点F 到双曲线C 的一条渐近线的距离为2. 故选:D 【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.7.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( )A .单调递增B .单调递减C .先递减后递增D .先递增后递减【答案】C【解析】先用诱导公式得()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭,再根据函数图像平移的方法求解即可. 【详解】函数()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象可由cos y x =向左平移3π个单位得到,如图所示,()f x 在,2ππ⎛⎫⎪⎝⎭上先递减后递增.故选:C 【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.8.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变【答案】C【解析】根据线面平行与垂直的判定与性质逐个分析即可. 【详解】因为11A P AQ m ==,所以11//PQB D ,因为E 、F 分别是AB 、AD 的中点,所以//EF BD ,所以//PQ EF ,因为面MEF面MPQ l =,所以PQ EF l ////.选项A 、D 显然成立;因为BD EF l ////,BD ⊥平面11ACC A ,所以l ⊥平面11ACC A ,因为MC ⊂平面11ACC A ,所以l MC ⊥,所以B 项成立;易知1AC ⊥平面MEF ,1A C ⊥平面MPQ ,而直线1AC 与1A C 不垂直,所以C 项不成立. 故选:C 【点睛】本题考查直线与平面的位置关系.属于中档题.9.已知抛物线22(0)y px p =>,F 为抛物线的焦点且MN 为过焦点的弦,若||1OF =,||8MN =,则OMN 的面积为( )A .B .C .D .2【答案】A【解析】根据||1OF =可知24y x =,再利用抛物线的焦半径公式以及三角形面积公式求解即可. 【详解】由题意可知抛物线方程为24y x =,设点()11,M x y 点()22,N x y ,则由抛物线定义知,12|||||2MN MF NF x x =+=++,||8MN =则126x x +=.由24y x =得2114y x =,2224y x =则221224y y +=.又MN 为过焦点的弦,所以124y y =-,则21y y -==所以211||2OMNSOF y y =⋅-=故选:A 【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为1),则b c +=( )A .5B .C .4D .16【答案】C【解析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =-,再代入余弦定理求解即可.【详解】ABC 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵1sin 1)24ABCSbc A ===-,∴bc =6(2-,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C 【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.11.存在点()00,M x y 在椭圆22221(0)x y a b a b+=>>上,且点M 在第一象限,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点0,2b ⎛⎫- ⎪⎝⎭,则椭圆离心率的取值范围是( ) A.0,2⎛ ⎝⎦B.,12⎛⎫⎪⎪⎝⎭C.0,3⎛ ⎝⎦D.,13⎛⎫⎪⎪⎝⎭【答案】D【解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可. 【详解】因为过点M 椭圆的切线方程为00221x x y ya b+=,所以切线的斜率为2020b x a y -,由20020021b y b x x a y +⎛⎫⨯-=- ⎪⎝⎭,解得3022b y b c =<,即222b c <,所以2222a c c -<,所以3c a >. 故选:D 【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.12.已知正三棱锥A BCD -的所有顶点都在球O 的球面上,其底面边长为4,E 、F 、G 分别为侧棱AB ,AC ,AD 的中点.若O 在三棱锥A BCD -内,且三棱锥A BCD -的体积是三棱锥O BCD -体积的4倍,则此外接球的体积与三棱锥O EFG -体积的比值为( ) A. B.C.D.【答案】D【解析】如图,平面EFG 截球O 所得截面的图形为圆面,计算4AH OH =,由勾股定理解得6R =,此外接球的体积为2463π,三棱锥O EFG -体积为23,得到答案. 【详解】如图,平面EFG 截球O 所得截面的图形为圆面.正三棱锥A BCD -中,过A 作底面的垂线AH ,垂足为H ,与平面EFG 交点记为K ,连接OD 、HD .依题意4A BCD O BCD V V --=,所以4AH OH =,设球的半径为R , 在Rt OHD 中,OD R =,343HD BC ==,133R OH OA ==, 由勾股定理:222433R R ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得6R =,此外接球的体积为2463π, 由于平面//EFG 平面BCD ,所以AH ⊥平面EFG , 球心O 到平面EFG 的距离为KO , 则1262333R KO OA KA OA AH R R =-=-=-==, 所以三棱锥O EFG -体积为2113624343⨯⨯⨯⨯=, 所以此外接球的体积与三棱锥O EFG -体积比值为243π. 故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.二、填空题13.若双曲线22221(0,0)x y a b a b-=>>的两条渐近线斜率分别为1k ,2k ,若123k k =-,则该双曲线的离心率为________. 【答案】2【解析】由题得21223b k k a=-=-,再根据2221b e a =-求解即可.【详解】双曲线22221x y a b-=的两条渐近线为b y x a =±,可令1k b a =-,2k b a =,则21223b k k a =-=-,所以22213b e a=-=,解得2e =.故答案为:2. 【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.14.已知在等差数列{}n a 中,717a =,13515a a a ++=,前n 项和为n S ,则6S =________.【答案】39【解析】设等差数列公差为d ,首项为1a ,再利用基本量法列式求解公差与首项,进而求得6S 即可.【详解】设等差数列公差为d ,首项为1a ,根据题意可得711116172415a a d a a d a d =+=⎧⎨++++=⎩,解得113a d =-⎧⎨=⎩,所以6116653392S =-⨯+⨯⨯⨯=. 故答案为:39 【点睛】本题考查等差数列的基本量计算以及前n 项和的公式,属于基础题.15.已知抛物线()220y px p =>的焦点和椭圆22143x y +=的右焦点重合,直线过抛物线的焦点F 与抛物线交于P 、Q 两点和椭圆交于A 、B 两点,M 为抛物线准线上一动点,满足8PF MF +=,3MFP π∠=,当MFP 面积最大时,直线AB 的方程为______.【答案】()31y x =-【解析】根据均值不等式得到16PF MF ⋅≤,43MFP S ≤△,根据等号成立条件得到直线AB 的倾斜角为3π,计算得到直线方程. 【详解】由椭圆22143x y +=,可知1c =,12p =,2p =,24y x ∴=,13sin 234MFP S PF MF PF MF π=⋅=⋅△, 82PF MF PF MF =+≥⋅,16PF MF ⋅≤,33164344MFP S PF MF =⋅≤⨯=△(当且仅当4PF MF ==,等号成立), 4MF =,12F F =,16FMF π∴∠=,13MFF π∠=,∴直线AB 的倾斜角为3π,∴直线AB 的方程为()31y x =-. 故答案为:()31y x =-.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力. 16.已知三棱锥P ABC -,PA PB PC ==,ABC 是边长为4的正三角形,D ,E 分别是PA 、AB 的中点,F 为棱BC 上一动点(点C 除外),2CDE π∠=,若异面直线AC 与DF 所成的角为θ,且7cos 10θ=,则CF =______.【答案】52【解析】取AC 的中点G ,连接GP ,GB ,取PC 的中点M ,连接DM ,MF ,DF ,直线AC 与DF 所成的角为MDF ∠,计算2222MF a a =-+,22410DF a a =-+,根据余弦定理计算得到答案。

2020届全国大联考高三第四次联考数学(理)试题(带答案解析)

2020届全国大联考高三第四次联考数学(理)试题(带答案解析)
2020届全国大联考高三第四次联考
数学(理)试题
1.已知集合 , ,则 ()
A. B. C. D.
2.若直线 与圆 相交所得弦长为 ,则 ()
A.1B.2C. D.3
3.抛物线 的准线方程是 ,则实数 ()
A. B. C. D.
4.已知 , 则p是q的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
8.在棱长为a的正方体 中,E、F、M分别是AB、AD、 的中点,又P、Q分别在线段 、 上,且 ,设平面 平面 ,则下列结论中不成立的是()
A. 平面 B.
C.当 时,平面 D.当m变化时,直线l的位置不变
9.已知抛物线 ,F为抛物线的焦点且MN为过焦点的弦,若 , ,则 的面积为()
A. B. C. D.
故选:C
【点睛】
本题考查直线与平面的位置关系.属于中档题.
9.A
【解析】
【分析】
根据 可知 ,再利用抛物线的焦半径公式以及三角形面积公式求解即可.
16.已知三棱锥 , , 是边长为4的正三角形, , 分别是 、 的中点, 为棱 上一动点(点 除外), ,若异面直线 与 所成的角为 ,且 ,则 ______.
17.在数列 和等比数列 中, , , .
(1)求数列 及 的通项公式;
(2)若 ,求数列 的前n项和 .
18.如图,在四棱锥 中,平面 平面ABCD, , ,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.
故选:D
【点睛】
本题考查双曲线的方程与点到直线的距离.属于基础题.
7.C
【解析】
【分析】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档