相位分析使振动分析更简单

合集下载

机器振动相位分析

机器振动相位分析

机器振动相位分析相位是同频率振动之间,振动与激励之间,或振动与触发参考之间的时间关系,用角度单位表示。

一个振动周期或轴旋转一周为360度或2派。

因此,振动相位 = (振动时间差 / 周期)x 360度两个振动之间的相位差为相对相位。

频率相同,相位关系固定;频率不同,相位不固定或者无相位关系。

振动与触发之间的相位为绝对相位。

对旋转机器,在轴上做参考标记,相位传感器产生没转一次的脉冲信号,振动传感器测取的振动信号与此脉冲信号的相位差即绝对相位。

利用触发参考,不仅可以测量转频1X振动的相位,还可以测量谐频2X,3X,4X……的相位;一个转频周期有多个整谐频周期,谐频振动与触发参考有稳定的相位关系。

因此,可以用一个触发参考测量所有谐频的绝对相位。

用绝对相位确定的轴振动位移的相位角,就是轴上的振动高点,或称转子挠曲点。

触发信号发生至振动位移最大所需的延时,等同于振动高点转到振动位移传感器之下所需的时间,这个时间间隔与周期之比乘以360度就是轴振动相位角。

因此,先将触发参考对准相位传感器,再按旋转方向转动一个相位角,这时振动传感器对准的轴位置就是高点。

振动的根源是力或激励,交变的力产生振动,振动的频率与力的频率相同。

振动与激励的相位差反映机械系统的特性,称为机械相位滞后角,即振动滞后于激励的角度。

在转子动平衡中,通过在转子上加标定重量(试重)可以确定不平衡(激励)的大小和角位置(重点),从而确定平衡配重和角度(轻点),使转子达到平衡。

轴上高点与重点之间的角度即是转子的相位滞后角。

相位的测量相位的测量方法有很多种,早期用振动信号触发频闪灯的方法,现在主要用轴上标记(反光带或键槽)产生触发参考脉冲信号的方法,这两种方法都要都需要轴上做参考标记,可利用数字矢量滤波或数据采集器进行测量。

绝对相位测量也是动平衡所必须具备的。

而对于两个或多个振动之间的相位测量为相对测量,不需要做轴上参考标记。

相对相位可以比较两个振动的波形相位差,或利用双通道频谱分析仪做传函分析,传函的相频数据可以得到两个振动多个频率的相位差。

振动速度加速度位移之间的相位关系

振动速度加速度位移之间的相位关系

振动速度、加速度和位移是描述物体振动状态的重要物理量,它们之间的相位关系对于理解和分析振动运动至关重要。

下面通过分析振动速度、加速度和位移之间的相位关系,来探讨它们之间的关联。

1. 振动速度、加速度和位移的定义振动速度指的是物体在振动过程中的速度,通常用v来表示,单位是米每秒(m/s)。

加速度则是物体在振动过程中的加速度,通常用a 来表示,单位是米每秒平方(m/s^2)。

位移则是物体在振动过程中的位移量,通常用x来表示,单位是米(m)。

2. 三者之间的基本关系振动速度、加速度和位移之间的关系可以用微积分的概念进行描述。

假设物体在振动过程中的位移函数为x(t),则物体的速度函数v(t)和加速度函数a(t)可以分别用位移函数对时间的导数和二阶导数来表示:v(t) = dx(t)/dta(t) = d^2x(t)/dt^2这里,t表示时间。

根据导数的定义,速度函数v(t)表示物体在任意时刻的瞬时速度,而加速度函数a(t)表示物体在任意时刻的瞬时加速度。

3. 位移、速度和加速度的相位关系在简谐振动中,位移、速度和加速度之间存在一定的相位关系。

根据简谐振动的定义,位移、速度和加速度都可以表示为关于时间的正弦或余弦函数。

假设物体的振动周期为T,振动频率为f=1/T,角频率为ω=2πf,则位移函数、速度函数和加速度函数可以分别表示为:x(t) = A*sin(ωt + φ)v(t) = A*ω*cos(ωt + φ)a(t) = -A*ω^2*sin(ωt + φ)这里,A表示振幅,φ表示初相位。

根据上述函数表达式,位移、速度和加速度之间存在以下相位关系:位移x(t)与速度v(t)之间的相位关系为:v(t) = ω*x(t + π/2)位移x(t)与加速度a(t)之间的相位关系为:a(t) = -ω^2*x(t)由上面的推导可知,振动速度与位移之间存在90°的相位差,而振动加速度与位移之间存在180°的相位差。

工程力学中的振动分析如何进行?

工程力学中的振动分析如何进行?

工程力学中的振动分析如何进行?在工程力学的广袤领域中,振动分析是一个至关重要的课题。

无论是桥梁的设计、机械装备的研发,还是建筑物的抗震性能评估,都离不开对振动现象的深入理解和精准分析。

那么,工程力学中的振动分析究竟是如何进行的呢?要进行振动分析,首先得明确什么是振动。

简单来说,振动就是物体在平衡位置附近做往复运动。

这种往复运动可以是周期性的,也可以是非周期性的。

而在工程力学中,我们通常更关注周期性的振动,因为它们具有更明显的规律和特征。

在振动分析中,有几个关键的概念需要先搞清楚。

比如振幅,它指的是物体振动时偏离平衡位置的最大距离;频率,是指单位时间内振动的次数;周期,则是完成一次振动所需要的时间。

这三个概念相互关联,通过简单的数学关系可以相互转换。

接下来,我们来谈谈振动分析的方法。

常见的有理论分析、实验研究和数值模拟三种。

理论分析是通过建立数学模型来描述振动系统的行为。

对于一些简单的振动系统,比如单自由度的弹簧振子,我们可以利用牛顿第二定律和胡克定律等基本物理定律,推导出其运动方程,然后求解方程得到振动的特性,如振幅、频率和相位等。

但对于复杂的多自由度系统,理论分析往往会变得非常困难,甚至无法进行精确求解。

实验研究则是通过实际测量来获取振动系统的特性。

在实验中,我们会使用各种传感器,如加速度传感器、位移传感器等,来采集振动信号。

然后,通过对这些信号进行处理和分析,得到振动的相关参数。

实验研究的优点是直观、可靠,可以真实地反映实际系统的振动情况。

但实验研究也有其局限性,比如成本较高、实验条件难以控制、无法完全模拟实际工作环境等。

数值模拟是近年来发展迅速的一种振动分析方法。

它利用计算机软件,对振动系统进行建模和仿真。

通过数值计算的方法求解振动方程,得到系统的振动响应。

数值模拟的优点是可以处理复杂的几何形状和边界条件,能够快速地对不同的设计方案进行评估和优化。

但数值模拟的结果也依赖于模型的准确性和计算方法的合理性,如果模型不准确或者计算参数设置不当,可能会导致结果的偏差。

相位的重要作用

相位的重要作用

【相位的作用】根据现场经验,要想准确给出设备可能存在的问题,相位分析比不可少,所以大家在选用仪器时,最好选择另陛可以进行相位(特别是交叉相位)分析的仪器。

下面的这篇文章给出了相位分析的重要性!振动分析是门学问。

它是基于70%的经验和30%的课堂培训和自学。

这需要多年才能成为一个自信和有能力的振动分析师。

当分析错误了,给出的检维修建议也将是不正确的。

振动分析师都不想做出错误的指示。

在企业里,信管是以少成多,但一次错误就会毁掉大部分信嘗。

把振动传感器放在轴承壳体上,然后连到振动分析仪,分析仪给出波形和频谱,得到时间、频率和振幅信息(图1)。

这些数据是振动分析的基础。

它包含了设备的几乎所有的机械和电气缺陷特征。

Figure :L Vibration Wavefonn and Spectrum振动分析过程包括确走振动的严重程度,明确振动频率和振型,区分机械或电气元件振动峰值和模式r形成结论,如果有必要f给出维修建议。

每个参与振动分析的人都知道,振动分析不容易也没有实现自动化。

你有没有想过为什么?这里有几个原因:1)机器有多种缺陷:振动模式,我们在学习和培训中的书里读到的,和现实所见不一样。

我们学习机械和电气故障,是从单一故障的角度,就好像设备总是只有一种故障导致大的振动。

机器通常有一个以上的故障产生振动。

至少,所有的机器都有一走的不平衡和不对中。

当冥他故障发展时,波形和频谱很快就会变得复杂,难以分析。

振动数据就不再和我们所学到的故障模式一致To2)因果振动:每个作用力,都会激起一个响应。

我们所测星的一些振动是受冥他问题的影响。

例如,引起转子不平衡的力可以使机器产生不对中松动或摩擦。

就像你的;气车,当一个轮胎失去平衡时,车上所有的东西都会跟着揺响。

3)许多故障类型有相似的故障特征:由于转子以特走速度旋转,振动是一种周期性的力,许多机械和电气故障表现出相似的频率特征,难以区分。

有一种诊断技术,它能很快找到振动问题的根源。

振动测量相位分析基础知识教材

振动测量相位分析基础知识教材

图45松动问题的相位测量
不对中问题的相位表现
通过振动相位测量来发现不对中问题是较为常用的监测方法之 一,无论是平行不对中还是角不对中,通过振动相位测量,都是可 以检测到的。图46 描述了两种不对中问题的含意。
图46 轴角不对中和轴平行不对中的示意图
不对中问题的相位表现
不对中问题的振动相位特点是,在联轴节两侧的振动相位差接近 180°。振动幅值和相位角的测量应该在联轴节相邻的两个轴承座的4个 象限位置进行。为了检测不对中情况的存在,要测量的两个轴承座应该 是处在联轴节的两侧。径向振动相位对轴平行不对中问题比较敏感,而 轴向振动相位对轴角不对中问题比较敏感。在进行振动相位测量比较时, 重要的一点是,要遵守振动传感器的安装方向的规定。(若振动传感器, 安装方向搞反,会导至180°的相位移动,从而导至不对中的错误指示。 另一个需要注意的是,四个测量象限的位置要从同一个参考方向观察确 定如图47所示,避免相位数据的混乱。
振动相位分析基础知识
什么是振动?怎样利用它来进行评价机器的状态?
振动就是机器或机零件从其平衡位置所做的往复运动。 振动有三个重要的可测量的参数:幅值、频率、相位。
图1 质量块位于平衡位置且没有任何力的作用
振动传感器安装在轴承座上,传感器将拾取振动信号,并将此 振动信号通过电缆线传入到振动分析仪,如上图所示,这个在机器 轴承座上测量振动的过程可模型化为一个质量块悬挂在弹簧上。在 没有力的作用之前,它一直保持静止处于平衡位置处。
不平衡的相位 表现
图44诊断静不平衡、 力偶不平衡、动不平 衡的典型测量
不平衡的相位表现
如图44所示,比较在输入端和输出端轴承座上水平和垂直相 位差角,来确认是否有不平衡问题的存在。比较好的做法是测量 和比较输入端和输出端轴承座上水平方向的相位差角的值,如果 存在一定程度的不平衡问题,1XRPM振动幅值肯定是较高的,并且 在两个轴承座上水平方向的振动相位差等于垂直方向的振动相位 差(±30°)。这说明,转子的运动状态在水平方向和垂直方向 是相同的,否则,其主要问题可能就不会是不平衡问题了。例如, 见图44的表C,注意到在电机的两个轴承上,水平方向的振动相位 差是90°-30°=60°,垂直方向的相位差是180°-120°=60°, 这强有力地说明是不平衡问题。

振动特征分析

振动特征分析
2 )瀑布图
用某一测点在一段时间内连续测得的一组频谱图顺序组成的 三维谱图
3 )级联图 在转速连续变化时,不同转速下得到的频谱图依次组成的三维谱 图
4 ) 趋势图 机组稳定运行时,可以利用趋势图显示,记录振动或其他过程参 数是如何随时间变化的。时间微横坐标,振幅或其他参数微纵坐 标。 在分析机组振动随时间、负荷的变化时,趋势图给出的曲线直观 ,对运行人员掌握情况有利。
测量得到的是时间域信号,为更好分析振动 必须进行相应处理,获得更为直观图形表格 ,振动的特征图形,包括时域分析和频域分 析
1 瞬态数据的特征图形
a 波特图 波特图表示振幅、相位随转速变化的图形。波特 图反映的是信号主频幅值和相位随转速的变化情况 ,从此图上可以精确地得到机组共振区等启停过程 中的信息。确定临界转速。临界的特点:振幅出现 峰值,相位急剧变化. 扰动力频率等于弹性系统的固有频率时,系统将 会发生共振。强迫振动的振动幅值达到最大时的扰 动力频率称为临界转速。
振动特征提取
相位的定义
在振动领域内,相位可以看作振动信号上某一点,例 如,高点、正向零点与振动信号频率相同的基准信号 或转子上某一点之间的关系,这个关系在振动相位测 量中都是把振动的一个周期分成360等份(度),它们 之间导前或滞后关系直接用角度表示,得到振动相位 。
稳态数据和瞬态数据的特征图形
从轴心轨迹图可以判断系统是否发生了油膜振荡,油膜振荡 是两种不同频率的合成,在轴轨迹上同时存在两种李萨育图。
d 轴心静态轨迹
2 稳态数据的特征图形
1 )频谱图 对时域波形进行频谱分析可以得到信号中各谐波分量的频
率和幅值。以频率为横坐标,幅值为纵坐标,将结果 绘制得到的图形,称为频谱图。 频谱图是目前进行故障诊断最普遍使用的图形,从中可以 得到振动信号所含频率成分的重要信息。连续的三维 谱图包括瀑布图、级联图。

液体流体力学中的振动问题分析

液体流体力学中的振动问题分析

液体流体力学中的振动问题分析引言液体流体力学是研究液体在流动中的性质和行为的学科领域。

其中一个重要的研究方向是液体流体力学中的振动问题。

液体在振动过程中的行为对于理解和应用流体力学具有重要意义。

本文将深入探讨液体流体力学中的振动问题,并分析其相关的理论和应用。

一、振动现象的基本特征1.1 振动的定义和分类振动是指物体在平衡位置附近做周期性的来回运动。

根据振动的周期性和方向,振动可以分为简谐振动、复杂振动和非周期振动等几种类型。

其中,简谐振动是指振动物体在力的作用下按正弦或余弦函数规律运动的振动。

1.2 振动的基本特征振动具有以下基本特征:周期性、振幅、频率和相位。

•周期性:振动是有规律的往复运动,具有明确的周期。

•振幅:振动物体运动离开平衡位置的最大位移。

•频率:振动物体振动一次所需要的时间,单位为赫兹。

•相位:振动物体的位置相对于某一参考点的位置关系。

二、液体流体力学中的振动问题液体流体力学中的振动问题是指在液体流动中存在不稳定、不规则或周期性的振动现象。

这些振动现象对于理解液体的运动特性和性质具有重要意义。

液体流体力学中的振动问题可以分为以下几个方面进行分析。

2.1 液体流动中的振动现象在液体流动过程中,存在着各种类型的振动现象,如涡脱落、涡街、涡旋等。

这些振动现象的产生和演化与流体力学的基本原理密切相关,对于流体力学的研究和应用具有重要意义。

2.2 液体流动中的振动力学模型液体流动中的振动力学模型是对液体振动现象的描述和分析。

采用适当的数学模型可以更好地理解和预测液体流动中的振动现象。

常用的振动力学模型包括线性振动模型、非线性振动模型和随机振动模型等。

2.3 液体振动的控制和优化在液体流体力学中,控制和优化液体的振动是一个重要的研究方向。

通过改变流体的条件和结构,可以控制和减小液体的振动,提高液体的稳定性和流动性能。

此外,还可以通过优化流体的参数和设计,使液体的振动达到最佳效果。

三、液体流体力学中振动问题的应用液体流体力学中的振动问题具有广泛的应用价值。

机械振动学基础知识振动的相位与相位差的意义

机械振动学基础知识振动的相位与相位差的意义

机械振动学基础知识振动的相位与相位差的意义机械振动是物体在受到外力作用下产生的周期性运动。

在振动的过程中,相位和相位差是两个重要的概念,对于理解振动的特性和特征至关重要。

本文将介绍振动的相位和相位差的概念及其在机械振动学中的意义。

相位是描述振动状态的一个重要参数,它表示一个振动物体在一个周期内所处的位置。

在正弦振动中,我们通常用角度来表示相位,其范围为0到360度。

当物体从最大位移向负方向移动时,其相位逐渐增加,当再次到达最大位移时,相位为360度,即一个完整的周期。

相位的改变反映了振动物体在不同时间点的位置,可以帮助我们更清晰地了解振动的状态。

相位差是指振动系统中不同振动物体之间的相位关系。

当两个振动物体的相位差为0时,它们的振动状态完全一致,即两者的振动状态完全相同;当相位差为180度时,它们的振动状态完全相反,即一个在正向振动,另一个在负向振动;当相位差为90度或270度时,它们的振动状态存在一定的偏差,但仍然存在一定的关联性。

通过对相位差的分析,我们可以判断不同振动物体之间的运动状态,帮助我们进一步理解振动系统的特性。

在机械振动学中,相位和相位差的意义不仅在于描述振动的状态,更重要的是帮助我们分析振动系统的动态特性。

通过对振动的相位和相位差进行精确的测量和分析,我们可以确定振动系统的固有频率、共振频率以及其它重要的动态参数,为后续的振动控制和优化提供重要的参考依据。

因此,在研究机械振动时,我们需要充分理解振动的相位和相位差的概念,善于运用它们来分析和解决振动系统中的实际问题。

总之,相位和相位差是机械振动学中非常重要的概念,它们不仅帮助我们描述振动的状态,更重要的是帮助我们分析振动系统的动态特性。

只有深入理解和熟练运用相位和相位差的概念,我们才能更好地理解和控制振动系统的运动规律,为工程实践和科学研究提供更可靠的支持。

希望本文的介绍能够对读者有所帮助,激发大家对机械振动学的兴趣,促进振动领域的进一步发展与应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相位分析使振动分析更简单
振动分析主要是一个学习的技能。

其70%基于经验,30%基于培训和自学。

需要多年才能变成一个有信心和能力的振动分析师。

当振动分析是错误时,维修建议也可能是不正确的,没有一个振动分析师想犯错。

在这个行业,信誉只能小步小步的积累,而只要1个错误的诊断就会丧失多年积攒的信誉。

对设备进行振动测量时,振动分析仪通过时间波形和频谱提供时间、频率、幅值信息。

这些数据就是振动分析的基础。

它几乎包含了设备机械和电气故障的全部特征。

振动分析过程涉及到确定振动严重程度,辨别频率和特征、不同峰值和特征对应的机械和电气部件,形成分析结论,如果有必要,提供维修建议。

干这行的都知道,分析振动不是简单的,也不能自动化。

你没有想过为什么?这里有几个原因:
1) 设备有很多故障:现实中设备的振动故障模式与我们在培训和书本中学到的大不相同。

我们学到的机械和电气故障都是最纯粹的形式-好像设备总是1个故障导致振动。

设备通常会有多个故障源导致振动。

至少,所有设备都有一些不平衡和不对中。

当其它故障发展时,时间波形就会变的复杂,难以分析。

振动数据不再和我们学到的故障模式匹配。

2) 振动因果效应:对于每一个动作,都有一个反应。

我们测量的一些振动,是其它故障的影响。

例如,造成转子不平衡的力可能看起来像不对中,松动或摩擦。

当你车子的轮胎不平衡时,车子在行驶时就会振动和摇晃。

3) 很多故障有类似的振动故障模式:由于设备转子以一定的转速运动,振动是周期性的力产生的。

很多机械和电气有相似的频率特征,使得很难区分不同故障。

学习振动分析需要一定的时间。

参加培训、阅读技术资料和专业书籍、浏览在线资源、会提高振动分析技能和缩短学习曲线。

有一个诊断技术会快速的找到大多数振动故障的根源。

它可能是所有振动诊断技术中最强大的。

它随同振动分析一直存在,只是没有得到更多的关注,很难找到这方面的信息。

这个技术是什么?它就是相位分析。

什么是相位?
相位就是转动部件参考一个固定位置得到的瞬时位置信息。

相位告诉我们振动的方向。

相位研究就是收集设备和结构的相位数据和评估,揭示部件之间相对运动的信息。

振动分析中,相位分为:绝对相位和相对相位。

绝对相位使用一个传感器和光电传感器。

每个测点,振动分析仪计算光电触发点和振动波形中下一个正峰之间的时间。

时间差转换成角度,显示为绝对相位。

相位能以转轴频率或转轴谐频(同步频率)进行测量。

转子动平衡时需要绝对相位。

相对相位通过多通道振动分析仪同时使用两个或多个同样类型的传感器采集交叉通道的振动波形计算得到的。

1个传感器作为固定参考放置在设备上(通常是轴承座),另一个传感器移动到不同的测点。

在每个测点,振动分析仪比较固定传感器和移动传感器之间的时间波形。

相对相位就是特定频率时间波形的时间差,转换为角度。

相对相位不需要光电传感器,所以在任何频率测量相位。

两种相位测量方法都很简单。

相对相位是比较方便的一种方法,因为不用停机安装反光带,且可以在任何频率测量。

大多数单通道振动分析仪可以测量绝对相位,市面上大多数多通道振动分析仪包含绝对相位和相对相位两种测量功能。

什么时候使用相位分析
每个人都需要相位分析。

当设备的振动故障源不清楚或需要确定可疑的振动源时,就需要使用相位分析。

相位分析测点可能只包括设备轴承部位或包括整个设备从地基到轴承。

下面是相位如何帮助振动分析的例子。

软脚
软脚用来描述机组框架变形。

电机地脚,机泵和其它部件不平,其它问题,如加工误差,地脚弯曲或扭曲,安装平面不平等都会造成软脚。

软脚会加剧振动和对轴承、密封、联轴器施加过度应力。

软脚会造成电机定子基座变形,造成气隙不均,导致2X线频的振动。

使用激光对中仪,逐次松动设备的地脚,矫正软脚。

当设备运转时,相位用来确认软脚。

测量地脚安装平面和地脚的垂直相位。

如果连接是紧的,两者相位相同。

如果相位差超过20度,地脚是松动的或机组的框架断裂或不稳。

轴承翘曲和轴弯曲
相位可用来检测轴承翘曲和轴弯曲。

测量轴承座轴向4个位置的相位。

如果轴承是翘曲或转轴弯曲,每个方向的相位都不相同。

如果转轴是直的,轴承没有翘曲,每个方向的相位是相同的。

不平衡确认
1X转频通常以为转子不平衡,可以使用相位确认不平衡。

测量轴承座垂直方向和水平方向上的相位,如果相位差约为90度,故障是不平衡。

如果
相位差接近0度或180度,这是有反映力引起的振动。

偏心的带轮和轴不中都是反映力。

松动,弯曲或扭曲
相位可以用来检测结构松动和由刚度弱或共振造成的弯曲和扭曲。

测量每个连接点的垂直相位如图11,如果连接点松动,相位差会是180度。

连接紧的,相位不会变化。

轴不对中
使用相位可以轻松的确认转轴不对中。

对每个轴承的垂直,水平,轴向进行测量,记录相位和振动。

对各个测点的水平方向、垂直方向、轴向数据进行对比。

如果联轴器两侧测点相位接近,对中良好。

图12中,径向方向联轴器两侧测点相位差180度,轴向方向相同。

数据说明是转轴平行不对中。

工作变形模态分析
工作变形模态分析软件ODS可以用来动画处理设备结构简图。

ODS是在设备工作时分析转动部件和结构运动的一种测量技术。

ODS是相位分析的扩展,用计算机建立设备模型,输入相位和振动幅值数据或同时测量的时间波形,进行动画处理。

动画可以直观的进行故障诊断。

ODS测试可以确认很
多机械故障和共振问题,例如松动,软脚,开焊,不对中,不平衡,共振造成的弯曲或扭曲,结构刚度弱和基础问题。

图13是1个关于3个直接耦合转子的简单ODS,相位和振幅是由固定安装在透平发电机上位移传感器测得的,包括X、Y。

ODS软件使用列表中的数据动画处理高-低压透平转子和发电机转子。

右侧ODS动画显示了设备在3600rpm时,各个转子的振动形式和转子之间的相对运动。

很多设备由于基础劣化,松动,支撑结构共振或轴承故障造成异常振动。

相位可以研究包括从设备到基础数百个测点的数据。

好的ODS软件很容易分析大量测点的相位和振动幅值数据。

ODS分析涉及设备运动的解释和描述。

结论
振动测试是以可靠性为中心的维修管理的重要组成部分。

振动传感器,振动分析仪和软件可以提供机组状态的关键信息。

这个环节薄弱部分就是振动分析师解释振动数据,诊断故障,预测剩余寿命的能力。

相位分析是一个很有用的诊断工具。

每个振动分析师都应该使用相位以提高振动分析的准确
性。

相关文档
最新文档