三方六方转换问题

合集下载

XRD常见问题分析大全

XRD常见问题分析大全

1.做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团?X射线照射到物质上将产生散射。

晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。

绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。

晶体微观结构的特征是具有周期性的长程的有序结构。

晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。

用少量固体粉末或小块样品便可得到其X射线衍射图。

XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大小等)最有力的方法。

XRD特别适用于晶态物质的物相分析。

晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。

因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析;XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。

目前XRD主要适用于无机物,对于有机物应用较少。

关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。

如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分?三者并无严格明晰的分界。

在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。

如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。

XRD常见疑问及解答

XRD常见疑问及解答

[一般问题]做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团?X射线照射到物质上将产生散射。

晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。

绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。

晶体微观结构的特征是具有周期性的长程的有序结构。

晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。

用少量固体粉末或小块样品便可得到其X射线衍射图。

XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大小等)最有力的方法。

XRD特别适用于晶态物质的物相分析。

晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。

因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析;XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。

目前XRD主要适用于无机物,对于有机物应用较少。

关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。

如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分?三者并无严格明晰的分界。

在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。

如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。

三方晶系和六方晶系

三方晶系和六方晶系

关于我对三方晶系、六方晶系以及将六方晶系转化成三方晶系的一点认识关键词:三方晶系、六方晶系、转化。

摘要:本文详细阐述了三方晶系、六方晶系,七大晶系和六大晶系的相关知识以及它们之间的区别和联系。

通过对三方晶系和六方晶系的晶格常熟、三方点阵和六方点阵的形成以及它们的对称性关系进行讨论,进一步阐明了三方晶系之所以能归入六方晶系的理论基础,解释了六方晶系转化成三方晶系的方法。

三方晶系(trigonal system ):三方晶系属中级晶族。

特征对称元素为三重对称轴。

可划分出六方晶胞的菱面体晶胞。

在晶体外形或宏观物性中能呈现出具有唯一高次三重轴或三重反轴特征对称元素的晶体归属于三方晶系。

三方晶系一类正当晶格单位有两种选取模式:一种是取菱形六面体的三方素晶格R,其晶格参数具有a=b=c, α=β=γ<120°≠90°的特征;另一种是取体积为素晶格R三倍的三方H格子,此中晶体学界常用的轴系变换方式是三方H格子具有a=b≠c,α=β=90°,γ=120°的特征。

代表矿物:水晶,红宝石、蓝宝石(即刚玉)。

三方晶系碳酸盐三方晶系锑六方晶系(hexagonal crystal system):六方晶系六方晶系晶轴在唯一具有高次轴的c轴主轴方向存在六重轴或六重反轴特征对称元素的晶体归属六方晶系。

六次轴六方晶系特征对称性决定了六方晶系晶胞对应的基向量特点是:副轴和均与主轴垂直,二个副轴基向量的大小相等,副轴间的夹角为120°,即其晶胞参数具有a=b≠c,α=β=90°,γ=120°的关系。

六方晶系(hexagonal system),有一个6次对称轴或者6次倒转轴,该轴是晶体的直立结晶轴C轴。

另外三个水平结晶轴正端互成120°夹角。

轴角α=β=90°,γ=120°,轴单位a=b≠c。

六方晶系晶体常见有六棱柱状、六方板(片)状以及它们的各种聚形,偶然会出现十二棱柱体(复六方柱)。

如何处理复杂三方关系中的心理问题

如何处理复杂三方关系中的心理问题

如何处理复杂三方关系中的心理问题在现实生活中,我们经常会面临处理复杂的三方关系,例如与两位好友之间的矛盾,或是与两位亲人之间的不和等等。

在这些情况下,处理好三方关系中的心理问题变得尤为重要。

本文将分享一些策略和技巧,帮助你更好地应对和处理这样的困境。

一、认识情绪和心理需求在处理复杂三方关系时,我们首先要认识自己的情绪和心理需求。

这意味着我们需要反思和理解自己的感受和期望,明确自己对于关系的期待和希望,并且了解自己在这个关系中的角色和位置。

认识自己的情绪和心理需求可以帮助我们更加冷静地面对问题,并且以更合适的方式表达自己的需求和意见。

二、保持开放和公正的心态在处理复杂三方关系时,保持开放和公正的心态非常重要。

我们需要尽量放下个人偏见和情绪,客观地听取各方意见和需求,理解彼此的想法和立场。

保持开放和公正的心态有助于我们摒弃成见,理性地分析问题,并且推动彼此之间的沟通和理解。

三、建立有效的沟通渠道在处理复杂三方关系时,建立有效的沟通渠道是至关重要的。

我们可以组织一次面对面的对话、开展集体讨论或是倡导使用沟通工具等等,来促进各方之间的交流和沟通。

有效的沟通渠道有助于各方充分表达自己的意见和观点,找到共同的解决办法,并且减少误解和不满。

四、尊重各方的权益和观点在处理复杂三方关系时,我们应该尊重各方的权益和观点。

这意味着我们要尊重彼此的独特性和个体差异,尊重各方的决策权和自主性。

通过尊重各方的权益和观点,我们可以建立起一种尊重和谐的关系,同时也能够更好地促进解决问题和协商的进展。

五、寻求第三方的帮助和介入在处理复杂三方关系中的心理问题时,有时候我们可能需要寻求第三方的帮助和介入。

第三方可以是一个公正的调解者、一位专业的咨询师或是一个共同的朋友等等。

他们可以提供客观的意见和建议,帮助我们理清思路,解决困扰我们的心理问题。

六、培养自我调适的能力在处理复杂三方关系中的心理问题时,培养自我调适的能力是非常重要的。

这意味着我们需要学会放松自己,处理自己的情绪,并且找到适合自己的情绪调节方式。

XRD常见问题集锦(PDF

XRD常见问题集锦(PDF

[一般问题]做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团?X射线照射到物质上将产生散射。

晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。

绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。

晶体微观结构的特征是具有周期性的长程的有序结构。

晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。

用少量固体粉末或小块样品便可得到其X射线衍射图。

XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大小等)最有力的方法。

XRD特别适用于晶态物质的物相分析。

晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。

因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析;XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。

目前XRD主要适用于无机物,对于有机物应用较少。

关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。

如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分?三者并无严格明晰的分界。

在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。

如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。

XRD,以及晶体结构的相关基础知识

XRD,以及晶体结构的相关基础知识

XRD,以及晶体结构的相关基础知识(ZZ)Theory 2009-10-25 17:55:42 阅读355 评论0 字号:大中小做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团?X射线照射到物质上将产生散射。

晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。

绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。

晶体微观结构的特征是具有周期性的长程的有序结构。

晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。

用少量固体粉末或小块样品便可得到其X射线衍射图。

XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大小等)最有力的方法。

XRD 特别适用于晶态物质的物相分析。

晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。

因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析;XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。

目前XRD主要适用于无机物,对于有机物应用较少。

关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。

如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分?三者并无严格明晰的分界。

在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。

实验五 晶体衍射线的指标化

实验五  晶体衍射线的指标化

(5-4)
(5-5)
均为常数,求出A、C便知晶胞参数
和c值,进而可标定各晶面指数,具体步骤是: 1.当=0时,(式5-3)变成sin2θ=A(h2+k2),而(h2+k2)的容许值
为1,2,4,5,8,9,…,于是(hk0)衍射峰的sin2θ值除以 1,2,4,5,8,9,…,必然有一个合适的A值,再依(5-4)式可以得 出
110 1 200 2 2 211 4 3 220 6 4 310 8 5 222 10 6 321 12 8 400 14 9 411 16 10 330 18 11 420 20
111
111
1 200 3 1 220 3 1
2 220 4 1.33 311 8 2.67
3 311 8 2.67 400 11 3.67
单立方还是体心立方。
表5-1立方晶系的系统消光规律
序 简单立方
体心立方
面心立方 金刚石立方
号 hkl Nm Nm/N1 hkl Nm Nm/N1 hkl Nm Nm/N1 hkl Nm Nm/N1
1 100 2 110 1 3 111 2 4 200 3 5 210 4 6 211 5 7 220 6 8 300 8 9 221 9 10 310 10 11 311 11
Jade提供四种的指标化方法,即快速(Rapid)、常规(Routine)、 扩展(Extensive)和详尽(Exhaustive)。快速和常规指标化方法对于 低各向异性晶胞效果很好。通常首先使用这两种方法进行尝试。扩展和 详尽指标化方法需要较长的时间才能完成,但是对高各向异性晶胞效果 好。在指标化的过程中可以按“ESC”键终止指标化过程。
值得注意的是,表5-1中给出的简单立方和体心立方前6个峰的比值

三方晶系和六方晶系

三方晶系和六方晶系

矿物晶体七大晶系图解矿物晶体七大晶系图解——————三方晶系和六方晶系三方晶系和六方晶系三方晶系和六方晶系((一)三方晶系和六方晶系有许多相似之处,一些矿物专著和科普书刊往往将二者合并在一起,或干脆就称晶体有六大晶系。

与前面讲的五个晶系最大的不同是三方/六方晶系的晶轴有四根,即一根竖直轴(z 轴)三根水平横轴(x、y、u 轴)。

竖轴与三根横轴的交角皆为90度垂直,三根横轴间的夹角为120度(六方晶系为60度,也可说成三横轴前端交角120度。

)。

如果围绕z 轴旋转一周,三方晶系晶体的横轴可以重合三次,六方晶系晶体的横轴则重合六次,故,三方/六方晶系晶体的对称度都高,z 轴是高次轴,也就是主轴。

三方晶系常见的晶体有三棱柱状、三角片状等,有时呈六棱柱、六角片状(复三方、复三角面)及它们的各种聚形;六方晶系晶体常见有六棱柱状、六方板(片)状以及它们的各种聚形,偶然会出现十二棱柱体(复六方柱)。

有时候三方/六方晶系会出现菱形六面体晶型,较容易同三斜晶系的晶体混同。

三方晶系和六方晶系以严格的矿物学理论而言是不应该混淆的,但作为非矿物学家的我们,没有必要去探究那些高深的理论或从专业研究角度去区分它们的理论差异,那没有太大的实际用途。

如果一定要我用一句通俗的话来描述三方和六方的区别,可以这样说:三方晶系的矿物既能长成三棱柱、三角板片的晶型,也能长成六棱柱、六角板片的晶型与六方晶系晶体混淆,但六方晶系的矿物通常不会长成三棱柱或三角板片等与三方晶系混淆(仅有一个三方双锥例外)。

一般说来,三方/六方晶系的晶体外观比较好认。

常见的矿物有水晶、方解石、电气石、绿柱石、刚玉、辰砂、赤铁矿、磷灰石等。

请看实际晶体:六方晶系的高温β石英石英,,又叫无腰水晶又叫无腰水晶三方晶系的α α 石英石英石英,,即低温水晶即低温水晶,,最为普遍常见最为普遍常见方解石是三方晶系的矿物方解石是三方晶系的矿物,,晶体形态超过六百种晶体形态超过六百种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

举例说明
从这个例子可以看出: ①晶胞的原点或点阵点并不是一定要 放在原子的中心位置上。 ②三方晶系的晶体可合理地选六方晶 胞。 ③只有三重轴对称性的三方晶系晶体 可抽象地划出有六重轴对称性的点阵类型。
五、结语
所谓的三方六方的混乱问题主要是由于晶 系的分类不同和历史遗留晶格名称问题造 成的混乱,个人比较推崇老师课上讲的七 晶系分类体系,由于分类是由32种点群的 对称性演变而来,理解比较顺畅,只需强 化记忆“三方晶系”使用的是“六方晶格” 就可避免不必要的混乱。
二、晶系概念的定义
作为常用的晶系概念有三种,分别为布拉 维系(Bravais system)、晶族(crystal family)、七晶系(crystal system) 三种晶系概念只在“三方”与“六方”概 念有所区别,其他晶系定义基本相同。
(布拉维晶系( Bravais system )
7种晶系 严格来讲布拉维晶系中没有“三方”概念, 相反用“菱方”表示。 六方( hexagonal) ( a= b≠ c, α= β= 90° ,γ = 120 ° )和菱方(rhombohedral) & ( a = b= c, α= β=γ≠90° ≠ 60 ° )。
(2)晶族(crystal family)
四、三方转换“六方”
(2)三方晶系中的六方晶胞(由于历史 原因叫做这个名字,但其实没有六次对称 性)用的就是六方格子
四、三方转换“六方”
举例说明: 图 1示出α-Se的分子结构、 晶体结构和点阵 的投影。α-Se为三重螺旋形的长链分子,在晶体中 ,这些 螺旋长链分子互相平行地堆积在一起 ,平行螺旋轴的投影 结构示于图 1 ( b)。晶体属 D3- 32点群,这种形状的晶胞 通称六方晶胞 ,其意义是晶胞参数满足 a=b≠c,α=β= 90° ,γ= 120° 的条件 ,这种晶胞满足按三重轴转 120° 复原的要求 ,而不是说其结构具有六重轴对称性。
三、我的观点
所谓的“三方六方转换问题”是七晶系的 问题,因为只有七晶系体系中有“三方晶 系”的概念,但“六方”的概念不是六方 晶系,因为两种晶系由于对称性不同定义 的,所以不可能相互转换,所以“六方” 指的是“六方晶胞”也就是六方的布拉菲 空间格子。
四、三方转换“六方”
(1)三方晶系中的菱方晶胞可以画在六 方格子里面
六种晶族,把布拉维晶系中“菱方”和 “六方”合并为“六方”晶族。 此划分方法有一定的合理性,因为“菱方” 可以转换为“R型六方”结构
(3)七晶系(crystal system)
具有真正意义上的“三方”晶系概念,根 据晶体学点群呈现的最高对称性的轴( 包 括旋转轴和旋转反演轴) 来划分七大晶系, 即: 32点群——7晶系。 而三方晶系则分为两种:菱面体晶胞: a = b= c, α= β=γ<120 ° ≠90°和六方晶胞: a = b ≠ c, α= β=90° γ=120 ° ≠90°
三方六方转换问题
一,问题的提出
晶系和空间群: 六方晶系(2H型),空间 群为D46h—P63/mmc;三方晶系(3R型), 空间群为C5—R3m;晶 胞 参 数: a0=3.15Å,co=12.30Å(2H型), z=2,a0=3.16Å,c0=18.33Å(3R型);粉 晶 数 据:6.15(1) 2.277(0.45) 1.83(0.25)
相关文档
最新文档