2020中考复习 乘法公式的综合运用
中考复习专题:乘法公式和因式分解考点梳理

中考复习专题:乘法公式和因式分解考点梳理在中考中,乘法公式和因式分解部分要求我们能够利用乘法公式进行简单计算,并且能够用提公因式法和公式法进行因式分解。
乘法公式与因式分解不仅仅是一个重要的知识点,还是一种数学方法,广泛运用于整式、分式化简与求值、解方程等,是中考的必考知识点,属于基础知识,以中低档题形式出现。
一、考点知识梳理【考点1 平方差公式】两数和与这两数差的积,等于它们的平方差。
(a+b)(a-b)=a2-b2【考点2 完全平方公式】两数的平方和,加上(或者减去)它们的积的两倍等于它们和(或差)的平方。
(a±b)2=a2±2ab+b2【考点3 因式分解】1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
2.分解因式与整式乘法的关系是互逆的.3.分解因式的基本方法(1)提公因式法:ma+mb+mc=m(a+b+c)。
(2)运用公式法:平方差公式:a2-b2=(a+b)(a-b)。
完全平方公式:a2±2ab+b2=(a±b)2。
二、考点分析【考点1 平方差公式】【解题技巧】能够运用平方差公式进行多项式乘法运算的必须是两个二项式,两项都能写成平方的形式,且符号相反.反之能够运用平方差公式分解因式的多项式必须是二项式且符号相反。
【例1】(2019河北沧州中考模拟)若(a﹣b﹣2)2+|a+b+3|=0,则a2﹣b2的值是()A.﹣1 B.1 C.6 D.﹣6【答案】D。
【分析】由非负数的性质得出a﹣b=2,a+b=﹣3,求出a,b的值,再代入a2﹣b2进行计算即可。
【解答】解:∵(a﹣b﹣2)2+|a+b+3|=0,∴a﹣b=2,a+b=﹣3,∴a2﹣b2=(a+b)(a﹣b)=2×(﹣3)=﹣6;故选:D。
【考点2 完全平方公式】【解题技巧】能运用完全平方公式进行多项式乘法运算的,必须是两个数(或差)的平方和的形式,反之能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【例2】(2019辽宁锦州中考模拟)如果二次三项次x2﹣16x+m2是一个完全平方式,那么m的值是()A.±8 B.4 C.﹣2 D.±2【答案】A。
2020年广东省中考数学总复习:整式的乘除第3讲《乘法公式》

2020年广东省中考数学总复习:整式的乘除第3讲《乘法公式》模块一 平方差公式22()()a b a b a b +-=-平方差公式的特点:即两数和与它们差的积等于这两数的平方差。
①左边是一个二项式相乘,这两项中有一项完全相同,另一项互为相反数。
②右边是乘方中两项的平方差(相同项的平方减去相反项的平方)。
注意:①公式中的a 和b 可以是具体的数也可以是单项式或多项式。
如:2(2)(2)4a a a +-=-;22(3)(3=9x y x y x y +--); 22()()()a b c a b c a b c +++-=+-;3535610()()a b a b a b +-=-。
②不能直接运用平方差公式的,要善于转化变形,也可能运用公式。
如:97103(1003)(1003)9991⨯=-+=; 22()()()()a b b a a b a b a b +-+=+-=-。
模块二 完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+,即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍。
完全平方公式的特点:左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中的每一项的平方,另一项是左边二项式中二项乘积的2倍,可简单概括为口诀:“首平方,尾平方,首尾之积2倍加减在中央”。
注意:①公式中的a 和b 可以是单项式,也可以是多项式。
②一些本来不是二项式的式子的平方也可以利用完全平方公式来计算,22()[()]a b c a b c ++=++22()2()a b a b c c =+++⨯+知识点睛222222a ab b ac bc c =+++++222222a b c ab ac bc =+++++板块一:公式的几何意义【例1】 如图,从边长为a 的正方形内去掉一个边长为b 的小正方形,然后将剩余部分拼成一个长方形,上述操作所能验证的公式是__________.【答案】如图,左图中阴影部分的面积为22a b -,右图中阴影部分的面积为()()a b a b +-,而两图中阴影部分的面积应该是相等的,故验证的公式为22()()a b a b a b +-=-(反过来写也可)【巩固】 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.【答案】22()()4a b a b ab -=+-或224()()ab a b a b =+--【巩固】 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.【答案】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为例题精讲a bb a。
(完整版)乘法公式的灵活运用

1乘法公式的灵活运用一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
数学解析初中代数中常见的乘法公式及应用

数学解析初中代数中常见的乘法公式及应用乘法在初中代数中是一个常见的运算方式,通过掌握乘法公式和灵活运用,可以更好地解决数学问题。
在本文中,我们将介绍一些常见的乘法公式以及它们的应用。
一、基础乘法公式1. 同底数乘法公式当两个数的底数相等时,指数相加。
例如:aⁿ * aᵐ= a^(ⁿ+ᵐ)2. 平方乘法公式任何数的平方都可以表示为底数相同,指数为2的形式。
例如:(a * b)² = a² * b²3. 一次多项式的乘法公式两个一次多项式相乘的结果可以用分配律展开。
例如:(a + b)(c + d) = ac + ad + bc + bd二、常见的乘法公式应用1. 多项式的乘法在解决多项式相乘的问题中,可以运用分配律进行展开,并根据指数相加的规则进行合并。
例如:(2x + 3)(x + 5) = 2x * x + 2x * 5 + 3 * x + 3 * 5 = 2x² + 10x + 3x + 15 = 2x² + 13x + 152. 平方差公式平方差公式可以帮助我们快速求解两个数的平方差的形式。
例如:(a + b)(a - b) = a² - b²3. 立方差公式立方差公式可以帮助我们快速求解两个数的立方差的形式。
例如:(a + b)(a² - ab + b²) = a³ + b³4. 特殊乘法公式有一些特殊的乘法公式,经常出现在代数问题中,例如:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²- a² - b² = (a + b)(a - b)- a³ + b³ = (a + b)(a² - ab + b²)这些特殊乘法公式在解答问题时非常有用,通过熟练掌握可以提高解题速度和准确性。
乘法公式灵活运用

乘法公式灵活运用乘法公式是数学中常用的一种计算方法,用于求解两个或多个数的乘积。
灵活运用乘法公式可以简化计算,提高解题效率。
本文将从实际问题出发,分析乘法公式的灵活运用方法,以及对应的数学技巧,帮助读者更好地掌握乘法公式的应用。
乘法公式的基本形式是:a×b=c,其中a和b是乘数,c是积。
乘法公式可以用于求解各类数学问题,包括乘法的基本性质、因数分解、最大公约数、公倍数等。
在乘法的基本性质中,乘法公式可以被运用于计算两个数相乘的结果。
例如计算12×35,我们可以使用乘法公式,将12拆解为10+2,35拆解为30+5,然后进行分配律运算:(10+2)×(30+5)=(10×30)+(10×5)+(2×30)+(2×5)=300+50+60+10=420。
这样,我们可以通过分解乘数,将原本复杂的乘法运算简化为几个简单的加法和乘法运算。
乘法公式还可以用于因数分解。
因数分解是将一个数分解为多个乘数的乘积,通过应用乘法公式,可以将这个过程简化。
例如对于数45,我们可以将它分解为3×15,然后继续对15进行因数分解,得到3×5×3、这样,45就可以表示为它的全部因数的乘积。
因数分解在数论、代数等领域有着重要的应用,通过乘法公式,我们可以更轻松地完成这个过程。
乘法公式在解决实际问题时,还可以通过一些数学技巧来进一步灵活运用。
例如在乘法运算中,可以通过重新排序进行简化。
如果要计算3×7×5,我们可以将其按需重新排列,得到5×7×3,然后再进行乘法运算:5×7=35,35×3=105、这样,我们可以通过重新排列乘积的顺序,在保持乘数不变的前提下,使得计算更加简单。
此外,乘法公式还可以和其他数学知识相结合,进一步拓展乘法的应用。
例如在代数中,乘法公式可以用于计算多项式的展开式。
中考数学专题复习课件:8.乘法公式的灵活运用(共9张PPT)

(①+②)÷2得a2+b2=5 (①-②)÷4得ab=1 ∴a2+b2+ab=5+1=6
方法总结 平方差公式: (a+b)(a-b)=a2-b2
完全平方和公式:
完全平方差公式:
(a+b)2 =a2+b2+2ab
(a-b)2 =a2+b2+2ab
以上公式表达了完全平方和(差)与平方和、乘积之间的关系,如果知道其 中的部分量,可以运用公式求出剩下的量.
乘法公式的灵活运用
乘法公式实质是多项式乘法的简便运算,运用乘法公式同样也可以简化 某些乘法运算,下面略举一二.
类型一:利用乘法公式进行简便运算 运用乘法公式简便计算: (1)9982 (2)19.7×20.3
解:⑴9982 =(1000-2) 2 =10002-2×1000×2+22 =100 0000-4000+4 =996004
当a+b=5,ab=3时
原式=52-2×3 =19
=(a+b)2-4ab
当a+b=5,ab=3时 原式= 52-4×3 =13
已知(a+b)2=7,(a-b)2=3,求a2+b2+ab的值为______________. 解:由(a+b)2=7得a2+b2+2ab=7① 由(a-b)2=3得a2+b2-2ab=3②
•qLC0-8R425cbnmdswaqLC0-8R425cbnmd关于文化多样性,中国古代先贤早就提出了“和而不同”的思想。今天,在尊重文化多样性的基础上推动文化交流互鉴,既是发展本民族文化的内在要求,也是实现世界文化繁荣的必然选择。
•早在人类文化发展的上古时期,文化的发展就不是一个模式,而是形成多个文化体系,呈现多样形态。此后,不同文化并不是孤立地、互不联系地发展,而是在相互交流、对话、学习、碰撞中前行,逐渐形成“你中有我、我中有你”的格局。而不同文明的接触,常常成为人类进步的里程碑: 希腊学习埃及,罗马学习希腊,阿拉伯学习罗马帝国,中世纪欧洲学习阿拉伯,文艺复兴时期的欧洲又学习东罗马帝国。欧洲文化的发展状况是这样,东亚也是如此:日本明治维新之前,日本学习借鉴中国;明治维新之后,中国通过日本学习世界。中国从印度引入佛教,之后中国佛教影响东 亚、东南亚大片区域。人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断吸收改造外来文化并使其成为自己的一部分。这种处于变化发展中的文化,其民族性往往更为鲜明突出,更符合民族文化发展的 需要。以中国绘画为例,“六朝以来,就大受印度美术的影响”。内容与形式发生较大人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断吸收改造外来文化并使其成为自己的一部分。这种处于变化发展 中的文化,其民族性往往更为鲜明突出,更符合民族文化发展的需要。以中国绘画为例,“六朝以来,就大受印度美术的影响”。内容与形式发生较大人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断
专题一--乘法公式及应用

专题一乘法公式的复习一、复习:(a+b)(a—b)=a2-b2 (a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2(a+b)(a2-ab+b2)=a3+b3(a—b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )]=2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值.解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值.解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998例4:已知a+b=2,ab=1,求a 2+b 2和(a —b)2的值。
最新人教版初中八年级上册数学【乘法公式的综合运用】教学课件

巩固练习
练习 已知(a+b)2=7,(a−b)2=3 ,求 a 2 + b 2 的值.
巩固练习
练习 已知(a+b)2=7,(a−b)2=3,求a2+b2的值.
分析: (a+b)2
(a+b)2=a2+2ab+b2; (a−b)2=a2−2ab+b2. 注意:公式中的a、b可以表示数或式子.
课堂总结
2.平方差公式: (a+b)(a−b)=a2−b2.
逆用: a2−b2=(a+b)(a−b).
课堂总结
3.完全平方公式: (a+b)2=a2+2ab+b2; (a−b)2=a2−2ab+b2.
例题讲解
例 运用乘法公式计算:
解: (3) (x+y)2 −(x−y)2
= x2+2xy+y2−(x2−2xy+y2) = x2+2xy+y2−x2+2xy−y2 = 4xy.
方法一:
完全平方公式: (a±b)2 = a2±2ab+b2.
例题讲解
例 运用乘法公式计算:
解: (3) (x+y)2 − (x−y)2
常用变形形式: a2+b2=(a+b)2−2ab; a2+b2=(a−b)2+2ab; (a+b)2=(a−b)2+4ab.
课堂总结
4.灵活运用公式: 整式的混合运算
观察特征 适当变形 乘法公式的形式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=x2-4y2+12y+9; (3)(a-b-c)2.
解:原式= a b c2
=(a2-2ab+b2)-2பைடு நூலகம்(a-b)+c2
=a2+b2+c2-2ab-2ac+2bc.
1.3ab-4bc+1=3ab-( ),括号中所填入的整式应 是( C )
A.-4bc+1 B.4bc+1 C.4bc-1 D.-4bc-1 2.将多项式3x3-2x2+4x-5添括号后正确的是( B ) A.3x3-(2x2+4x-5) B.(3x3+4x)-(2x2+5) C.(3x3-5)+(-2x2-4x) D.2x2+(3x3+4x-5)
2.乘法公式变形 (1)(a+b)2=(a-b)2+4ab; (2)(a-b)2=(a+b)2-4ab; (3)(a+b)2+(a-b)2=2(a2+b2); (4)(a+b)2-(a-b)2=4ab; (5)a2+b2=(a+b)2-2ab=(a-b)2+2ab.
题型 一 添括号法则
【例1】按要求把多项式5a3b-2ab+3ab3-2b2添 上括号: (1)把后三项括到前面带有“-”号的括号里; 解:原式=5a3b-(2ab-3ab3+2b2); (2)把四次项括到前面带有“+”号的括号里,把 二次项括到前面带有“-”号的括号里. 解:原式=+(5a3b+3ab3)-(2ab+2b2).
第十四章 整式的乘法与因式分解
14.2 乘法公式 14.2.2 完全平方公式 第2课时 乘法公式的综合运用
1 课堂讲解
添括号法则 乘法公式的综合运用
2 课时流程
预习 导学
题型 分类
当堂 演练
课后 作业
1.添括号法则 文字描述:添括号时,如果括号前面是正号,括 到括号里的各项都___不__变__符__号___;如果括号前面 是负号,括到括号里的各项都__改__变___符__号___. 符号表述:(1)a+b+c=a+___(_b_+__c_)____; (2)a-b-c=a-___(_b_+__c_) ____.
题型 二 乘法公式的综合运用
【例2】计算: (1)(a+b-c)(a+b+c);
解:原式= a b c a b c
=(a+b)2-c2 =a2+2ab+b2-c2;
(2)(x+2y-3)(x-2y+3);
解:原式= x 2 y 3 x 2 y 3
3.在等号的右边的括号内填上适当的项.
(1)2a+3b-c=2a+(
3b-)c;
(2)2a-3b-c=2a-(
3b+)c;
(3)-2a-3b-c+d=-(
2a+)3-b ( c-);d
(4)2a+3b+d=2a-( -3b-).d
4.运用乘法公式计算: (1)(x+y+1)(x+y-1); 解:原式=(x+y)2-1 =x2+2xy+y2-1; (2)(2x-y-3)2.
解:原式= 2x y 32
=4x2-4xy+y2-6(2x-y)+9 =4x2+y2+6y+9-4xy-12x.
请完成本课时对应的课外演练