工程勘察中常用岩土工程参数及选用
岩土参数标准值和平均值

岩土参数标准值和平均值
岩土参数标准值和平均值是根据岩土工程领域的经验和实际工程需要确定的。
这些参数一般用于设计土方工程、基础工程、土壤改良等岩土工程项目。
常见的岩土参数包括:
1. 抗剪强度:一般使用内摩擦角和剪切强度来表示,标准值和平均值可以根据不同土壤类型和工程要求确定。
2. 压缩性指标:包括压缩模量、压缩系数等,用于描述土壤的变形性质,标准值和平均值根据土壤的类型和含水量等因素确定。
3. 孔隙比、孔隙水压力、水力导渗系数等:用于表征土壤的渗流性质,标准值和平均值受到土壤类型和水分条件等因素的影响。
4. 密度指标:包括干密度、湿密度等,用于描述土壤的密实程度,标准值和平均值可由野外采样和实验室试验结果确定。
以上仅是一些常见的岩土参数,具体的参数和标准可以根据工程实际情况和相关规范标准确定。
(完整版)岩土力学参数大全

基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值东向南向西向北向γφ CBC DE CD EF FA AB填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。
岩土工程勘察 (参数取值、场地分类)统计表格

/
220-320
850-1100 55-70/70-86 0.3-0.35
粘土(可 塑)
/
100-210
200-400/500700
22-40/40-55
0.25-0.3
粉质粘土
(可塑-硬
/
塑Q4)
110-240
8001200/1200-
1700
24-42/4262/62-82
0.3-0.4
碎石土(松 散)
505075456坚硬较硬岩中风化较软岩强风化较软岩中风化软岩强风化软岩中风化极软岩强风化极软岩中风化20003000900018000120140800100014002400160240100015001200200010012050080050080016002600145220800100030009000901003005002003001001453004008090120300参考资料1支挡结构设计手册第二版建筑桩基技术规范jgj942008公路桥涵地基与基础设计规范jtgd632007土的变形模量与压缩模量的关系地基基础设计规范岩土工程师实用手册高层建筑岩土工程勘察规程jgj72一2004p383942ce0表213支挡结构后侧填料参数参考值2p3739qpkqsik3p2224fa0qsik通过fa0修正后得承载力容许值fa4es5p38中风化岩石端阻力标准值far?frkr折减系数6p73es表14157p38qpkqsik表8
8-40
/
30-33
/
29-65 40-50
/
33-37
/
37-40
/
30-33
/
54-65 40-50
/
33-37
部分常用岩土经验值

常用部分岩土参数经验值1岩土的渗透性(1)渗透系数岩土的渗透系数经验值土体的渗透系数值岩土体渗透性分级(2)单位吸水量各种构造岩的单位吸水量(ω值)上表可以看出同一断层内,一般碎块岩强烈透水;压碎岩中等透水;断层角砾岩弱透水;糜棱岩和断层泥不透水或微透水。
摘自高等学校教材天津大学《水利工程地质》第三版113页坝基(肩)防渗控制标准注:透水率1Lu(吕荣)相当于单位吸水量0.01。
(3)简易钻孔抽注水公式1)简易钻孔抽水公式根据水位恢复速度计算渗透系数公式1.57γ(h2-h1)K= ———————t (S1+S2)式中:γ---- 井的半径;h1---- 抽水停止后t1时刻的水头值;h2---- 抽水停止后t2时刻的水头值;S1、S2---- t1或t2时刻从承压水的静止水位至恢复水位的距离;H---- 未抽水时承压水的水头值或潜水含水层厚度。
《工程地质手册》第三版927页2)简易钻孔注水公式当l/γ<4时0.366Q 2lK= ———— lg ———Ls γ式中:K—渗透系数(m/d);l---试验段或过滤器长度(m);Q---稳定注水量(m3/d);s---孔中水头高度(m);γ---钻孔或过滤器半径(m)。
《工程地质手册》第三版936页(4)水力坡降各种土允许水力坡降参考表允许水力坡降等于临界水力坡降被安全系数除,一般安全系数值取2.0~3.0,即Ⅰ允= Ⅰ临/2.0~3.0。
摘自长春地质学院《中小型水利水电工程地质》1978年139页各种土地基上水闸设计的允许渗流比降无渗流出口保护情况下地基允许渗流比降见上表。
摘自《堤防工程地质勘察与评价》水规总院李广诚司富安杜忠信等。
42页(5)土毛细水上升值不同土的毛细水上升高度不同岩性毛细压力水头H k表k摘自《工程地质手册》(第三版)937页2土分类及状态、密实度(1)分类粒组划分《土工试验规程》SL237-1999 2页砂土的分类粘土分类(2)密实度、状态判定碎石土的密实度砂土密实度N'为实测标贯击数。
岩土勘察中常用参数参考规范及书页码

岩石与锚固体粘结强度特征值 (Frb)
参考规范
具体位置
P42~43页 P26页 建筑边坡工程技术规范 GB 50330-2013 P60页 P75页 P121页,附录G
边坡稳定安全系数(Fst) 岩土挡墙底面摩擦系数(μ ) 边坡坡率允许值(高宽比) 岩土层地基系数(m)
场地有利、不利地段划分 岩土层波速估算取值(vs) 场地类别确定 砂土液化判别计算及液化等级 确定 土层液化折减系数 抗震特征周期值(s)
建筑基坑支护技术规范 JGJ 120-2012
岩土条纹说明
地基基础设计等级 土对挡土墙基地的摩擦系数 (μ ) 建筑地基基础设计规范 GB 50007-2011
P6页
P49页
沉井外壁与土体间的单位摩阻 力
市政工程勘察规范 CJJ56-2012
P41页,附录B
备注
其中深沪及磁灶 地区需细分参 考:闽建设【 2011】10号文
各岩土层侧阻力 、端阻力标准值
与土对挡土墙基 地的摩擦系数一 致
各岩土层桩侧、 桩端极限值
与承台底与地基 土间的摩擦系数 一致
P33~39页 P45页 P47页 P50页 P63页 P64页
残积土的定名及根据标贯确定 状态 地基承载力修正系数(η b、η d) 建筑物的地基基础变形允许值 砂浆与岩石间的粘结强度特征 值(f) 单桩竖向承载力特征值估算 (Ra) 查表求各岩土承载力特征值 (fak) 建筑地基基础技术规范 DBJ 13-07-2006
P18页 P19页 P20页 P24~25页 P29页 P33页
建筑抗震设计规范 GB50011-2010
抗震设防烈度及地震加速度取 值
P179页,附录 A.0.11
工程勘察中常用岩土工程参数及选用(表格整理超清晰)

工程勘察中常用岩土工程参数及选用(表格整理超清晰)筑龙岩土6篇原创内容Official Account筑龙岩土编辑整理本文摘录城市轨道交通工程勘察中常用的岩土工程参数表,非常全面,建议收藏备用哦~岩土参数的应用常规参数及应用剪切试验指标应用热物理指标地铁工程中用到的热物理指标主要有导热系数、导湿系数、比热容,测定热物理性能试验方法较多,各种不同的方法都有一定的适用范围。
常用的热物理指标的测定方法有面热源法、热线法和热平衡法。
三个热物理指标有下列相互关系:式中ρ—密度(kg/m3);α—导温系数(m2/h)λ—导热系数(W/m·K)C —比热容(kJ/kg·K)地铁工程中,热物理参数主要用于通风设计、冷冻法施工设计中。
基床系数基床系数是地铁地下工程设计的重要参数,其数值的准确性关系到工程的安全性和经济性;对于没有工程积累的地区需要进行现场试验和专题研究,当有成熟地区经验时,可通过原位测试、室内试验结合地区经验综合确定:基床系数是地基土在外力作用下产生单位变形时所需的应力,也称弹性抗力系数或地基反力系数,一般可表示为:K=P/S式中K——基床系数(MPa/m);P——地基土所受的应力(MPa);S——地基的变形(m)。
基床系数与地基土的类别(砾状土、粘性土)、土的状况(密度、含水量)、物理力学特性、基础的形状及作用面积受力状况有关。
基床系数的确定方法如下:地基土的基床系数K可由原位荷载板试验(或K30试验)结果计算确定。
考虑到荷载板尺寸的影响,K值随着基础宽度B的增加而有所减小。
对于砾状土、砂土上的条形基础:对于粘性土上的条形基础:式中 K1——是0.305m宽标准荷载板的标准基床系数或K30值。
地铁工程中基床系数主要用来进行地基梁计算、衬砌配筋计算、路基计算、支护结构计算等。
基坑深度范围内一般进行水平基床系数试验,基底以下土层一般考虑进行垂直基床系数试验。
桩的设计参数对于高架敷设方式的轨道工程,一般采用桩基础,部分地下车站设有中间柱时,一般会采用柱下桩基方案,当地下水埋深较浅时,考虑地下结构的抗浮问题,可能设置抗浮桩。
岩土力学参数大全

基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值东向南向西向北向γφ CBC DE CD EF FA AB填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。
岩土工程勘察中常用参数的应用及选择

岩土工程勘察中常用参数的应用及选择一、岩土参数的应用1、常规参数及应用2、剪切试验指标应用3、热物理指标地铁工程中用到的热物理指标主要有导热系数、导湿系数、比热容,测定热物理性能试验方法较多,各种不同的方法都有一定的适用范围。
常用的热物理指标的测定方法有面热源法、热线法和热平衡法。
三个热物理指标有下列相互关系:式中ρ—密度(kg/m3);α—导温系数(m2/h)λ—导热系数(W/m·K);C—比热容(kJ/kg·K)地铁工程中,热物理参数主要用于通风设计、冷冻法施工设计中。
4、基床系数基床系数是地铁地下工程设计的重要参数,其数值的准确性关系到工程的安全性和经济性;对于没有工程积累的地区需要进行现场试验和专题研究,当有成熟地区经验时,可通过原位测试、室内试验结合地区经验综合确定:基床系数是地基土在外力作用下产生单位变形时所需的应力,也称弹性抗力系数或地基反力系数,一般可表示为:K=P/S式中K——基床系数(MPa/m);P——地基土所受的应力(MPa);S——地基的变形(m)。
基床系数与地基土的类别(砾状土、粘性土)、土的状况(密度、含水量)、物理力学特性、基础的形状及作用面积受力状况有关。
基床系数的确定方法如下:地基土的基床系数K可由原位荷载板试验(或K30试验)结果计算确定。
考虑到荷载板尺寸的影响,K值随着基础宽度B的增加而有所减小。
对于砾状土、砂土上的条形基础:对于粘性土上的条形基础:式中:K1——是0.305m宽标准荷载板的标准基床系数或K30值。
地铁工程中基床系数主要用来进行地基梁计算、衬砌配筋计算、路基计算、支护结构计算等。
基坑深度范围内一般进行水平基床系数试验,基底以下土层一般考虑进行垂直基床系数试验。
各岩土层基床系数经验值引用《城市轨道交通岩土工程勘察规范》(GB50307-2012)5、桩的设计参数对于高架敷设方式的轨道工程,一般采用桩基础,部分地下车站设有中间柱时,一般会采用柱下桩基方案,当地下水埋深较浅时,考虑地下结构的抗浮问题,可能设置抗浮桩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程勘察中常用的岩土工程参数及选用
热物理指标
地铁工程中用到的热物理指标主要有导热系数、导湿系数、比热容,测定热物理性能试验方法较多,各种不同的方法都有一定的适用范围。
常用的热物理指标的测定方法有面热源法、热线法和热平衡法。
三个热物
理指标有下列相互关系:
基床系数
基床系数是地铁地下工程设计的重要参数,其数值的准确性关系到工程的安全性和经济性;对于没有工程积累的地区需要进行现场试验和专题研究,当有成熟地区经验时,可通过原位测试、室内试验结合地区经验综合确定:
基床系数是地基土在外力作用下产生单位变形时所需的应力,也称弹性抗力系数或地基反力系数,一般可表示为:K=P/S
基床系数与地基土的类别(砾状土、粘性土)、土的状况(密度、含水量)、物理力学特性、基础的形状及作用面积受力状况有关。
基床系数的确定方法如下:
地基土的基床系数K可由原位荷载板试验(或K30试验)结果计算确定。
考虑到荷载板尺寸的影响,K值随着基础宽度B的增加而有所减小。
对于砾状土、砂土上的条形基础:
对于粘性土上的条形基础:
式中 K1——是0.305m宽标准荷载板的标准基床系数或K30值。
地铁工程中基床系数主要用来进行地基梁计算、衬砌配筋计算、路基计算、支护结构计算等。
基坑深度范围内一般进行水平基床系数试验,基底以下土层一般考虑进行垂直基床系数试验。
桩的设计参数
对于高架敷设方式的轨道工程,一般采用桩基础,部分地下车站设有中间柱时,一般会采用柱下桩基方案,当地下水埋深较浅时,考虑地下结构的抗浮问题,可能设置抗浮桩。
根据规范要求,高架区间线路桩的设计参数依据《铁路桥涵地基和基础设计规范》(TB10002.5)提供桩的极限摩阻力fi、地基土的容许承载力σ、地基系数的比例系数m和m0。
高架车站、车站中柱桩、抗浮桩的设计参数依据《建筑桩技术规范》(J GJ94)提供桩的极限侧阻力标准值qsik、极限端阻标准值qpk、地基土水平抗力系数的比例系数m、桩的抗拔系数λ。
地基承载力
对于地铁工程中的地面建筑、路基工程,地基承载力是极为重要的参数,岩土工程勘察报告中要根据不同的要求提供相应的地基承载力参数。
地面建筑依据《岩土工程勘察规范》、《建筑地基基础设计规范》及地方的房建规范标准提供地基承载力。
路基工程依据《铁路工程地质勘察规范》等铁路系统的规范标准提供地基承载力。
明挖法勘察岩土参数选择表
勘察手段与方法
土的物理性质试验及获取参数一览表
土的力学性质试验及获取参数一览表
其他应用
岩石风化程度分级
岩土施工工程分级
隧道围岩分级
地下水分类。