数据结构排序方法的比较

合集下载

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度相关概念1、稳定排序(stable sort)和⾮稳定排序稳定排序是指所有相等的数经过某种排序算法操作后仍然能保持它们在排序之前的相对次序。

反之就是⾮稳定排序。

2、内排序(internal sorting)和外排序(external sorting)在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调⼊内存,并借助内存调整数在外存中的存放顺序排序⽅法称为外排序。

排序算法【冒泡排序】(Bubble Sort)冒泡排序⽅法是最简单的排序⽅法。

这种⽅法的基本思想是,将待排序的元素看作是竖着排列的“⽓泡”,较⼩的元素⽐较轻,从⽽要往上浮。

在冒泡排序算法中我们要对这个“⽓泡”序列处理若⼲遍。

所谓⼀遍处理,就是⾃底向上检查⼀遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下⾯,就交换它们的位置。

显然,处理⼀遍之后,“最轻”的元素就浮到了最⾼位置;处理⼆遍之后,“次轻”的元素就浮到了次⾼位置。

在作第⼆遍处理时,由于最⾼位置上的元素已是“最轻”元素,所以不必检查。

⼀般地,第i遍处理时,不必检查第i⾼位置以上的元素,因为经过前⾯i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。

算法时间复杂度是O(n2)。

【选择排序】(Selection Sort)选择排序的基本思想是对待排序的记录序列进⾏n-1遍的处理,第 i 遍处理是将[i..n]中最⼩者与位置 i 交换位置。

这样,经过 i 遍处理之后,前 i 个记录的位置已经是正确的了。

选择排序是不稳定的。

算法复杂度是O(n2 )。

【插⼊排序】(Insertion Sort)插⼊排序的基本思想是,经过i-1遍处理后,L[1..i-1]⼰排好序。

第i遍处理仅将L插⼊L[1..i-1]的适当位置,使得L[1..i]⼜是排好序的序列。

要达到这个⽬的,我们可以⽤顺序⽐较的⽅法。

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

数据结构 两次 排序方法

数据结构 两次 排序方法

数据结构两次排序方法
常见的数据结构排序方法有多种,下面介绍两种常用的排序方法:
1. 冒泡排序(Bubble Sort):
冒泡排序是一种简单直观的排序算法。

它通过重复地遍历要排序的序列,每次比较相邻的两个元素,如果它们的顺序错误就交换它们,直到整个序列有序。

具体步骤如下:
- 从序列的第一个元素开始,依次比较相邻的两个元素,如果前一个元素大于后一个元素,则交换它们的位置。

- 对整个序列进行一轮遍历后,最大的元素就会被调整到最后的位置。

- 重复上述步骤,每次遍历都将未排序部分中最大的元素调整到合适的位置,直到整个序列有序。

2. 快速排序(Quick Sort):
快速排序是一种高效的排序算法,基于分治的思想。

它通过选择一个基准元素,将序列分为两个子序列,其中一个子序列中的元素都比基准元素小,另一个子序列中的元素都比基准元素大,然后对子序列进行递归排序。

具体步骤如下:
- 选择一个基准元素(通常选择第一个或最后一个元素)。

- 将序列分为两个子序列,小于基准元素的放在左边,大于基准元素的放在右边。

- 对左右两个子序列递归地进行快速排序。

- 合并左子序列、基准元素和右子序列,得到排序后的序列。

冒泡排序的时间复杂度为O(n^2),而快速排序的平均时间复杂度为O(nlogn),因此在大多数情况下,快速排序是更优的选择。

数据结构课程设报告—各种排序算法的比较

数据结构课程设报告—各种排序算法的比较

数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。

排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。

每种排序过程中均显示每一趟排序的细节。

程序的输入:输入所需排序方式的序号。

输入排序的数据的个数。

输入具体的数据元素。

程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。

b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。

开始时建立一个初始的有序序列, 它只包含一个数据元素。

然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。

c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。

等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。

d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。

《数据结构排序》课件

《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。

数据结构的常用算法

数据结构的常用算法

数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。

通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。

2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。

4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。

5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。

二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。

常见的查找算法有线性查找、二分查找、哈希查找等。

1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。

2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。

通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。

3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。

三、图算法图算法是解决图结构中相关问题的算法。

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。

从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。

当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。

插入排序算法对于大数组,这种算法非常慢。

但是对于小数组,它比其他算法快。

其他算法因为待的数组元素很少,反而使得效率降低。

插入排序还有一个优点就是排序稳定。

(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。

从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。

而记录的移动次数不变。

因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。

排序稳定。

(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。

Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。

数据结构(C语言版)实验报告 (内部排序算法比较)

《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。

试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。

基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。

(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。

(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。

数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。

在数组内部前半部为排好序的记录,后半部是未排好序的。

⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。

折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。

冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。

也不会改变相等记录的相对位置。

2-路归并排序:将两个有序表合并成⼀个有序表。

每次划分的两个⼦序列前后相邻。

合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。

因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。

基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。

分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。

(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。

经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。

但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。

这种跳跃式的移动导致该排序⽅法是不稳定的。

快速排序:改进的冒泡排序。

冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。

快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。

数据结构与算法(12):排序


int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L.List[i]=L.List[j];
L.List[j]=t;
}
}
L.List[left]=L.List[i];
L.List[i]=temp;
quicksort(L,left,i-1);
quicksort(L,i+1,right);
}
4.选择排序
每次将无序序列中最小的元素放入有序段的尾部,以此增大有序段的长度。具体实现如下:
j--;
while(i<j&&L.List[i]<=temp)
i++;
if(i<j)
{
int t=L.List[i];
L.List[i]=L.List[j];
L.List[j]=t;
}
}
L.List[left]=L.List[i];
L.List[i]=temp;
quicksort(L,left,i-1);
cj(L);
srand(time(0));
int n;
printf("请输入随机数的个数:\n");
scanf("%d",&n);
for(int i=0;i<n;i++)
{
int a=rand()%101;
insert(L,a);
}
printf("原始序列如下:\n");
travell(L);
printf("\n");
insert1(L,0,i-1,L.List[i]);
}
}
2.冒泡排序
冒泡排序采用消除逆序的方法,将所有逆序消除即为有序,每次扫描表将发现逆序消除,最终将最大元素放入表尾,以此类推最终实现排序。具体实现如下:
void Buttel(Sqlist &L)//冒泡排序
{
for(int i=0;i<L.length-1;i++)
k=k-gap;
}
L.List[k+gap]=temp;
}
}
}
}
四、实验结果
直接插入排序
冒泡排序
选择排序
快速排序
希尔排序
五、实验主要代码如下
typedef struct
{
int *List;
int length;
int size;
}Sqlist;
void insertsort(Sqlist &L)//插入排序
for(int j=0;j<L.length-i-1;j++)
{
if(L.List[j]>L.List[j+1])
{
int temp=L.List[j];
L.List[j]=L.List[j+1];
L.List[j+1]=temp;
flag=0;
}
}
if(flag==1)
break;
}
}
void selectsort(Sqlist &L)//选择排序
{
if(left>right)
return;
int i,j,temp;
temp=L.List[left];
i=left;
j=right;
while(i<j)
{
while(i<j&&L.List[j]>=temp)
j--;
while(i<j&&L.List[i]<=temp)
i++;
if(i<j)
{
int t=L.List[i];
for(int i=0;i<L.length;i++)
{
int min=L.List[i];
int k=i;
for(int j=i;j<L.length;j++)
{
if(L.List[j]<min)
{
min=L.List[j];
k=j;
}
}
if(k!=i)
{
L.List[k]=L.List[i];
L.List[i]=min;
quicksort(L,i+1,right);
}
void shellsort(Sqlist &L)//希尔排序
{
int i,j,k,temp;
int gap;
for(gap=L.length/2;gap>0;gap=gap/2)
{
for(i=0;i<gap;i++)
{
for(j=i+gap;j<L.length;j=j+gap)
{
for(i=0;i<gap;i++)
{
for(j=i+gap;j<L.length;j=j+gap)
{
if(L.List[j]<L.List[j-gap])
{
temp=L.List[j];
k=j-gap;
while(k>=0&&L.List[k]>temp)
{
L.List[k+gap]=L.List[k];
{
if(L.List[j]<L.List[j-gap])
{
temp=L.List[j];
k=j-gap;
while(k>=0&&L.List[k]>temp)
{
L.List[k+gap]=L.List[k];
k=k-gap;
}
L.List[k+gap]=temp;
}
}
}
}
}
int main()
{
Sqlist L;
L.List[i]=min;
}
}
}
void quicksort(Sqlist &L,int left,int right)//快速排序
{
if(left>right)
return;
int i,j,temp;
temp=L.List[left];
i=left;
j=right;
while(i<j)
{
while(i<j&&L.List[j]>=temp)
{
for(int i=1;i<L.length;i++)
{
if(L.List[i]<L.List[i-1])
insert1(L,0,i-1,L.List[i]);
}
}
void Buttel(Sqlist &L)//冒泡排序
{
for(int i=0;i<L.length-1;i++)
{
int flag=1;
{
for(int i=0;i<L.length;i++)
{
int min=L.List[i];
int k=i;
for(int j=i;j<L.length;j++)
{
if(L.List[j]<min)
{
min=L.List[j];
k=j;
}
}
if(k!=i)
{
L.List[k]=L.List[i];
{
if(L.List[i]>c)
break;
}
for(int j=b;j>=i;j--)
{
L.List[j+1]=L.List[j];
}
L.List[i]=c;
}
void insertsort(Sqlist &L)//插入排序
{
for(int i=1;i<L.length;i++)
{
if(L.List[i]<L.List[i-1])
{
int flag=1;
for(int j=0;j<L.length-i-1;j++)
{
if(L.List[j]>L.List[j+1])
{
int temp=L.List[j];
L.List[j]=L.List[j+1];
L.List[j+1]=temp;
flag=0;
}
}
if(flag==1)
break;
}
}
3.快速排序
每次排序选取第一个元素作为基准元素,用两个指针分别重表尾和表头扫描表,将比这个元素元素小的放在左边,比这个元素大放在右边,那么分别对左边部分和右边部分进行同样操作,最终实现表的排序,采用分治的思想。具体实现如下:
void quicksort(Sqlist &L,int left,int right)//快速排序
}
}
5.希尔排序
由于直接插入排序影响效率一个因素是元素在插入时,所需的移动步伐,当表基本有序的时候,算法的执行效率较高。希尔排序通过减小增量的方法可能满足这个条件,用增量将表分组,然在每一组进行直接插入排序依次来减小移动的步伐。具体实现如下:
int i,j,k,temp;
int gap;
for(gap=L.length/2;gap>0;gap=gap/2)
printf("排序后的序列:\n");
/*quicksort(L,0,L.length-1);//快速排序*/
相关文档
最新文档