人教版 七年级(上)学期数学 整式的概念专项训练

合集下载

人教版七年级上册数学《整式》练习题(含答案)

人教版七年级上册数学《整式》练习题(含答案)

2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )×3×4 417.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, , a 个 个 个 个8.下列整式中,单项式是( )+1 -y D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -110.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式. 6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________.19.多项式x2y+xy-xy2-53中的三次项是____________.20.当a=____________时,整式x2+a-1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。

人教版七年级数学上册第二章《整式》练习题(含答案)

人教版七年级数学上册第二章《整式》练习题(含答案)

整式姓名一.判断题(1)x1是关于 x 的一次两项式. () 3(2)-3 不是单项式. ()(3)单项式 xy 的系数是 0.()(4)x3+y3是 6 次多项式. ()(5)多项式是整式. ()二、选择题1.在下列代数式:1ab,a b, ab2+b+1 ,3+2,22x y2)x3 + x - 3 中,多项式有(A.2 个B.3 个C.4 个D5 个2.多项式-223m- n2是()A.二次二项式B.三次二项式C.四次二项式D五次二项式3.下列说法正确的是()A. 3 x2―2x+5 的项是 3x 2, 2x, 5B.x-y与 2 x2―2xy-5 都是多项式33C.多项式- 2x2+4xy 的次数是3D.一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是()A.整式 abc 没有系数B.x+y+z不是整式2 34C.- 2 不是整式D.整式 2x+1 是一次二项式5.下列代数式中,不是整式的是()A、3x2B、 5a 4bC、3a275xD、- 20056.下列多项式中,是二次多项式的是()A、32x 1B、3x2C、3xy -1D、3x 527.x 减去 y 的平方的差,用代数式表示正确的是()A、( x y) 2B、x2y2C、x2yD、x y28.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长 S 米,同学上楼速度是 a 米/ 分,下楼速度是 b 米/ 分,则他的平均速度是()米/ 分。

A、a bB、sC、s s2a b a b2sD、s sa b9.下列单项式次数为 3 的是 ()A.3abcB.2× 3× 4C.1x3y D.52x410.下列代数式中整式有 ()1 ,2x+y, 1 a2b, x y , 5 y ,x34x0.5 ,aA.4 个B.5 个C.6 个D.7 个11.下列整式中,单项式是()A.3a+1B.2x- yC.0.1D.x 1212.下列各项式中,次数不是3的是()A .xyz+ 1B.x 2+y+1C.x2-yxy2D.x 3- x2+x-1 13.下列说法正确的是 ()A .x(x +a)是单项式 B.x21不是整式 C. 0是单项式 D.单项式-1x2y 的系数是1 3314.在多项式 x3-xy 2+25中,最高次项是 ()A .x3B. x3,xy2C.x3,- xy2D.2515.在代数式3x2y,7(x 1),1(2n1), y 2y1 483y中,多项式的个数是 ()A.1 B.2C.3 D.416.单项式-3xy2的系数与次数分别是 () 2A.- 3,3B.-1,3C.-3,2 22D.-3,3 217.下列说法正确的是 ()A .x 的指数是 0B.x 的系数是 0 C.- 10 是一次单项式D.- 10 是单项式18.已知:2x m y3与 5xy n是同类项,则代数式m 2n的值是()A、6B、5C、2D、519.系数为-1且只含有 x、 y 的二次单项式,2可以写出 ( )A.1 个B.2 个 C.3 个D.4 个20.多项式1x2 2 y 的次数是()A、1B、2C、- 1D、- 2三.填空题1.当 a=- 1 时,4a3=;2.单项式:4x2 y3的系数是,次数3是;3.多项式:4x33xy 25x2 y3y 是次项式;4.32005xy2是次单项式;5.4x23y 的一次项系数是,常数项是;6._____和_____统称整式 .7.单项式1xy2z 是_____次单项式 .2.多项式2-12-b2有_____项,其中-12 8a ab2ab2的次数是..整式①1,② 3x-y2③ 3 2④⑤πx+1y, 92, 2 x y, a,2⑥ 2 a 2,⑦x+1 中单项式有,5多项式有10. x+2xy+y 是次多项式.11.比 m 的一半还少 4 的数是;12.b 的11倍的相反数是;313.设某数为 x,10 减去某数的 2 倍的差是;14.n 是整数,用含 n 的代数式表示两个连续奇数;15.x43x3 y 6x2 y 2 2 y 4的次数是;16.当 x=2,y=- 1 时,代数式| xy || x |的值是;17.当 t=1t时, t的值等于 1;318.当 y=时,代数式3y -2 与y3 的4值相等;19.- 23ab 的系数是,次数是次.20.把代数式 2a2 b2c 和 a3 b2的相同点填在横线上:(1)都是式;(2)都是次.21.多项式 x3y2- 2xy2-4xy- 9 是次___项式,3其中最高次项的系数是,二次项是,常数项是.22. 若 1 x2y3z m与3x2y3z4是同类项,则m323.在 x2,1(x + y),1,- 3 中,单项式2是,多项式是,整式是.24.单项式5ab2c3的系数是 ____________,次数7是____________.25.多项式 x2y+xy-xy 2- 53中的三次项是____________.26.当 a=____________时,整式 x2+a-1 是单项式.27.多项式 xy-1 是 ____________次____________项式.28.当 x=- 3 时,多项式- x3+ x2-1 的值等于____________.29.如果整式 (m- 2n)x2y m+n-5是关于 x 和 y 的五次单项式,则 m+n30.一个 n 次多项式,它的任何一项的次数都____________.31.系数是- 3,且只含有字母x 和 y 的四次单项式共有个,分别是.32.组成多项式 1-x2+ xy- y2- xy3的单项式分别是.=.四、列代数式1. 5 除以 a 的商加上32的和;32. m 与 n 的平方和;3. x 与 y 的和的倒数;4. x 与 y 的差的平方除以 a 与 b 的和,商是多少。

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。

如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。

(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。

3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。

人教版七年级上学期数学期末专项复习——整式(word版含答案)

人教版七年级上学期数学期末专项复习——整式(word版含答案)

人教版七年级上学期数学期末专项复习——整式一、选择题1.下列各式子中,符合代数式书写要求的是( )A .x•5B .4m×nC .x (x+1)34D .﹣12ab 2.下列计算正确的是( )A .x+x=x 2B .x 6÷x 2=x 3C .(x 3)2=x 5D .3x 2+4x 2=7x 23.当代数式x 2+3x +5的值为7时,代数式3x 2+9x -2的值为( ).A .4B .2C .-2D .-4 4.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a +b )10展开式的第三项的系数是( )A .36B .45C .55D .665.下列关于多项式-3a 2b+ab ﹣2的说法中,正确的是( )A .最高次数是5B .最高次项是-3a 2bC .是二次三项式D .二次项系数是06.数轴上表示a 的点位置如图所示,则化简11a a --+的结果为( )A .2aB .2C .0D .2-7.下列说法正确的是( )A .–1,a ,0都是单项式B .x –3y 是多项式C .–πx 2yz 是五次单项式,系数是–1D .2x 2+3x 3是五次二项式 8.下列计算正确的是( ).A .()325b b =B .()2362a b a b -=-C .325a b a +=D .()32628a a =9.如图,下列各正方形中四个数之间均具有相同的规律,根据此规律,第n 个正方形中的d=642,则n 的值为( )A .7B .8C .9D .1010.下列结论中正确的是( )A .23xy 5π的系数是35,次数是4 B .单项式m 的次数为1,没有系数C .单项式﹣xy 2z 的系数为﹣1,次数为4D .多项式2x 2+xy ﹣3是四次三项式11.多项式218x x ++是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式12.下列计算中结果正确的是( )A .4+5ab =9abB .6xy ﹣x =6yC .3a 2b ﹣3ba 2=0D .12x 3+5x 4=17x 7 二、填空题13.多项式﹣m 2n 2+m 2﹣2π﹣3是_____次_____项式.14.若a 2+ab=4,ab+b 2=-1则a 2 -b 2 =_______,a 2+2ab+b 2 =_______15.单项式212xy π-的系数是__________.16.任意写出一个含有字母,a b 的五次三项式,其中最高次项的系数为2,常数项为9-:____17.如果单项式3m x y 与42m n xy -的和是单项式,那么mn 的值为_______三、解答题18.先化简,再求值:(1)22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中:2x =-,12y = (2)()()222222222a b a b a b -+---,其中13a b =-=,.(3)22(2)33(31)(93)x x x x -⨯+---+,其中x=3.(4)3x 2y −[2xy −2(xy −32x 2y)+x 2y 2],其中3x =,13y =-. (5)6a 2﹣5a (a+2b ﹣1)+a (﹣a+10b )+5,其中a=﹣1,b=2008.19.(1)图1是正方体木块,把它切去一块,可能得到形如图2、3、4、5的木块.我们知道,图1的正方体木块有8个顶点,12条棱,6个面,请你将图2、3、4、5中木块的顶点数、棱数、面数填入下表;(2)观察上表,请你归纳上述各个木块的顶点数、棱数、面数之间的数量关系:______;(3)图6是用虚线画出的正方体木块,请你想象一种与图2~5不同的切法,把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为____________,棱数为______,面数为______.20.定义:若2a b +=,则称a 与b 是关于M 的平衡数.(1)3与 是关于M 的平衡数,5x -与 是关于M 的平衡数. (用含x 的代数式表示) (2)若()()222234,23[]42a x x x b x x x x=-++=+---,判断a 与b 是否是关于M 的平衡数,并说明理由.参考答案一. 选择题1-6:DDABBB ,7-12:ADBCBC二. 填空题13.四 四,14.5 3, 15.12π-, 16.429a b ab --(答案不唯一),17.32三. 解答题18.(1) 213,64x y -+;(2)223a b -,-6;(3)−5x −6,-21;(4)22x y -,-1;(5)5a+5,0; 19. (1)(2)顶点数+面数=棱数+2.(3)8,12,6.20. (1)−1;x-3(2)不是,理由略。

2-1整式专项训练人教版七年级数学上册

2-1整式专项训练人教版七年级数学上册

2.1 整式(专项训练)-人教版七年级上册一.选择题1.下列说法正确的是()A.单项式a的系数是0B.单项式﹣3πxy2z3的系数和次数分别是﹣3π和6C.x2﹣2x+25是五次三项式D.单项式﹣的系数和次数分别是﹣和02.随着疫情管控的全面放开,旅游市场也逐渐复苏.某地3个景区今年1月份接待游客人数相同,2、3月份接待游客人数情况如下:甲景点2月份比1月份增加10%;乙景点2月份比1月份年增加20%,3月份比2月份增加10%;关于3月份接待游客人数以下说法正确的是()A.甲景点人数最多B.乙景点人数最多C.丙景点人数最多D.三个景点人数一样多3.按一定规律排列的单项式:﹣3,5a,﹣9a2,17a3,…,则第7个单项式是()A.﹣127a7B.﹣129a6C.127a7D.129a64.下列关于单项式﹣4x5y6的说法中,正确的是()A.它的系数是4B.它的次数是5C.它的次数是11D.它的次数是155.如图,下列四个式子中,不能表示阴影部分面积的是()A.x2+5B.x(x+3)+6C.3(x+2)+x2D.(x+3)(x+2)﹣2x6.一件商品售价x元,利润率为a%(a>0),则这种商品每件的成本是()A.(1+a%)x B.(1﹣a%)x C.D.7.如图,在周长为60的长方形ABCD中放入六个相同的小长方形,若小长方形的面积为S,宽为y,则()A.若x=2,则S=20B.若y=5,则S=20C.若x=5y,则S=20D.若x=2y,则S=208.已知等式x2﹣2x﹣2=0,则代数式3x2﹣6x+2023的值是()A.2023B.2027C.2029D.20319.点O,A,B,C在数轴上的位置如图所示,O为原点,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣a﹣1B.﹣a+1C.a+1D.a﹣110.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,再将剪下的两个小矩形拼成一个新的矩形,如图3所示()A.2a﹣2b B.2a﹣4b C.4a﹣8b D.4a﹣9b二.填空题11.当x=2时,代数式x2+ax+b的值为3;当x=﹣3时,其值为4.则当x=1时.12.若,则=.13.若﹣x3(x2+ax+1)+3x4中不含有x的四次项,则a的值为.14.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,最后一共要花元.15.甲、乙两人骑自行车从相距s千米的两地同时出发,若同向而行,经过a小时甲追上乙,经过b小时甲、乙相遇,设甲的速度为v1千米/小时,乙的速度为v2千米/小时,则用字母a,b表示.三.解答题16.某蛋糕店新开张,第一天销售水果蛋糕m个,销售巧克力蛋糕n个,多销售巧克力蛋糕3个,第三天这两种蛋糕的总销量比第二天总销量的2倍少6个(结果用含m、n的代数式表示并化简)17.如图1是一张正方形纸片,李明用剪刀沿虚线剪开,制作成如图2所示的新年挂图,CF=CH=x.(1)用含x、y的式子表示正方形纸片的周长.(2)当x=1分米,y=4分米时,求李明剪掉部分的面积.18.如图,按图中的程序进行计算.(1)当输入的x=30时,输出的数为;当输入的x=﹣16时,输出的数为;(2)若输出的数为﹣52时,求输入的整数x的值.19.如图,A、B、P三点在数轴上,点A对应的数为多项式3m2﹣2m+1中一次项的系数,点B对应的数为单项式5m2n4的次数,点P对应的数为x.(1)请直接写出点A和点B在数轴上对应的数;(2)请求出点P对应的数x,使得P点到A点,B点距离和为10.20.为全力做好新冠肺炎疫情防控工作,某社区计划将一块长20米,宽10米的长方形形状的空地设置为全员核酸检测点.如图,中央为长方形采样区.(1)空地中央采样区的长为米,宽为米(用含m的代数式表示);(2)如图,若将空地中央的采样区分为5个大小相同的长方形候检通道,请用代数式表示一个候检通道的宽。

2023-2024学年七年级数学上册《第二章 整式》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第二章 整式》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第二章整式》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是()A.单项式x没有系数B.mn2与−12n2m是同类项C.3x3y的次数是3 D.多项式3x-1的项是3x和12.在代数式x−3y2中,含y的项的系数是()A.-3 B.3 C.-32D.323.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.常数项是1C.四次项的系数是7 D.﹣7xy3﹣2x3y2+0.3x2y+1是整式4.若单项式-2x2y3的系数是m,次数是n,则mn的值为()A.-2 B.-6 C.-4 D.-35.下列式子:x2+2,1a +4与3ab7,abc,﹣5x,0中,整式的个数有()A.3个B.4个C.5个D.6个6.若2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,则-n m的值为()A.-25 B.25 C.-32 D.327.若多项式k(k−2)x3+kx2−2x2−6是关于x的二次多项式,则k的值为().A.0 B.1 C.2 D.以上都错误8.下列说法:①a为任意有理数,a2总是正数;②如果|a|=−a,则a是负数;③单项式−4a3b的系数与次数分别为—4和4;④代数式t2、−a+b3、2b都是整式.其中正确的有()A.4个B.3个C.2个D.1个二、填空题9.单项式﹣3πx2y24的系数是,次数是.10.)多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为.11.把多项式6x−7x2+9按字母x的降幂排列为.12.多项式﹣53x3y2﹣7xy2+4x4﹣26为次四项式.13.关于x的多项式(a+1)x2+2x a+1+3x3−a(x≠0)合并后是三项式,则a的值为.(提示:当x≠0时,x0=1)三、解答题14.已知整式(m+2)x2+3x6−n−5是关于x的三次二项式,求m2n+mn2的值.x2y m+1+x2y2−3y2+8是六次四项式,单项式2x2n y5−m与该多项式次数相同,15.已知多项式−35求m,n的值.16.已知式子:ax5+bx3+3x+c,当x=0时,该式的值为﹣1.(1)求c的值;(2)已知当x=1时,该式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该式的值为﹣1,试求当x=﹣3时该式的值;(4)在第(3)小题的已知条形下,若有3a=5b成立,试比较a+b与c的大小.17.对于多项式(n-1)x m+2-3x2+2x(其中m是大于-2的整数).(1)若n=2,且该多项式是关于x的三次三项式,求m的值;(2)若该多项式是关于x的二次单项式,求m,n的值;(3)若该多项式是关于x的二次二项式,则m,n要满足什么条件?18.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式-2x2-4x+1的一次项系数,b 是x2y4的次数为c.最小的正整数,单项式−12(1)a= ,b= ,c= .(2)若将数轴在点B处折叠,则点A与点C 重合(填“能”或“不能”);(3)若数轴上M、N两点之间的距离为2022(M在N的左侧),且M、N两点在B处折叠后互相重合,则M、N表示的数分别是:M:;N:(4)若在数轴上任意画出一条长是2022个单位的线段,则此线段盖住的整数点的个数是。

人教版七年级数学上册《4.1整式》同步测试题带答案

人教版七年级数学上册《4.1整式》同步测试题带答案

人教版七年级数学上册《4.1整式》同步测试题带答案一、单选题1.下列式子13ab2a b + 12x y + 23x x +-中,多项式有( ) A .1个 B .2个 C .3个 D .4个 2.方程22690x x 的二次项系数、一次项系数、常数项分别为( ) A .22x ,-6x ,-9 B .22x ,6x ,9 C .2,6,9 D .2,-6,-9 3.多项式43227x x y -+是( )A .四次三项式B .五次三项式C .三次四项式D .三次五项式 4.若452x x xm +-是一个五次二项式,则m =( )A .0B .5C .0或5D .4或5 5.一组按规律排列的多项式:34a b - 56a b -+ 78a b - 910a b -+⋅⋅⋅第n 个多项式是( )A .2122n n a b +++B .()21221n n n a b +++-C .()()1212211n n n n a b +++-+-D .()()2212211n n n n a b ++-+-6.在22515,1,32,π,,,51x x x x x x +--++--中,不是整式的有( ) A .0个 B .1个 C .2个 D .3个 7.单项式22xy z π-的系数是( )A .−2B .2π-C .2D .2π 8.下列说法正确的是 ( )A .mn -的系数是1-B .2222x y -是六次单项式C .6ab a +-的常数项是6D .22232x y xy x ++是三次三项式二、填空题9.多项式4232346x x y x x y +--+的项数和次数之积为 .10.多项式32613x y xy -+-中二次项是 . 11.观察下列图形的排列规律:依此规律,第6个图形共有 个▲12.多项式22536m n --的常数项是 .13.代数式2334432253x y x y xy x y ---有 项,其中4xy -的系数是 . 14.若多项式()2321221n m x y xy xy π---++是四次三项式,则m n -= . 15.多项式23546a b ab --的四次项系数是 .16.多项式322234a b a b a -+-的次数和项数分别为 .三、解答题17.已知多项式13312(1)36m xy x y x n x +-+-+++是关于x ,y 的六次四项式,求m n -的值.18.观察下列等式:第1个等式:()22213237⨯+-=⨯;第2个等式:()222234311⨯+-=⨯;第3个等式:()222336315⨯+-=⨯;第4个等式:()222438319⨯+-=⨯;;按照以上的规律,解决下列问题:(1)写出第5等式:__________;(2)直接写出你猜想的第n 个等式,并证明该等式(用含字母n 的式子表示等式). 19.如图,是一幅平面镶嵌图案,它由相同的黑色正方形和白色等边三角形排列而成,观察图案:第1个图案有1个正方形,4个等边三角形;第2个图案有2个正方形,7个等边三角形;第3个图案有3个正方形,10个等边三角形,以此类推…(1)第n 个图案有________个正方形,________个等边三角形.(2)现有2024个等边三角形,如按此规律镶嵌图案,要求等边三角形剩余最少,则需要正方形多少个?20.已知关于x ,y 的多项式23131093m x y x y xy x +---+-是七次五项式,n 是五次项的系数,求m ,n 的值.参考答案1.【答案】B2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】B8.【答案】A9.【答案】2010.【答案】2xy11.【答案】2112.【答案】12-13.【答案】4 1-14.【答案】1-15.【答案】4-16.【答案】五和四17.【答案】解:∵多项式13312(1)36m xy x y x n x +-+-+++是关于x ,y 的六次四项式 ∴116m ++= 10n +=即4m = 1n =-∴4(1)5m n -=--=18.【答案】解:(1)由第1个等式:()22213237⨯+-=⨯;第2个等式:()222234311⨯+-=⨯;第3个等式:()222336315⨯+-=⨯;第4个等式:()222438319⨯+-=⨯;则第5个等式:()2225310323⨯+-=⨯;故答案为:()2225310323⨯+-=⨯;(2)由第1个等式:()22213237⨯+-=⨯;第2个等式:()222234311⨯+-=⨯;第3个等式:()222336315⨯+-=⨯;第4个等式:()222438319⨯+-=⨯;则第5个等式:()2225310323⨯+-=⨯;;则第n 个等式:()()()22232343n n n +-=+;证明:左边()()()222223241294129343n n n n n n n =+-=++-=+=+右边()343n =+左边=右边所以等式成立19.【答案】解:(1)第1个图案:正方形有1个,等边三角形有4个第2个图案:正方形有2个,等边三角形有437+=(个)第3个图案:正方形有3个,等边三角形有42310+⨯=(个)第4个图案:正方形有4个,等边三角形有43313+⨯=(个)……第n 个图案:正方形有n 个,等边三角形有()()43131n n +-=+个 故答案为:n ()31n +;(2)要使等边三角形剩余最少,则最少为1块3112024()n ∴++=674n =∴按此规律镶嵌图案,等边三角形剩余最少1块,这时需要正方形674个 20.【答案】解:因为关于x 、y 的多项式23131093m x y x y xy x +---+-是七次五项式 所以137m ++=所以3m =又因为n 是五次项的系数,五次项是23x y -所以1n =-。

人教版七年级数学上册整式练习题(含答案)

人教版七年级数学上册整式练习题(含答案)

人教版七年级数学上册整式练习题(含答案)一.判断题1) x+1/3 是关于x的一次两项式.(×)2) -3不是单项式.(√)3) 单项式xy的系数是1.(×)4) x^3+y^3是6次多项式.(×)5) 多项式是整式.(√)二.选择题1.在下列代数式中:1/2ab,(a+b)^2/2,ab^2+b+1,32/2x+y,x^3+x-3中,多项式有(B.3个)2.多项式-23m^2-n^2是(A.二次二项式)3.下列说法正确的是(A.3x^2-2x+5的项是3x^2,-2x,5)4.下列说法正确的是(B.x^3-y^3与2x^2-2xy-5都是多项式)5.下列代数式中,不是整式的是(D.-20)6.下列多项式中,是二次多项式的是(B.3x^2)7.x减去y的平方的差,用代数式表示正确的是(B.x^2-y^2)8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b 米/分,则他的平均速度是(2ab/(a+b))米/分。

9.下列单项式次数为3的是(C.1/3xy^4)10.下列代数式中整式有(A.4个)。

11.下列整式中,单项式是(D.(x+1)/2)。

12.下列各项式中,次数不是3的是(B.x^2+y+1)。

13.下列说法正确的是(B.π不是整式,D.单项式-x^2y的系数是-1)。

14.在多项式x^3-xy^2+25中,最高次项是x^3.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。

改写后的文章:给定一些代数式,其中包括多项式和分式。

需要计算这些代数式的值或者进行简化。

首先,对于一个分式,我们可以将分子和分母分别展开,然后进行化简。

例如,对于分式 $\frac{x+1}{x-1}$,我们可以将其展开为 $\frac{x}{x-1}+\frac{1}{x-1}$,然后进行化简得到$\frac{x}{x-1}+1+\frac{1}{x-1}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定为 ,超出部分按 4 元 收费.已知小华家上个月用水 .
(1)小华家上个月应交水费多少元?(用含 的式子表示)
(2)当
时,小华家应交水费多少元?
25.请同学们仔细阅读下列步骤,完成问题:
①任意写一个三位数,百位数字比个位数字大 2;
②交换百位数字与个位数字,得到一个三位数;
③用上述的较大的三位数减去较小的三位数,所得的差为三位数;
七年级(上)数学 整式的概念专项训练
一.选择题(共 10 小题)
1.下列对代数式 的描述,正确的是
A. 与 的相反数的差 C. 与 的倒数的差
B. 与 的差的倒数 D. 的相反数与 的差的倒数
2.下列式子 , ,
, 中,单项式有
个.
A.1
B.2
3.下列说法中,正确的是
C.3
D.4
A.单项式 的系数是
的次数与项数分别是
A.2,3
B.3,3
C.4,3
D.5,3
解:多项式
的次数与项数分别是:3,3.
故选: .
6.若单项式
的系数、次数分别是 、 ,则
A. ,
B.

C. ,
D.

解:单项式
的系数、次数分别是 、 ,

,.
故选: . 7.下列各多项式的二次项系数是 的是
A.
B.
C.
D.
解:因为

所以这个多项式的二次项系数是 , 故选: .
④交换这个差的百位数字与个位数字又得到一个三位数;
⑤把③④中的两个三位数相加,得到最后结果.
3 / 11
问题: (1)③中的三位数是 ;④中的三位数是 ;⑤中的结果是 . (2)在草稿纸上试一个不同的三位数,看看结果是否都一样?如果一样,请你用含 、 的 代数式表示这个三位数,解释其中的原因.
4 / 11
(9)




单项式集合 多项式集合 整式集合
; ; .
20.当 ,
时,求下列代数式的值.
(1) (2)
21.已知多项式
是五次四项式,且单项式
与多项式的次数相
同,求 , 的值.
22.商店出售甲、乙两种书包,甲种书包每个 38 元,乙种书包每个 26 元,现已售出甲种书
包 个,乙种书包 个.
(1)用代数式表示销售这两种书包的总金额;
故选: .
3.下列说法中,正确的是
C.3
D.4
A.单项式 的系数是
B.单项式 C.多项式
的次数为 是二次三项式
D.多项式
的常数项是 1
解: 、单项式 的系数是 ,原说法错误,故此选项不符合题意;
、单项式 、多项式
的次数为 2,原说法错误,故此选项不符合题意; 是二次三项式,原说法正确,故此选项符合题意;
B.单项式 C.多项式
的次数为 是
4.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表 示整式,多项式,单项式的关系,正确的是
A.
B.
C.
D.
5.多项式 A.2,3
6.若单项式
的次数与项数分别是
B.3,3
C.4,3
的系数、次数分别是 、 ,则
、多项式
的常数项是 ,原说法错误,故此选项不符合题意,
故选: . 4.某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表 示整式,多项式,单项式的关系,正确的是
5 / 11
A.
B.
C.
D.
解:代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项 , 故选: .
5.多项式
1 / 11
D.5,3
A. ,
B.

7.下列各多项式的二次项系数是 的是
A.
B.
C. , C.
D.

D.
8.当

时,代数式
的值是
A.
B.10
C.25
D.5
9.一个两位数,它个位上的数与十位上的数的和等于 9,设它个位上的数字为 ,则这个
两位数可以表示为
A.
B.
C.
D.
10.某公司今年 2 月份的利润为 万元,3 月份比 2 月份减少 ,4 月份比 3 月份增加了 ,
8.当

时,代数式
的值是
6 / 11
A.
B.10
C.25
D.5
解:当

时,

故选: .
9.一个两位数,它个位上的数与十位上的数的和等于 9,设它个位上的数字为 ,则这个
两位数可以表示为
A.
B.
C.
D.
解:这个两位数可以表示为

故选: .
10.某公司今年 2 月份的利润为 万元,3 月份比 2 月份减少 ,4 月份比 3 月份增加了 ,
一.选择题(共 10 小题)
参考答案
1.下列对代数式 的描述,正确的是
A. 与 的相反数的差 C. 与 的倒数的差
B. 与 的差的倒数 D. 的相反数与 的差的倒数
解:用数学语言叙述代数式 为 与 的倒数的差,
故选: .
2.下列式子 , ,
, 中,单项式有
个.
A.1
B.2
解:单项式有 , , ,共 3 个,
(2)当 ,
时,求销售总金额.
23.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是 亩,水稻种植面积是小麦
种植面积的 4 倍,玉米种植面积比小麦种植面积的 2 倍少 3 亩.
问:(1)水稻种植面积;(含 的式子表示)
(2)水稻种植面积和玉米种植面积哪一个大?为什么.
24.为了增强人们的节约用水意识,规定生活用水的基本价格为 3 元 ,每户每月用水限
则该公司 4 月份的利润为(单位:万元)
A.
B.
C.
D.
二.填空题(共 8 小题)
11.比 小 3 的数是 .
12.
单项式的次数是 .
13.若 14.多项式
,则

的次数是 .
15.把多项式
按 的升幂排列为 .
16.若多项式
是关于 , 的三次多项式,则

17.按照如图所示的计算程序,若 ,则输出的结果是 .
14.多项式
的次数是 3 .
解:多项式
的次数是 3.
故答案为:3
7 / 11
15 . 把 多 项 式
按 的升幂排列为
. 解:按 的升幂排列为:


故答案为:
;或

16.若多项式
是关于 , 的三次多项式,则
则该公司 4 月份的利润为(单位:万元)
A.
B.
C.
D.
解:由题意得 3 月份的产值为
,4 月份的产值为

故选: .
二.填空题(共 8 小题)
11.比 小 3 的数是

解:由题意可得: .
故答案为: .
12.
单项式的次数是 3 .
解:
单项式的次数是

故答案为:3.
13.若
,则

解:


故答案为: .
18.长春市净月潭国家森林公园门票的价格为成人票每张 30 元,儿童票每张 15 元.若购买 张成人票和 张儿童票,则共需花费 元.
三.解答题(共 7 小题) 19.把下列各代数式填在相应的大括号里.(只需填序号)
2 / 11
(1) ,(2) ,(3) ,(4) ,(5) ,(6) ,(7) ,(8) ,
相关文档
最新文档