重庆市第一中学2019-2020学年高一数学上学期期末考试试题[附答案]

合集下载

重庆市第一中学校2018-2019学年高一上学期期末考试物理试题+Word版含答案

重庆市第一中学校2018-2019学年高一上学期期末考试物理试题+Word版含答案

重庆一中高2021届(一上)期末考试物理测试试题卷2019.1一、单项选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求,选对得3分,选错得0分1.在国际单位制中,力学的三个基本单位是A.牛顿、厘米、秒B.千克、米、秒C.千克、秒、焦耳D.牛顿、秒、米/秒2.最早将实验和逻辑推理(包括数学演算)和谐地结合起来,从而发展了人类的科学思维方式和科学研究方法的科学家是()A.亚里士多德B.爱因斯坦C.笛卡尔D.伽利略3.一起严重的交通事故中,一辆越野车与一辆面包车迎面相撞,面包车车头凹陷、变形,几乎报废,而越野车仅前保险杠稍微变形。

关于此次碰撞,下列说法正确的是()A.越野车发生形变使面包车受到作用力B.越野车对面包车的作用力大于面包车对越野车的作用力C.越野车撞击面包车的时间比面包车撞击越野车的时间长D.越野车对面包车的作用力和面包车对越野车的作用力是一对平衡力4.下列有关惯性的说法中正确的是(A.物体仅在静止和匀速直线运动状态时才具有惯性B.汽车速度越大越不容易停下来,是因为速度越大惯性越大C.在月球上举重比在地球上容易,所以质量相同的物体在月球上比在地球上惯性小D.歼击机战斗前抛掉副油箱是为了减小惯性5.如图所示,在平原上空水平匀速飞行的轰炸机,每隔1s投放一颗炸弹,若不计空气阻力,下列说法正确的是A.落地前炸弹排列在同一条抛物线B.炸弹落地时速度大小方向都相同C.相邻炸弹落到水平面上时距离逐渐增大D.相邻炸弹在空中的距离保持不变6.如图,在光滑水平面上,质量分别为M和m的物体A和B相互接触,已知M>m,第一次用水平力F由左向右推A,物体间的相互作用力为F1;第二次用同样大小的水平力F由右向左推B,物体间的相互作用力为F2,则()A.F I=F2B.F I<F2C. F1>F2D.无法确定7.甲、乙两物体同时同地沿同一方向做直线运动的D-图像如图所示,则A.甲、乙两次相遇的时刻为10s末和第40s末B.在第50s末,甲在乙的前方C.甲、乙两次相遇的时刻为20s末和第60s末D.经20s后乙开始返回8.如图所示,位于水平地面上的质量为M的木块,在方向与水平面成a角、大小为F的拉力作用下,沿地面做匀加速直线运动,若木块与地面间的动摩擦因数为,则木块的加速度为()A.错误!未找到引用源。

重庆市第一中学2019-2020学年高二数学下学期期中试题

重庆市第一中学2019-2020学年高二数学下学期期中试题
C. 有99.9%的把握认为“身高与性别无关”
D. 有99.9%的把握认为“身高与性别有关”
【答案】D
【解析】
【分析】
根据 列联表,计算 ,与临界值表比较即可得出结论.
【详解】K的观测值:K2 20.330;
由于20.330>10.828,
∴有99.9%的把握认为“身高与性别有关”,
即在犯错误的概率不超过0.001的前提下,认为“身高与性别有关”
重庆市第一中学2019-2020学年高二数学下学期期中试题
年级:
姓名:
重庆市第一中学2019-2020学年高二数学下学期期中试题(含解析)
一、选择题(每小题5分,共60分)
1. 复数 的虚部是( )
A. B. C. D.
【答案】B
【解析】
【分析】
将 的分母实数化,化为 的形式, 即为所求.
【详解】
复数 的虚部是 1
【答案】A
【解析】
【分析】
由古典概型概率公式分别计算出事件A和事件B发生的概率,又通过列举可得事件A和事件B为互斥事件,进而得出事件A或事件B至少有一个发生的概率即为事件A和事件B的概率之和.
【详解】事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,
∴P(A) ,P(B) ,
又小于5的偶数点有2和4,不小于5的点数有5和6,
①,若3个数都相邻,有(1、2、3),(2、3、4),(3、4、5),(4、5、6),(5、6、7),(6、7、8),(7、8、9),(8、9、10),共8种情况,
②,若3个数中有2个相邻,与另外1个不相邻,
当相邻的2个数为1、2时,另外的1个数可以为:4、5、6、7、8、9、10,有7种情况,

重庆市西南大学附中2019-2020学年高一上学期期末数学试卷 (有解析)

重庆市西南大学附中2019-2020学年高一上学期期末数学试卷 (有解析)

重庆市西南大学附中2019-2020学年高一上学期期末数学试卷一、选择题(本大题共12小题,共60.0分)1. 己知集合A ={x|0<x +1<3},B ={−2,−l,0,l ,2},则A ∩B =( )A. {0.1}B. {1.2}C. {−1,0}D. ⌀2. 若扇形的面积3π8,半径为1,则扇形的圆心角为( )A. 3π2B. 3π4C. 3π8D. 3π163. 函数f(x)=2x −1+log 2x 的零点所在的一个区间是( )A. (18,14)B. (14,12)C. (12,1)D. (1,2)4. 已知tanθ=13,则sin(32π+2θ)的值为( )A. −45B. −15C. 15D. 455. 已知a =3−23,b =2−43,c =ln3,则( )A. a <c <bB. a <b <cC. b <c <aD. b <a <c6. 已知α,β为锐角,且tan α=17,cos(α+β)=2√55,则cos 2β=( )。

A. 35B. 23C. 45D. 7√2107. 函数y =4xx 2+1的图象大致为( )A.B.C.D.8. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象如图所示,则f(−π6)的值为( )A. −1B. 1C. −12 D. 129. 下列函数中,以2π为最小正周期,直线x =π2为函数图象的对称轴,且在区间(0,π2)上单调递增的函数是( )A. y =sin(2x −π2) B. y =2cos(x +π2) C. y =2|sinx|+sinxD. y =tan(x2+π4)10. 定义在R 上的函数f(x)满足f(x +6)=f(x),当−3≤x <−1时,f(x)=−(x +2)2;当−1≤x <3时,f(x)=x.则f(1)+f(2)+f(3)+⋯+f(2013)等于( )A. 335B. 337C. 1678D. 201211. 函数在区间上是增函数,则a 的取值范围是( )A.B. (−4,4]C.D. (−4,2]12. 函数f(x)=x +9x (x ≠0)是( )A. 奇函数,且在(0,3)上是增函数B. 奇函数,且在(0,3)上是减函数C. 偶函数,且在(0,3)上是增函数D. 偶函数,且在(0,3)上是减函数二、填空题(本大题共4小题,共20.0分) 13. 不等式x+2x−1<0的解集为______. 14. 若,则________.15. 函数f(x)=4x −2x+2,x ∈[−1,2]的值域为______.16. 已知k ∈R ,点P(a,b)是直线x +y =2k 与圆x 2+y 2=k 2−2k +3的公共点,则ab 的最大值为________.三、解答题(本大题共6小题,共70.0分) 17. 计算:(1)(13)−1−log 28+(0.5−2−2)×(278)23(2)已知tanα=−2,求 sin(π+α)+2sin(π2−α)sin(−α)+cos(π−α)的值.18. 已知全集U =R ,集合M ={x|x ≤3},N ={x|x <1},求M ∪N ,(∁U M)∩N ,(∁U M)∪(∁U N).19. 已知函数f(x)=log a x,(a >0且a ≠1).(1)若函数f (x )在区间[12,2]上的最大值为2,求a 的值; (2)若0<a <1,求使得f (2x −1)>0的x 的取值范围.20. 已知函数的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴. (1)求函数f(x)的解析式.(2)求函数g(x)=f(x −π12)−f(x +π12)的单调增区间.21. 已知函数f(x)=x 2+(4a −2)x +1(x ∈[a,a +1])的最小值为g(a).求函数y =g(a)的解析式.22. 已知函数f (x )=2sinx (sinx +cosx )+a −2的图象经过点(π4,1).(1)求a 的值以及f (x )的单调递减区间;(2)当x ∈[−π2,π2]时,求使f (x )<1成立的x 的取值集合.-------- 答案与解析 --------1.答案:A解析:解:集合A={x|0<x+1<3}={x|−1<x<2},B={−2,−l,0,l,2},则A∩B={0,1}.故选:A.解不等式得出集合A,根据交集的定义写出A∩B.本题考查了交集的定义与运算问题,是基础题.2.答案:B解析:本题考查扇形的面积公式,属基础题.根据已知条件和扇形的面积公式,即可求解圆心角.解:设扇形半径为r,圆心角为α,扇形的面积,∴α=3π.4故选B.3.答案:C解析:本题考查了函数的性质,函数的零点的判断方法,属于容易题.根据函数f(x)=2x−1+log2x,在)=−1,可判断分析.(0,+∞)单调递增,f(1)=1,f(1 2解:∵函数f(x)=2x−1+log2x,在(0,+∞)单调递增.)=−1,∴f(1)=1,f(1 2∴根据函数的零点的判断方法得出:零点所在的一个区间是(1 ,1),2故选:C.4.答案:A解析:解:∵tanθ=13,∴sin(32π+2θ)=−cos2θ=sin2θ−cos2θsin2θ+cos2θ=tan2θ−1tan2θ+1=19−119+1=−45.故选:A.由已知利用诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式化简所求即可计算得解.本题主要考查了诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.5.答案:D解析:本题考查了幂函数的单调性、对数函数的单调性,属于基础题.利用幂函数的单调性、对数函数的单调性即可得出.解:因为y=x−23在(0,+∞)上递减又a=3−23,b=2−43=4−23,∴b<a<1,又c=ln3>1,则b<a<c,故选:D.6.答案:C解析:本题主要考查同角三角函数的关系式,以及两角和与差的三角函数公式,二倍角公式.解:因为α, β为锐角,tanα=17,所以{sinαcosα=17sin2α+cos2α=1,解得sinα=√210, cosα=7√210,又因为cos(α+β)=2√55,所以sin (α+β)=√55,所以cosβ=cos (α+β−α)=cos (α+β)cosα+sin (α+β)sinα =2√55×7√210+√55×√210=3√1010, 所以cos2β=2cos 2β−1=2×(3√1010)2−1=45.故选C .7.答案:A解析:本题考查了函数图象的识别,属于基础题. 根据函数的奇偶性和函数值的正负即可判断.解:函数y =f(x)=4xx 2+1,则f(−x)=−4xx 2+1=−f(x), 则函数y =f(x)为奇函数,故排除C ,D , 当x >0是,y =f(x)>0,故排除B , 故选:A .8.答案:A解析:解:由函数的图象可得A =2, T =5π12−(−7π12)=π,∴ω=2ππ=2,又∵(5π12,0)在函数图象上,可得:2sin(2×5π12+φ)=0, ∴由五点法作图可得:2×5π12+φ=π,解得:φ=π6, ∴函数解析式为:f(x)=2sin(2x +π6),∴f(−π6)=2sin[2×(−π6)+π6]=−2sin π6=−1. 故选:A .结合函数的图象,由函数的最值求出A ,由周期求出ω.由五点法作图的顺序求出φ的值,从而求得f(x)的解析式,进而求得f(−π6)的值.本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.9.答案:C解析:本题考查了三角函数周期的求法,考查了三角函数的对称性和单调性,是中档题.根据题意逐一判定即可.【解答】解:y=sin(2x−π2),T=2π2=π,不满足最小正周期为2π,故排除A;y=2cos(x+π2),T=2π1=2π,令x+π2=kπ,k∈Z,得x=−π2+kπ,k∈Z,当k=1时,x=π2,直线x=π2为函数图象的对称轴,但当x∈(0,π2)时,函数y=2cos(x+π2)为减函数,故排除B;y=tan(x2+π4),T=2π,但其图象不关于直线x=π2对称,故排除D.故选C.10.答案:B解析:解:定义在R上的函数f(x)满足f(x+6)=f(x),∴函数的周期为6,当−3≤x<−1时,f(x)=−(x+2)2;当−1≤x<3时,f(x)=x.∴f(1)=1,f(2)=2,f(3)=f(−3+6)=f(−3)=−1,f(4)=f(−2+6)=f(−2)=0,f(5)=f(−1+6)=f(−1)=−1,f(6)=f(0+6)=f(0)=0.∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1.∵2013=335×6+3,∴f(1)+f(2)+f(3)+⋯+f(2013)=f(1)+f(2)+f(3)+335[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]=1+2−1+335=337.故选:B.求出所求表达式在函数一个周期内的函数值,然后求解即可.本题考查抽象函数的应用,函数的周期以及函数值的求法,考查分析问题解决问题的能力.11.答案:B解析:本题考查复合函数的单调性的判断,二次函数的单调性及对数函数的性质,属于中档题.根据复合函数的单调性“同增异减”,转化为g(x)=x2−ax+3a在也是增函数且恒大于0,列出不等式求解即可.解:函数在上是增函数,即g(x)=x2−ax+3a在也是增函数且均大于0,即g(2)>0且a2≤2,即{22−2a+3a>0a2≤2,解得−4<a≤4,则a的取值范围是(−4,4].故选B.12.答案:B解析:本题考查函数的单调性和奇偶性,属基础题.由奇偶性的定义易判函数为奇函数,再由导数可得函数的单调性.解:由题意可得f(−x)=−x+9−x =−(x+9x)=−f(x),∴函数f(x)=x+9x为奇函数;当x∈(0,3)时,f′(x)=1−9x2<0,∴函数f(x)=x+9x在(0,3)单调递减.故选B.13.答案:(−2,1)解析:解:根据题意,x+2x−1<0⇔(x+2)(x−1)<0,解可得:−2<x<1,即原不等式的解集为(−2,1);故答案为:(−2,1)根据题意,将原不等式变形为(x+2)(x−1)<0,结合一元二次不等式的解法分析可得其解集,即可得答案.本题考查分式不等式的解法,关键是将分式不等式转化为整式不等式.14.答案:−2解析:本题考查同角三角函数的基本关系,属于基础题.利用同角三角函数的基本关系,即可求出.解:tanθ+1tanθ=sinθcosθ+cosθsinθ=1sinθ·cosθ,由所以tanθ+1tanθ=−2.故答案为−2.15.答案:[−4,0]解析:解:令t=2x(12≤t≤4),则y=t2−4t=(t−2)2−4,当t=4时,y max=0;当t=2时,y min=−4;故函数f(x)=4x−2x+2,x∈[−1,2]的值域为[−4,0].故答案为:[−4,0].令t=2x(12≤t≤4),则y=t2−4t,利用二次函数的性质求解.本题考查函数的值域求法,运用换元法,属于基础题.16.答案:9解析:本题考查了直线与圆的位置关系及判定和函数的最值,由d ≤r 得出−3≤k ≤1,由点P 为直线与圆的公共点得(a +b)2−a 2−b 2=2ab =3k 2+2k −3,由函数的性质得出最大值.解:由题意,圆心(0,0)到直线的距离,解得−3≤k ≤1, 又恒成立 ∴k 的取值范围为−3≤k ≤1,由点P(a,b)是直线x +y =2k 与圆x 2+y 2=k 2−2k +3的公共点,得(a +b)2−a 2−b 2=2ab =3k 2+2k −3=3(k +13)2−103,时,ab 的最大值为9.故答案为9. 17.答案:解:(1)原式=3−3+(4−2)×94=92.(2)∵tanα=−2,∴sin(π+α)+2sin(π2−α)sin(−α)+cos(π−α)=−sinα+2cosα−sinα−cosα=2−tanα−tanα−1=4.解析:(1)利用对数的运算性质,指数幂的运算性质即可得出;(2)利用诱导公式,同角三角函数关系式即可得出;本题考查了对数与指数的运算性质,诱导公式,同角三角函数关系式在化简求值中的应用,考查了推理能力与计算能力,属于基础题.18.答案:解:∵全集U =R ,M ={x|x ≤3},N ={x|x <1},∴M ∪N ={x|x ≤3},∁U M ={x|x >3},∁U N ={x|x ≥1},则(∁U M)∩N =⌀,(∁U M)∪(∁U N)={x|x ≥1}.解析:由M ,N 以及全集U =R ,求出M 与N 的并集,M 补集与N 的交集,M 补集与N 补集的并集即可.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键,属于基础题. 19.答案:解:(1)当a >1时,f(x)=log a x在区间[12,2]上是增函数,因此,f max(x)=log a2,则log a2=2,解得:a=√2,当0<a<1时,f(x)=log a x在区间[12,2]上是减函数,因此,f max(x)=log a 12,则log a 12=2,解得:a=√22,综上可得,a=√2或a=√22;(2)不等式f(2x−1)>0,即log a(2x−1)>log a1,又0<a<1,则0<2x−1<1,即1<2x<2,所以0<x<1.解析:本题考查了对数函数的单调性,分类讨论的思想,方程思想,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)分类讨论得出当a>1时,log a2=2,当0<a<1时,log a 12=2,进而即可求得结果;(2)转化得出log a(2x−1)>log a1,又0<a<1,则0<2x−1<1,求解即可.20.答案:解:(1)由题意,得A=2,ω=2,当x=π6时,2sin(2×π6+φ)=±2,即sin(π3+φ)=±1,所以π3+φ=kπ+π2,解得φ=kπ+π6,又0<φ<π2,所以φ=π6.故f(x)=2sin(2x+π6).(2)g(x)=2sin[2(x−π12)+π6]−2sin[2(x+π12)+π6]=2sin2x−2sin(2x+π3 )=2sin2x−2(12sin2x+√32cos2x)=sin2x−√3cos2x=2sin(2x−π3 ).由2kπ−π2≤2x−π3≤2kπ+π2,k∈Z,得kπ−π12≤x≤kπ+5π12,k∈Z.所以函数g(x)的单调递增区间是[kπ−π12,kπ+5π12],k∈Z.解析:本题考查了三角函数的图象与性质.(1)由函数的最值,函数的周期以及对称轴求出A、ω、φ的值,则函数的解析式可得;(2)利用两角和与差的三角函数公式进行化简,然后由三角函数的性质求解即可.21.答案:解:∵函数f(x)的对称轴方程为x=1−2a.(1分)(1)当a+1≤1−2a时,即a≤0时,f(x)在[a,a+1]上是减函数,g(a)=f(a+1)=(a+1)2+(4a−2)(a+1)+1=5a2+4a;(4分)(2)当a<1−2a<a+1时,即0<a<13时,g(a)=f(1−2a)=(1−2a)2+(4a−2)(1−2a)+1=−4a2+4a(7分)(3)当1−2a≤a时,即a≥13时,f(x)在[a,a+1]上是增函数,g(a)=f(a)=a2+(4a−2)a+1=5a2−2a+1.(10分)所以g(a)={ 5a 2+4a(a ≤0)−4a 2+4a (0<a <13)5a 2−2a +1(a ≥13)(12分)解析:由已知中函数f(x)=x 2+(4a −2)x +1我们可得函数的图象是以x =1−2a 为对称轴,开口方向朝上的抛物线,分析区间[a,a +1]与对称轴的关系,求出各种情况下g(a)的表达式,综合写成一个分段函数的形式,即可得到函数y =g(a)的解析式. 本题考查的知识点是函数解析式的求法,二次函数的性质,其中根据已知中函数f(x)=x 2+(4a −2)x +1分析出函数图象及性质,以确定后面分段函数的分类标准及各段上g(a)的解析式,是解答本题的关键.22.答案: 解:(1)函数f(x)=2sinx(sinx +cosx)+a −2的图象经过点(π4,1), 故:, 即2×√22(√22+√22)+a −2=1 解得:a =1.所以:f(x)=2sinx(sinx +cosx)−1,=2sin 2x +2sinx ⋅cosx −1,=1−cos2x +sin2x −1,=√2sin(2x −π4), 令:2k +π2≤2x −π4≤2kπ+3π2(k ∈Z), 解得:, 故函数的单调递增区间为:[kπ+3π8,kπ+7π8](k ∈Z). (2)由于x ∈[−π2,π2], 故:2x −π4∈[−5π4,3π4], f (x )<1即sin(2x −π4)<√22则2x −π4∈(−5π4,π4),解得x∈(−π2,π4 )解析:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.(1)首先利用点的坐标求出a的值,进一步利用三角函数关系式的恒等变换求出函数为正弦型函数,最后求出函数的单调区间.(2)利用正弦型函数的性质,进一步利用整体思想求解.。

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一数学上学期期中模拟卷01
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A版2019必修第一册第一章~第三章。

5.难度系数:0.65。

第一部分(选择题共58分)
一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

或C或D
由图知:()040f x x >⇒-<<.故选D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得6分,部分选对的得部分分,有选错的得0分.
第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共5小题,共77分。

解答应写出文字说明、证明过程或演算步骤。

15.(13分)
的取值范围为.
16.(15分)
17.(15分)
18.(17分)
19.(17分)。

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020 学年度第一学期期末联考高一数学试题第 I 卷(选择题)一、选择题(本大题共 10 小题,每题 5 分,共 50 分.每题只有一个正确答案)1.若 A={0,1,2 } , B = { x 1? x 2} , 则A?B(){ } { 0,1,2 }{}{1,2 }A . 1B .C . 0,1D .2. sin15 o cos15o 值为()A .1B .1C.3 D. 324243. 函数 f ( x)1lg(1 x) 的定义域是 ()1 xA .( - ,- 1)B .(1,+ )C .(-1,1)∪(1,+ )D .(- ,+ )4.已知点 P( x,3) 是角终边上一点,且 cos4),则 x 的值为(B . 55D . 4A . 5C . 45.已知 a0.7 0.8 ,blog 2 0.8, c1.10.8 ,则 a,b, c 的大小关系是()A . a b cB . b a cC . a c bD . b c a6.设函数 y = x 3 与 y( 1 )x 2 的图像的交点为 ( x 0,y 0) ,则 x 0 所在的区间是 ()2A .(0,1)B.(1 ,2) C .(2 , 3) D .(3 ,4)7.在自然界中,存在着大批的周期函数,比方声波,若两个声波随时间的变化规律分别为:y 1 3sin 100 t , y 2 3cos 100 t ,则这两个声波合成后即yy 1 y 2 的振幅为()A . 3B . 6C . 3 2 D. 6 28.以下函数中,不拥有奇偶性的函数是 ( )A . yexexB . y lg1 x1 xC . ycos2xD . y sin x cos x9.若 yAsin( x)( A0,0,| |) 的最小值为2,其图像相邻最高点与最低点横坐标之差为2 ,且图像过点(20, 1),则其分析式是()A . y 2sin( x )6B. y 2sin( x )3C . y2sin( x) 2 6xD . y 2sin( )2 310.如右图,点 P 在半径为 1的半圆上运动, AB 是直径, P当 P 沿半圆弧从 A 到 B 运动时,点 P 经过的行程 x 与 APBxB O A的面积 y 的函数y f ( x) 的图像是以下图中的()yy11 12OC π2πx OD第 II卷(非选择题)π2πx二、填空题(本大题共 5 小题,每题 5 分,共25 分.将答案填在题后横线上)11.(log29)(log 3 4).12.把函数y= 3sin2 x的图象向左平移个单位获得图像的函数分析是.13.已知tan 2 ,则 cos26.14.若函数f x 知足 f ( x 1) f ( x) ,且当x1,1 时, f x x ,则 f 2 f 3f4.15.函数f ( x)| cos x | cos x 具备的性质有.(将全部切合题意的序号都填上)( 1)f (x)是偶函数;( 2)f (x)是周期函数,且最小正周期为;( 3)f (x)在[, ] 上是增添的;2( 4)f (x)的最大值为2.三、解答题(本大题共 6 小题,共75 分.解答应写出文字说明、证明过程或演算步骤)16.已知会合M ={x 1 < x < 2},会合Nx 3x 4 .2( 1)求AèB;P ={}( 2)设会合x a < x < a + 2,若 P 腿(A B) ,务实数 a 的取值范围.117.(本小题满分12 分)已知tan2, tan,此中0,0.3( 1)求tan() 的值;( 2)求角的值.18.(本小题满分12 分)已知函数 f (x) sin( x)sin( x) .32( 1)求f (x)的最小正周期;3,求 g(x) 在区间[0,] 上的值域.( 2)若g (x) f ( x)4219.(此题满分12 分)辽宁号航母纪念章从2012 年10 月5 日起开始上市.经过市场检查,获得该纪念章每 1 枚的市场价y(单位 : 元) 与上市时间x(单位 : 天 ) 的数据以下:上市时间x 天41036市场价y 元905190(1) 依据上表数据联合散点图,从以下函数中选用一个适合的函数描绘辽宁号航母纪念章的市场价y与上市时间x 的变化关系并说明原因: ①y ax b ;②y ax 2bx c ;③y a log b x .(2)利用你选用的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价钱.20. ( 本小题满分13 分)已知函数 f (x)cx1, 0 x c,知足 f (c)9 x.2 c 21, c ≤ x128(1)求常数 c 的值;(2)解对于 x 的不等式 f (x)21.821. ( 本小题满分14 分 ) 已知函数mf( )|x|1( x0).x x( 1)当m 2时,判断f (x)在(,0) 的单一性,并用定义证明.( 2)若对随意x R ,不等式 f (2x)0 恒建立,求 m 的取值范围;( 3)议论f (x)零点的个数.2019-2020 学年度第一学期期末 考高一数学参照答案参照答案: 一、1.A2.B 3 .C4.D5.B 6 .B 7 .C 8 .D 9 .C10.A 二、填空11. 4 12. 13 .3 14. 115.( 1)( 3)(4)56三、解答{ x 1 < x < 4}16.解:( 1) A? B⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 ( 2)由(1) A ? B {x 1 < x < 4 }, ⋯⋯⋯⋯⋯⋯⋯⋯ 9 分ì?a 3 1?1#a2⋯⋯⋯⋯⋯⋯⋯⋯ 12 分í?2 ? 4?a +1tantan217.解:( 1) tan()37⋯⋯⋯⋯⋯⋯⋯⋯ 5 分1 tan tan1 ( 2) 131tantan2( 2) tan(31⋯⋯⋯⋯⋯⋯⋯⋯ 10 分)tan tan111( 2)1 3因 tan2 0,tan0 ,3因此, 022因此2,2故4⋯⋯⋯⋯⋯⋯⋯⋯ 12 分18.解:f (x)( 1 sin x3cos x)cos x⋯⋯⋯⋯⋯⋯⋯⋯ 2 分221 sin x cos x3cos 2 x221sin 2x3(1 cos 2x) ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分441sin(2 x3) 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分24( 1)因此T 2.⋯⋯⋯⋯⋯⋯⋯⋯ 8 分21(2)g (x)) ,sin(2 x23因 0 ≤ x ≤2 ,因此3 ≤ 2x3 ≤ ,3因此3≤ sin(2 x)≤1,233≤ 1sin(2 x) ≤ 1,423 2因此 g(x) 在区 [0,] 上的 域 [3 ,1] .⋯⋯⋯⋯⋯⋯⋯⋯ 12 分24 219.解 :(1) ∵跟着 x 的增添, y 的 先减后增,而所 的三个函数中y ax b 和 ya logb x 然都是 函数,不 足 意,∴ yax 2 bx c .⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 把点 (4 , 90) , (10 , 51) , (36 , 90) 代入 yax 2 bx c 中,16a 4b c90得 100a 10bc 51⋯⋯⋯⋯⋯⋯⋯⋯6 分1296a 36b c 90解得 a 110, c 126⋯⋯⋯⋯⋯⋯⋯⋯ 8 分, b1 4 1∴ yx 2 10x 126 (x 20)2 26 ,⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44∴当 x 20 , y 有最小 y min 26 .⋯⋯⋯⋯⋯⋯ 11 分答: 宁号航母 念章市 价最低 的上市天数 20 天,最低的价钱 26 元.⋯⋯⋯⋯12 分20.解: (1)∵ f ( c)9 ,即 c c1 9 ,2 8 28解得 c1⋯⋯⋯⋯⋯⋯⋯⋯ 5 分.21 x 1, 0 x 1(2) 由 (1) 得 f ( x)21, 1≤ x2 ,2 4x12由 f ( x)2,适当 0x12 x1 ⋯⋯⋯⋯⋯⋯⋯⋯9 分1,解得4 ;822当1≤ x 1 ,解得 1≤ x5 . ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分228∴不等式 f ( x)2 1的解集 { x | 2 x 5} .⋯⋯⋯⋯⋯⋯⋯⋯ 13 分8 4821.分析:( 1)当 m2 ,且 x0 , f ( x)x 2 1 是 减的.⋯⋯⋯⋯⋯⋯⋯1 分x明: x 1x 2 0 ,f (x 1)f (x 2 )x 12 1 ( x 22 1)x 1x 2(x 2 x 1 ) (2 2x 1)x 2( x 2 x 1 )2( x 2 x 1)x 1x 2( x 22 ⋯⋯⋯⋯⋯⋯3 分x 1 )(1 ) x 1 x 2又 x 1 x 2 0 ,因此 x 2 x 1 0 , x 1x 2 0 ,因此 ( x 2 x 1 )(1 2 0)x 1x 2 因此故当f ( x 1 ) f ( x 2 ) 0 ,即 f (x 1) f (x 2 ) ,m 2 , f ( x) x2在 ( ,0) 上 减的. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1 x( 2)由 f (2 x ) 0 得 | 2x | m x1 0 ,形 (2 x )22x22x(2 x ) 2m 0 ,即 m而 2x(2 x )2(2 x 1)21 ,12 41当 2x即 x1 (2 x (2 x )2 )max ,2 14因此 m⋯⋯⋯⋯⋯⋯⋯⋯ 9 分.4( 3)由 f (x)0 可得 x | x | xm 0( x 0) , m x | x | x(x 0)令 g( x)x x | x |x 2 x, xx 2x, x 0作 y g (x) 的 像及直y m ,由 像可得:当 m1 1f ( x) 有 1 个零点.或 m,4 4当 m10 或 m1或 m, f (x) 有 2 个零点;41 14当 0mm0 , f ( x) 有 3 个零点.⋯⋯⋯⋯⋯⋯⋯⋯ 14 分或44。

重庆市第一中学2019_2020学年高一数学上学期期末考试试题

重庆市第一中学2019_2020学年高一数学上学期期末考试试题

重庆市第一中学2019-2020学年高一数学上学期期末考试试题 注意事项:.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上。

.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

.考试结束后,将答题卡交回。

一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{},1,0,1,,21-=∈≤<-=*B N x x x A 则=B A Y ( ) .}1{ B.]2,1[- C.}1,0{ D.}2,1,0,1{-2.已知函数2)1ln()(-++=x x x f ,在下列区间中,函数)(x f 一定有零点的是( )A .]1,0[B .]2,1[C .]3,2[D .]4,3[3. 计算οο105sin 15sin ⋅的结果是( ) .41- B.41 C. 426- D.426+ 4.下列函数为奇函数的是( ).233)(x x x f += B.x x x f -+=22)( C.x x x f -+=33ln )( D.x x x f sin )(= 5.要得到函数)32sin(π-=x y 的图象,只需将函数x y sin =的图象( )A.把各点的横坐标缩短到原来的12倍,再向右平移6π个单位 B.把各点的横坐标缩短到原来的12倍,再向左平移3π个单位 C.把各点的横坐标伸长到原来的2倍,再向右平移6π个单位D.把各点的横坐标伸长到原来的2倍,再向左平移3π个单位 6.函数()()sin (0,0,0)2f x A x A ωϕπωϕ=+>><<的部分图象如图所示,则()f x 的解析式是( ) .()2sin(2)3f x x π=+ B. ()2sin(2)6f x x π=+ C.()2sin()3f x x π=+ D .()2sin()6f x x π=+ 7.已知4log 5a =,1216(log 2)b =,sin2c =,则c b a ,,的大小关系是( ) .b c a << B.c a b <<C.a b c <<D.c b a << 8.已知函数,34)(,3)2()(2+-=+-=x x x g x m x f 若对任意]4,0[1∈x ,总存在]4,1[2∈x ,使得)()(21x g x f >成立,则实数m 的取值范围是( ).(2,2)m ∈- B. 33(,)22m ∈- C.(,2)m ∈-∞- D .3(,)2m ∈-+∞ 9.已知函数22lg (1)2(1)3y a x a x ⎡⎤=---+⎣⎦的值域为R ,则实数a 的取值范围是( ).[2,1]- B.(2,1)- C. [2,1]-- D.(,2)[1,)-∞--+∞U10.函数12211()tan()log ()tan()log ()4242f x x x x x ππ=-----在区间1(,2)2上的图像大致为( ). B. C. D.11.已知函数()sin (sin cos )f x x x x =⋅+,给出以下四个命题:①()f x 的最小正周期为π;②()f x 在]4,0[π上的值域为]1,0[; ③()f x 的图像关于点)21,85(π中心对称;④()f x 的图像关于直线811π=x 对称.其中正确命题的个数是( ).1 B.2 C.3 D.412.已知函数⎪⎩⎪⎨⎧≤≤<<=102),4sin(20,log )(2x x x x x f π,若存在实数4321,,,x x x x 使得)()()()(4321x f x f x f x f ===且4321x x x x <<<,则34214352)1)(1(x x x x x x -+--的取值范围是( ) .)17,14( B.)19,14( C.)19,17( D.]477,17(二、填空题:本题共4小题,每小题5分,共20分.把最简答案写在答题卡相应位置上.13. 已知7cos2,(,0)252παα=∈-,则sin α=; 14.已知1tan 2,tan()7ααβ=-+=,则tan β的值为; 15.若函数)(x f 满足:在定义域D 内存在实数0x ,使得00(1)()(1)f x f x f +=+成立,则称函数)(x f 为“1阶马格丁香小花花”函数.给出下列四个函数:①1()f x x=;②()x f x e =;③2()lg(2)f x x =+;④()cos f x x π=.其中是“1阶马格丁香小花花”函数的所有函数的序号是;16.定义在R 上的函数)(x f 满足)2(-x f 是偶函数,且对任意R x ∈恒有2020)1()3(=-+-x f x f ,又2019)2(=-f ,则=)2020(f .三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(Ⅰ)若3tan =α,求值:cos()sin()32cos()sin()22απαππαα-+---+; (Ⅱ)计算:()2ln 9232316log 3log 2log log 2lg 20lg e-⨯++-.18.(本小题满分12分)已知集合{})6lg(2++-==x x y x A ,集合{}02>-=x ax x B (Ⅰ)当4=a 时,求B A I ;(Ⅱ)若B B A =I ,求实数a 的取值范围.19.(本小题满分12分)已知函数()2sin(2)2sin 6f x x x π=-+. (Ⅰ)求5()12f π; (Ⅱ)求)(x f 的单调递增区间.20.(本小题满分12分)已知函数()sin()(0,)22f x x b ππωϕωϕ=++>-<<的相邻两对称轴间的距离为2π,若将()f x 的图像先向左平移12π个单位,再向下平移1个单位,所得的函数()g x 为奇函数.(Ⅰ)求)1(-g 的值,并求函数)(x g 的解析式;(Ⅱ)若函数x x x g x h ---+=22)22()(,求)(x h 在]1,0[∈x 上的值域.22.(本小题满分12分)已知定义在(,1)(1,)-∞-+∞U 的奇函数()f x 满足:①(3)1f =-;②对任意2x >均有()0f x <;③对任意,0m n >,均有(1)(1)(1)f m f n f mn +++=+. (Ⅰ)求(2)f 的值;(Ⅱ)利用定义法证明()f x 在(1,)+∞上单调递减;(Ⅲ)若对任意[,0]2πθ∈-,恒有()sin2(23)(sin cos )2f k k θθθ+-+-≥-,求实数k 的取值范围.题人:黄色的(di)哥题人:凯哥 兵哥2020年重庆一中高2022级高一上期期末考试数学参考答案一、选择题:三、解答题:17、(本小题满分10分)解:(1)原式741tan 2tan 1cos sin 2sin cos -=++-=--+=αααααα; (2)原式()0221122log 23log 31log 220lg 323=-+-=-⨯++=.18、(本小题满分12分)解:(1))3,2(060622-=⇒<--⇒>++-A x x x x , 4=a 时)4,0(=B ,因此)3,0(=B A I ;(2)A B B B A ⊆⇔=I 而0)(02<-⇔>-a x x x ax ,故: 当0=a 时)3,2(-⊆Φ=B ,因此0=a 满足题意;当0>a 时30)3,2(),0(≤<⇒-⊆=a a B ;当0<a 时02)3,2()0,(<≤-⇒-⊆=a a B ;并得:]3,2[-∈a .19、(本小题满分12分)解:(1)()()132cos21cos2=2cos2)1223f x x x x x x x π⎫⎫=-+--+-+⎪⎪⎝⎭⎝⎭此5(11122f ππ+=; (2)令32π-=x u ,由]22,22[32]22,22[πππππππππ+-∈-⇒+-∈k k x k k u ,即()f x 的单调递增区间为Z k k k ∈+-],125,12[ππππ. 20、(本小题满分12分)解:)(6602Z k k k ∈-=⇒=++⨯ππϕπϕπ,而)2,2(ππϕ-∈,故6πϕ-=,因此()sin(2)16f x x π=-+; (2)由(1)知x xg 2sin )(=,题意等价于23[sin 2]sin 220x m x +⋅+=在区间[0,]2π上有两个不等实根, 令]2,0[,2sin π∈=x x t ,则题意⇔方程2320t mt ++=在)1,0[∈t 内仅有一个根,且另一个根1≠.法一:令2()32h t t mt =++,则题意⇔2240016m m ⎧∆=-=⎪⎨<-<⎪⎩或}62{)5,(0)1(0)0(---∞∈⇒⎩⎨⎧<≥Y m h h ; 法二:显然0不是该方程的根,题意m y tt m t mt -=⇔+=-⇔+=-⇔23232与t t y 23+=的图像在)1,0(∈t 内仅有一个交点且另一个交点不为)5,1(,由于双勾函数tt y 23+=在]36,0(上单减,在)1,36[上单增,故有5>-m 或62=-m ,因此}62{)5,(---∞∈Y m .21、(本小题满分12分)解:(1)由R x x x g x x g F x x g x x x ∈+≤≤--⇔≤≤⇔≤≤+--++,26)(132224))(,1()21(226)(131313221-=x ,得4)1(4)1(4-=-⇒-≤-≤-g g ,)0(,)(2≠+=a bx ax x g ,由b a g -=-=-4)1(得4+=a b ,于是x a ax x g )4()(2++=,题:R x x a ax x x g ∈≤--+⇔+≤,02)2(26)(22, x x x g 22)(2+-=,验知此时满足R x x x g ∈--≥,13)(2,故x x x g 22)(2+-=;(2)由题知8)22(2)22(224)22(2)22(2)(22--+--=⋅-+++-=-----x x x x x x x x x x h ,令x x t --=22,显然t 在R 上单增,故当]1,0[∈x 时,]23,0[∈t ,则]23,0[,215)21(282222∈---=-+-=t t t t y ,因此]215,219[--∈y 也即)(x h 在]1,0[∈x 上的值域为]215,219[--. 22、(本小题满分12分)解:(2)由题知:对任意,0m n >都有(1)(1)(1)f mn f n f m +-+=+,且对任意2x >均有()0f x <证一:任取112>>x x ,则()2221111111()()(1)1(1)1(1)11x x f x f x f x f x f x x ⎛⎫---=⋅-+--+=+ ⎪--⎝⎭, 因为112>>x x ,所以2111111011121212>+--⇒>--⇒>->-x x x x x x ,所以211(1)01x f x -+<-, 即21()()0f x f x -<即21()()f x f x <,也即()f x 在(1,)+∞单调递减;证二:任取112>>x x ,设0,1,1,112>>+=+=n m n x mn x ,则21()()(1)(1)(1)f x f x f mn f n f m -=+-+=+,因为1,12m m >+>所以(1)0f m +<,即21()()f x f x <,也即()f x 在(1,)+∞单调递减;(3)在(1)(1)(1)(,0)f m f n f mn m n +++=+>中令2)5(2-=⇒==f n m ,令2)45(0)2()45()5(41,4=⇒==+⇒==f f f f n m ,而()f x 为奇函数,故2)45(-=-f , 又()f x 在(,1)-∞-及(1,)+∞上均单调递减,因此原不等式等价于对任意[,0]2πθ∈-,不等式 5sin 2(23)(sin cos )4k k θθθ+-+-≤-或者1sin 2(23)(sin cos )5k k θθθ<+-+-≤恒成立, 令]0,2[,cos sin πθθθ-∈+=t ,则]1,1[-∈t ,12sin 2-=t θ,则不等式等价于21(23)4t k t k +--≤-…………①或者22(23)6t k t k <+--≤…………②对任意]1,1[-∈t 恒成立,法一:令]1,1[,)32()(2-∈--+=t k t k t t g 立,)(t g 开口向上, 则不等式①]47,1217[412413441)1(41)1(∈⇒⎪⎪⎩⎪⎪⎨⎧-≤--≤-⇒⎪⎪⎩⎪⎪⎨⎧≤-≤-⇔k k k g g ; 对于②,当1±=t 时,由Φ∈⇒⎪⎩⎪⎨⎧≤<<≤-⇒⎩⎨⎧≤<≤-<k k k g g 8432326)1(26)1(2,即必不存在k 满足②. 综上,]47,1217[∈k .法二:令]1,1[,)32()(2-∈--+=t k t k t t g ,)(t g 开口向上,对称轴为k t -=23, 且492)23(,2)1(,34)1(2-+-=--=-=-k k k g k g k g , ο1 当123-<-k 即25>k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤>41)1(25g k 或⎪⎪⎩⎪⎪⎨⎧≤>->6)1(2)1(25g g k ,解得Φ∈k ;ο2 当0231≤-≤-k 即2523≤≤k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤≤≤41)1(2523g k 或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤>-≤≤6)1(2)23(2523g k g k ,解得]47,23[∈k ; ο3 当1230≤-<k 即2321<≤k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤-<≤41)1(2321g k 或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤->-<≤6)1(2)23(2321g k g k ,解得)23,1217[∈k ; ο4 当123>-k 即21<k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤-<41)1(21g k 或⎪⎪⎩⎪⎪⎨⎧≤-><6)1(2)1(21g g k ,解得Φ∈k ; 综上,]47,1217[∈k .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市第一中学2019-2020学年高一数学上学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将答题卡交回。

一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{},1,0,1,,21-=∈≤<-=*B N x x x A 则=B A Y ( )A.}1{B.]2,1[-C.}1,0{D.}2,1,0,1{-2.已知函数2)1ln()(-++=x x x f ,在下列区间中,函数)(x f 一定有零点的是( ) A .]1,0[B .]2,1[ C .]3,2[ D .]4,3[3. 计算οο105sin 15sin ⋅的结果是( ) A.41-B.41C. 426-D.426+ 4.下列函数为奇函数的是( ) A.233)(x x x f += B.xxx f -+=22)( C.xxx f -+=33ln)( D.x x x f sin )(= 5.要得到函数)32sin(π-=x y 的图象,只需将函数x y sin =的图象( )A.把各点的横坐标缩短到原来的12倍,再向右平移6π个单位 B.把各点的横坐标缩短到原来的12倍,再向左平移3π个单位C.把各点的横坐标伸长到原来的2倍,再向右平移6π个单位 D.把各点的横坐标伸长到原来的2倍,再向左平移3π个单位6.函数()()sin (0,0,0)2f x A x A ωϕπωϕ=+>><<的部分图象如图所示,则()f x 的解析式是( )A.()2sin(2)3f x x π=+B. ()2sin(2)6f x x π=+C.()2sin()3f x x π=+ D .()2sin()6f x x π=+7.已知4log 5a =,1216(log 2)b =,sin2c =,则c b a ,,的大小关系是( ) A.b c a <<B.c a b <<C.a b c <<D.c b a <<8.已知函数,34)(,3)2()(2+-=+-=x x x g x m x f 若对任意]4,0[1∈x ,总存在]4,1[2∈x ,使得)()(21x g x f >成立,则实数m 的取值范围是( )A.(2,2)m ∈-B. 33(,)22m ∈-C.(,2)m ∈-∞- D .3(,)2m ∈-+∞9.已知函数22lg (1)2(1)3y a x a x ⎡⎤=---+⎣⎦的值域为R ,则实数a 的取值范围是( )A.[2,1]-B.(2,1)-C. [2,1]--D.(,2)[1,)-∞--+∞U10.函数12211()tan()log ()tan()log ()4242f x x x x x ππ=-----在区间1(,2)2上的图像大致为( )A. B. C. D.11.已知函数()sin (sin cos )f x x x x =⋅+,给出以下四个命题:①()f x 的最小正周期为π;②()f x 在]4,0[π上的值域为]1,0[; ③()f x 的图像关于点)21,85(π中心对称;④()f x 的图像关于直线811π=x 对称.其中正确命题的个数是( )A.1B.2C.3D.412.已知函数⎪⎩⎪⎨⎧≤≤<<=102),4sin(20,log )(2x x x x x f π,若存在实数4321,,,x x x x 使得)()()()(4321x f x f x f x f ===且4321x x x x <<<,则34214352)1)(1(x x x x x x -+--的取值范围是( )A.)17,14(B.)19,14(C.)19,17(D.]477,17(二、填空题:本题共4小题,每小题5分,共20分.把最简答案写在答题卡相应位置上.13. 已知7cos2,(,0)252παα=∈-,则sin α=; 14.已知1tan 2,tan()7ααβ=-+=,则tan β的值为;15.若函数)(x f 满足:在定义域D 内存在实数0x ,使得00(1)()(1)f x f x f +=+成立,则称函数)(x f 为“1阶马格丁香小花花”函数.给出下列四个函数:①1()f x x=;②()x f x e =;③2()lg(2)f x x =+;④()cos f x x π=.其中是“1阶马格丁香小花花”函数的所有函数的序号是; 16.定义在R 上的函数)(x f 满足)2(-x f 是偶函数,且对任意R x ∈恒有2020)1()3(=-+-x f x f ,又2019)2(=-f ,则=)2020(f .三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (Ⅰ)若3tan =α,求值:cos()sin()32cos()sin()22απαππαα-+---+;(Ⅱ)计算:()2ln 9232316log 3log 2log log 2lg 20lg e -⨯++-.18.(本小题满分12分)已知集合{})6lg(2++-==x x y x A ,集合{}02>-=x ax x B (Ⅰ)当4=a 时,求B A I ;(Ⅱ)若B B A =I ,求实数a 的取值范围.19.(本小题满分12分)已知函数()2sin(2)2sin 6f x x x π=-+.(Ⅰ)求5()12f π; (Ⅱ)求)(x f 的单调递增区间.20.(本小题满分12分)已知函数()sin()(0,)22f x x b ππωϕωϕ=++>-<<的相邻两对称轴间的距离为2π,若将()f x 的图像先向左平移12π个单位,再向下平移1个单位,所得的函数()g x 为奇函数. (Ⅰ)求()f x 的解析式;(Ⅱ)若关于x 的方程()23()()20g x m g x +⋅+=在区间[0,]2π上有两个不等实根,求实数m 的取值范围.21.(本小题满分12分)定义二元函数,)1(),(yx y x F +=R y x ∈+∞∈),,0(,如31)21()1,2(1=+=--F .已知二次函数)(x g 过点)0,0(,且13134))(,1()21(2++≤≤x x x g F 对R x ∈恒成立.(Ⅰ)求)1(-g 的值,并求函数)(x g 的解析式; (Ⅱ)若函数xxxg x h ---+=22)22()(,求)(x h 在]1,0[∈x 上的值域.22.(本小题满分12分)已知定义在(,1)(1,)-∞-+∞U 的奇函数()f x 满足:①(3)1f =-;②对任意2x >均有()0f x <;③对任意,0m n >,均有(1)(1)(1)f m f n f mn +++=+. (Ⅰ)求(2)f 的值;(Ⅱ)利用定义法证明()f x 在(1,)+∞上单调递减;(Ⅲ)若对任意[,0]2πθ∈-,恒有()sin2(23)(sin cos )2f k k θθθ+-+-≥-,求实数k 的取值范围.命题人:黄色的(di)哥 审题人:凯哥 兵哥2020年重庆一中高2022级高一上期期末考试数学参考答案一、选择题:三、解答题:17、(本小题满分10分)解: (1)原式741tan 2tan 1cos sin 2sin cos -=++-=--+=αααααα;(2)原式()0221122log 23log 31log 220lg323=-+-=-⨯++=.18、(本小题满分12分)解:(1))3,2(060622-=⇒<--⇒>++-A x x x x , 当4=a 时)4,0(=B ,因此)3,0(=B A I ;(2)A B B B A ⊆⇔=I 而0)(02<-⇔>-a x x x ax ,故:ο1 当0=a 时)3,2(-⊆Φ=B ,因此0=a 满足题意; ο2 当0>a 时30)3,2(),0(≤<⇒-⊆=a a B ;ο3 当0<a 时02)3,2()0,(<≤-⇒-⊆=a a B ;取并得:]3,2[-∈a .19、(本小题满分12分)解: (1)()()132cos21cos2=2cos2)1223f x x x x x x x π⎫⎫=-+--+-+⎪⎪⎝⎭⎝⎭因此5(11122f ππ+=; (2)令32π-=x u ,由]22,22[32]22,22[πππππππππ+-∈-⇒+-∈k k x k k u]125,12[ππππ+-∈⇒k k x ,即()f x 的单调递增区间为Z k k k ∈+-],125,12[ππππ.20、(本小题满分12分)解: (1)由题意知()f x 的周期22=⇒==ωωππT ,故()sin(2)f x x b ϕ=++,而()sin 2()1sin(2)1126g x x b x b ππϕϕ⎛⎫=+++-=+++- ⎪⎝⎭为奇函数,则101=⇒=-b b ,且)(6602Z k k k ∈-=⇒=++⨯ππϕπϕπ,而)2,2(ππϕ-∈,故6πϕ-=,因此()sin(2)16f x x π=-+;(2)由(1)知x x g 2sin )(=,题意等价于23[sin 2]sin 220x m x +⋅+=在区间[0,]2π上有两个不等实根, 令]2,0[,2sin π∈=x x t ,则题意⇔方程2320t mt ++=在)1,0[∈t 内仅有一个根,且另一个根1≠.法一:令2()32h t t mt =++,则题意⇔2240016m m⎧∆=-=⎪⎨<-<⎪⎩或}62{)5,(0)1(0)0(---∞∈⇒⎩⎨⎧<≥Y m h h ; 法二:显然0不是该方程的根,题意m y tt m t mt -=⇔+=-⇔+=-⇔23232与tt y 23+=的图像在)1,0(∈t 内仅有一个交点且另一个交点不为)5,1(,由于双勾函数tt y 23+=在]36,0(上单减,在)1,36[上单增,故有5>-m 或62=-m ,因此}62{)5,(---∞∈Y m .21、(本小题满分12分)解: (1)由R x x x g x x g F x x g x x x ∈+≤≤--⇔≤≤⇔≤≤+--++,26)(132224))(,1()21(226)(13131322令1-=x ,得4)1(4)1(4-=-⇒-≤-≤-g g ,设)0(,)(2≠+=a bx ax x g ,由b a g -=-=-4)1(得4+=a b ,于是x a ax x g )4()(2++=,由题:R x x a ax x x g ∈≤--+⇔+≤,02)2(26)(22,⇒-=⇒⎩⎨⎧≤+=+-=∆<⇔20)2(8)2(022a a a a a x x x g 22)(2+-=, 检验知此时满足R x x x g ∈--≥,13)(2,故x x x g 22)(2+-=; (2)由题知8)22(2)22(224)22(2)22(2)(22--+--=⋅-+++-=-----x x x x xxxx xx h ,令x x t --=22,显然t 在R 上单增,故当]1,0[∈x 时,]23,0[∈t ,则]23,0[,215)21(282222∈---=-+-=t t t t y ,因此]215,219[--∈y也即)(x h 在]1,0[∈x 上的值域为]215,219[--.22、(本小题满分12分)解:(1)在(1)(1)(1)f m f n f mn +++=+中令0)2()2()2(21=⇒=⇒==f f f n m ; (2)由题知:对任意,0m n >都有(1)(1)(1)f mn f n f m +-+=+,且对任意2x >均有()0f x <证一:任取112>>x x ,则()2221111111()()(1)1(1)1(1)11x x f x f x f x f x f x x ⎛⎫---=⋅-+--+=+ ⎪--⎝⎭,因为112>>x x ,所以2111111011121212>+--⇒>--⇒>->-x x x x x x ,所以211(1)01x f x -+<-, 即21()()0f x f x -<即21()()f x f x <,也即()f x 在(1,)+∞单调递减; 证二:任取112>>x x ,设0,1,1,112>>+=+=n m n x mn x , 则21()()(1)(1)(1)f x f x f mn f n f m -=+-+=+,因为1,12m m >+>所以(1)0f m +<,即21()()f x f x <,也即()f x 在(1,)+∞单调递减; (3)在(1)(1)(1)(,0)f m f n f mn m n +++=+>中令2)5(2-=⇒==f n m , 令2)45(0)2()45()5(41,4=⇒==+⇒==f f f f n m ,而()f x 为奇函数,故2)45(-=-f ,又()f x 在(,1)-∞-及(1,)+∞上均单调递减,因此原不等式等价于对任意[,0]2πθ∈-,不等式5sin 2(23)(sin cos )4k k θθθ+-+-≤-或者1sin 2(23)(sin cos )5k k θθθ<+-+-≤恒成立,令]0,2[,cos sin πθθθ-∈+=t ,则]1,1[-∈t ,12sin 2-=t θ,则不等式等价于21(23)4t k t k +--≤-…………①或者22(23)6t k t k <+--≤…………②对任意]1,1[-∈t 恒成立,法一:令]1,1[,)32()(2-∈--+=t k t k t t g 立,)(t g 开口向上,则不等式①]47,1217[412413441)1(41)1(∈⇒⎪⎪⎩⎪⎪⎨⎧-≤--≤-⇒⎪⎪⎩⎪⎪⎨⎧≤-≤-⇔k k k g g ; 对于②,当1±=t 时,由Φ∈⇒⎪⎩⎪⎨⎧≤<<≤-⇒⎩⎨⎧≤<≤-<k k k g g 8432326)1(26)1(2,即必不存在k 满足②.综上,]47,1217[∈k .法二:令]1,1[,)32()(2-∈--+=t k t k t t g ,)(t g 开口向上,对称轴为k t -=23, 且492)23(,2)1(,34)1(2-+-=--=-=-k k k g k g k g , ο1 当123-<-k 即25>k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤>41)1(25g k 或⎪⎪⎩⎪⎪⎨⎧≤>->6)1(2)1(25g g k ,解得Φ∈k ; ο2 当0231≤-≤-k 即2523≤≤k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤≤≤41)1(2523g k 或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤>-≤≤6)1(2)23(2523g k g k ,解得]47,23[∈k ;ο3 当1230≤-<k 即2321<≤k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤-<≤41)1(2321g k 或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤->-<≤6)1(2)23(2321g k g k ,解得)23,1217[∈k ;ο4 当123>-k 即21<k 时,问题等价于⎪⎪⎩⎪⎪⎨⎧-≤-<41)1(21g k 或⎪⎪⎩⎪⎪⎨⎧≤-><6)1(2)1(21g g k ,解得Φ∈k ; 综上,]47,1217[∈k .。

相关文档
最新文档