有机化学第三章

合集下载

有机化学-第三章

有机化学-第三章


这时用“顺序规则”来区分a、b、d、e原子或基团。 连在同一个碳上的两个基团相比较,如果两个碳连的 “较优”基团在π键平面的同侧者称为Z-异构体,用Z 表示;如果两个“较优”基团在π键的两侧者称为E异构体,用E表示。命名时,Z、E放到括号中,放到名 称前面。用“↑”表示顺序方向,箭头指向“较优”

同样用-CH3取代丁烷碳链异构体中的不同类型氢原 子,可以得到戊烷的3个碳链异构体:
以此类推,可以得到不同碳原子数的烷烃的碳链异构 体数目:
C数 1 2 3 4 5 6 7 8 9 20 40 62 491 178 805 831
异构体数
1
1
1
2
3
5
9
18
35
366 319
可见随链烷烃中碳原子数增加,碳链异构体数目 急剧增加。这是逐渐增加C数的方法推导碳链异构 体。
(二)旋光性物质与旋光度 普通光通过两个平行放置的尼科尔棱镜晶体,通过 第一块后变成偏光,偏光也能通过第二块晶体。如果 在两块晶体间放一盛液管,如管内放置水、乙醇、醋 酸等,仍可以看到光通过第二块晶体,如果管内放置 葡萄糖水溶液,观察不到光通过第二块晶体,把第二 块晶体转α角后,才能观察到有光通过
2.环烷烃碳架异构现象 可以用逐步缩小碳环,缩下来的碳原子组成不同的基, 连到缩小后的碳环的不同位置上,写出环烷烃碳架异 构体。 例如:分子式为C6H12的环烷烃可以写出12个异构体:
二、官能团位置异构
各类化合物可以看成是官能团取代相应烃中的氢原子 的产物。官能团取代碳架异构体中的不同氢,形成了 官能团位置异构体 例1.丁烷有两个碳架异构体,可形成四个一元醇的构异 体:

有两个以上环碳原子上各有一个或两个取代基时,选 择其中位次最低者为“参考基团”,在位号前加“r” 表示,其余取代基用顺或反表示与“参考基团”的立 体关系:

有机化学 第三章 环烷烃

有机化学 第三章  环烷烃

张力学说( 一、Baeyer张力学说(strain theory) 张力学说 )
假定成环碳原子都在同一平面上 并排成正多边形。 同一平面上, ※ 假定成环碳原子都在同一平面上,并排成正多边形。 碳原子间的夹角必偏离正常键角。这种由于键角偏离 碳原子间的夹角必偏离正常键角。 正常键角而引起的张力称为角张力。 正常键角而引起的张力称为角张力。 角张力 。 碳环中碳原子键角偏离正常键角越大,角张力越大, ※ 碳环中碳原子键角偏离正常键角越大,角张力越大, 分子越不稳定,反应活性也越大。 分子越不稳定,反应活性也越大。
E
CH3 CH3 CH CH3

CH3 CH3
1
4-甲基环己烯 5-乙基-1,3-环己二烯 - -乙基- , -
顺-1,3-二甲基环丁烷 , -
第二节 环烷烃的性质
一、物理性质
n = 3,4 , 气态 n=5 ※状态 液态 n≥6 固态 ※m.p.: 环烷烃比直链烷烃能够更紧密地排列于晶格中 .: 同数碳原子的直链烷烃。 故m.p.>同数碳原子的直链烷烃。 同数碳原子的直链烷烃 0.688<d<0.853 ※d: 环烷烃不溶于水 ※s: 环烷烃不溶于水
在不同的环烃中键角大于或小于109° ,而正常的SP ※在不同的环烃中键角大于或小于 °28′,而正常的 3 杂化轨道之间的夹角为109°28′即C-C之间的电子云没有达 ° 即 - 之间的电子云没有达 杂化轨道之间的夹角为 到最大程度的重叠。 到最大程度的重叠。 1
( 109 °2 8′- 6 0°) = 24°64′ - ) 2 1 ( 1 09°28 ′- 90 °) = 9 °44 ′ - ) 2 1 ( 109 °2 8′- 1 08°) = 0°44′ - ) 2 1 1 09°28′- 120 °) = -5°1 6′ - ) 2(

有机化学课件 第三章 烯烃3

有机化学课件 第三章 烯烃3

应经历溴 离子、反式加成。 • 反应经历溴鎓离子、反式加成。
Br H C C CH3 H H3C H C Br
+
H3C C C
H
H C
Br2
CH3
H Br
-
CH3 H CH3 C
Br
CH3
Br C H CH3
CH3 Br H (R) H Br (R) CH3 dl-
CH3 H Br (S) Br H (S) CH3
CH3 CH3 C CH=CH2 CH3 CH3 CH3 C CH CH3 + CH3 H3C Cl CH3 C CH CH3 Cl CH3 83%
HCl
17%
反应经历碳正离子中间体。 反应经历碳正离子中间体。 1,2-甲基迁移、1,2-负氢迁移。重排为更稳定的碳正离子。 1,2-甲基迁移、1,2-负氢迁移。重排为更稳定的碳正离子。
试比较下列分子或离子的超共轭效应大小。 [讨论] (1) 试比较下列分子或离子的超共轭效应大小。 讨论]
1) CH3CH=CH2 CH3CH2CH=CH2 (CH3)2CHCH=CH2 A B C 2) (CH3)3C (CH3)2CH CH3CH2 CH3 A B C D
+ + + +
(2) 试静态分析烯烃双键碳原子上电子云密度的大小。 试静态分析烯烃双键碳原子上电子云密度的大小。
碳正离子稳定性次序: 碳正离子稳定性次序: 3o C+ > 2o C+ > 1oC+ >CH3+
G
C
+
G
C
+
给电子基,使正电荷分散,碳正离子稳定: 给电子基,使正电荷分散,碳正离子稳定: 吸电子基,使正电荷更集中 碳正离子不稳定 碳正离子不稳定; 吸电子基,使正电荷更集中,碳正离子不稳定;

有机化学 第三章 烯烃全

有机化学 第三章 烯烃全

KOH
Br
C2H5OH
+ HBr
17
3-4 烯烃的物理性质
物质状态 C2~C4 气体,C5~C18液体 ,C19~固体
沸点、熔点和相对密度 均随相对分子量的增加而上升;直链烯烃的沸 点略高于支链烯烃;末端烯烃(α-烯烃)的沸点 略低于双键位于碳链中间的异构体。
溶解性 不溶于水,易溶于有机溶剂。
HCl CF3CH2CH2 Cl
Cl
CF3CH2CH2
(主)
HCl CF3CHCH3
Cl
Cl
CF3CHCH3
35
烯烃的亲电加成反应
HX反应活性 HI > HBr > HCl > HF
H2C CH2
HBr HAc
CH2 Br
CH2 H
HCl H2C CH2 AlCl3
H2C CH3 Cl
36
与硫酸的加成 ——间接水合
H3C C
H
CH3 C
H
H C
H3C
CH3 C
H
顺式
反式
7
3-2 烯烃的异构和命名
系统命名法
选主链:选择含双键的最长碳链作主链, 称 “某烯”, 若碳原子数大于10, 则称为“某碳 烯”;
编号:从靠近双键的一端开始编号,确定双键 (两双键碳原子中编号小的数字)及其它取代 基的位次;
其它同烷烃的命名。
18
顺 反 异 构 体 的 差 异
极性较大, b.p. 较高 极性较小, b.p. 较低
对称性较差,m.p. 较低
对称性较好,m.p. 较高19
3-5 烯烃的化学性质(重点)
• 反应:加成、氧化、卤代
α HCCC

有机化学 第三章讲解

有机化学 第三章讲解

CH 2 =CH 2
+ HO Cl
Cl-CH 2 -CH 2 -OH
-氯乙醇
实际操作时,常用氯和水直接反应。例:
Cl CH 2 =CH 2
Cl 2 -Cl
-
CH 2 Cl
+
CH 2
H 2O -H
+
CH 2
CH 2 (主) OH
Cl -
Cl CH 2
-氯乙醇
CH 2 (副) Cl
33
b a CH 3 -CH=CH
CH 3 CH 3 -C CH-CH 3
30
3 碳正离子

H
Cl H
重 排 产 物 (主 )
(d) 过氧化物效应
但有过氧化物存在时:
CH 3 -CH=CH
2
+ HBr
hor
过氧化物
CH 3 CH 2 CH 2 Br (反马)
只能是HBr (HCl、HI都不反马)
31
(丙) 与硫酸加成
烯烃与H2SO4的加成反应也是亲电加成反应,加成方向 遵循马氏规则。例:
2
+ HCl
CH 3 -CH-CH Cl
2-氯丙烷 主要产物
乙酸 80%
3
+ CH 3 CH 2 CH 2 Cl
1-氯丙烷 次要产物
CH 3 CH 2 CH=CH
2
+ HBr
CH 3 CH 2 CH CH Br
HBr
2
H
2-溴丁烷
Br
CH 3 CH 2 CH 2 C CH
HBr
CH 3 CH 2 CH 2 C=CH 2 Br
2
(一) 烯烃和炔烃的结构

《有机化学》第三章 不饱和烃

《有机化学》第三章 不饱和烃
供电子基团: O- > COO- > (CH3)3C > (CH3)2CH > CH3CH2 > CH3 >H
吸电子基团: +NR3>NO2>CN>COOH>F>Cl>Br>I>COOR>OR>
COR>SH>OH> C CR>C6H5>CH=CH2>H
诱导效应的特点:
(1)诱导效应的强弱取决于原了或基团的电负性的大小
的两原子可相对的自由旋转。 能相对自由旋转。Βιβλιοθήκη c.键的可极化度:较小。 较大
1.2 单烯烃的异构现象
1.2.1 结构异构
CH3 CH2 CH CH2 CH3 CH CH CH3
1-丁 烯
2-丁 烯
官能团碳碳双键 位置异构
CH3 C CH2 2-甲 基 丁 烯 CH3
碳链异构
结构异构是由于分子中各原子的结合顺序不同而引起的, 位置异构和碳链异构均属于结构异构。
(2) 与卤化氢的加成
CH3CH CHCH3 + HCl CH3CH2CHCH3
2–丁烯
HBr CH3CH2CH CH2
Markovnikov规则
Cl
2–氯丁烷
Br
CH3CHCH CH3
80 %
CH3CHCH2 CH2Br 20 %
当不对称的烯烃与卤化氢等极性试剂加成时,氢原总
是加到含氢较多的双键碳原子上,卤原子(或其子或
上相互重叠。
从侧面重叠。
电子云的分布情况 a. 电子云集中于两原子 电子云分布在 键所
核的连线上,呈圆柱形分布。 在平面的上下两方,呈块
状分布。

有机化学 第三章 烯烃

有机化学 第三章 烯烃

在次卤酸中,氧原子的电负性(3.5) 较氯原子(3.0)和溴 原子(2.8)强,使分子极化成HO X。加成仍符合马氏规律。 在实际生产过程中,通常用氯和水代替次卤酸,结果生成 氯乙醇和,1,2-二氯乙烷。
CH2=CH2
Cl2/H2O
δ- δ+
CH2CH2 + CH 2CH2 Cl OH Cl Cl
– 反应机理
– 顺反异构体的命名
• 顺/反标记法 相同基团在双键同侧为“顺(cis)” ,反之,为“反(trans)”。 • Z/E标记法 依照“次序规则”,比较双键碳上连接的两个基团, 较优基团在双键同侧为“Z” ,反之,为“E”。
CH3 H C C CH3 CH3 H
H
C
C
CH3 CH2CH3
CH3CH2 H
有 机 化 学 ORGANIC CHEMISTRY
第三章 烯烃
CHAPTER 3 ALKENES
第三章 烯 烃 3 ALKENES
分类
开链烯烃 如:(CH3)2C=CH2
按碳的连 接方式分
环烯烃
如:
单烯烃 按双键 数目分 多烯烃
如:H2C=CH2
如:
第一节 烯烃的结构、异构和命名 3.1 Structure,Isomerism and nomenclature
• 加卤化氢 如:
一卤代烷
AlCl3 130~ 250℃
CH2=CH2 + HCl
CH3CH2Cl
分子不对称的烯烃加HX时,可得两种加成产物:
CH3CH=CH2 + HX CH 3CH2CH2X + CH 3CHCH3 X
马氏(Markovnikov)规律:不对称烯烃发生亲电加成时, 酸中带正电荷的质子H+总是加到含氢较多的双键碳原子 上,而负性基团加到含氢较少的双键碳原子上。如:

有机化学第三章 烯烃

有机化学第三章 烯烃

(Ⅰ) Ⅰ 。 2 正离 子
容易生成的碳正离子也一定是稳定的碳正离子。 容易生成的碳正离子也一定是稳定的碳正离子。一 般烷基碳正离子的稳定性次序为: 般烷基碳正离子的稳定性次序为:
(CH3)3C 。 3 C+
+
+
+
+
(CH3)2CH 。+ 2C
CH3CH2 。+ 1C
CH3
碳正离子这样的稳定性次序是分子内原子间相互影 响的结果。 响的结果。
C-C 键能/kJmol-1 键长/nm 346 0.154 C=C 610 0.134
碳原子的SP 二、 碳原子的 2杂化
2P1
sp2杂化态
118° 118°
乙烯分子的σ 乙烯分子的σ键
121° 121°
乙烯分子的π 乙烯分子的π键
H H
.......
C C
H H
.......
杂化轨道中, 的 (1)根据碳原子的杂化理论, 在 SPn杂化轨道中 , n的 ) 根据碳原子的杂化理论, 数值越小, 的性质越强 由于s电子靠近原子核 它比p 的性质越强。 电子靠近原子核, 数值越小 , s的性质越强 。 由于 电子靠近原子核 , 它比 电子与原子核结合的更紧, 越小 轨道电负性越大, 越小, 电子与原子核结合的更紧, n越小, 轨道电负性越大, 电 负性大小次序是: 负性大小次序是:
第三章 烯 烃
【本章重点】 本章重点】 亲电加成反应历程 【必须掌握的内容】 必须掌握的内容】 1.烯烃的结构。 2.烯烃的化学性质。 3.亲电加成反应机理。 4.自由基加成机理
烯烃概念 分子中含有碳碳双键的烃 单烯烃的通式 CnH2n
第一节 烯烃的结构 以 CH2=CH2 为例,从实验事实出发, 乙烯中碳原子的键角是120度,平面结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Z-次序在前的取代基(a和 b)在双键的同侧; • E- 次序在前的取代基(a和 b)在双键的异侧; • a,a’,b,b’为次序,由次序规则决定。
次序规则
(1)首先由和双键碳原子直接相连原子的原子序数决定, 大的在前:
I>Br>Cl>S>P>F>O>N>C>D(氘1中子)>H
-Br > -OH > -NH2 > -CH3 > -H (2)若双键碳原子直接相连第一原子的原子序数相同,则
比较以后的H3 (3)取代基为不饱和基团,应把双键或三键原子看成是它
以单键和多个原子相连:
CC
CCC C
-CH=CH2 相当于-CH-CH2 ,-CC 相当于 -C - CH
• -CCl3>-CHCl2>-COCl>-CH2Cl>-COOR>COOH>....
例1:
•组成键的电子称为 电子; 组成 键的电子称为 电子;
(4) 碳碳单键和双键电子云分布的比较
C-C 键
C-C 键
电子云不易与外界接近 电子云暴露在外.易接近亲电试剂
•键电子云集中在两核之间,不易与外界试剂接近;
•双键是由四个电子组成,相对单键来说,电子云密度更大;且构 成键的电子云暴露在乙烯分子所在的平面的上方和下方,易 受亲电试剂(+)攻击。
•乙烯的键形成示意图
б键与π键的特点
б键:存在--可以单独存在 生成--成键轨道沿键轴重跌,重跌程度大 性质--1,电子云为柱状,并分布于成键原子之间。 --2,键能较大,较稳定 --3,电子云受核约束大,不易被极化 --4,成键的两原子可沿键轴自由旋转
π键 :存在--不能单独存在,只能与б键共存 生成--P轨道平行重跌,重跌程度小 性质--1,电子云为块状,并分布于成键原子上下。 --2,键能较小,不稳定 --3,电子云受核约束小,易被极化 --4,成键原子不能沿键轴自由旋转
官能团位置异构
(3) CH3-C=CH2
2-甲基丙烯(异丁烯)
CH3
(1)、(2)与(3)之间:碳链异构
2、烯烃的命名
(1)选择含碳碳双键的最长碳链为主链(母体); (2)碳链编号时,应从靠近双键的一端开始; (3)烯前要冠以官能团位置的数字(编号最小); (4)其它同烷烃的命名规则.
例如:戊烯的五个构造异构体及命名 (1) CH3-CH2 -CH2 -CH=CH2 1-戊烯 (2) CH3 -CH2 -CH=CH-CH3 2-戊烯 (3) CH2=C-CH2-CH3 2-甲基-1-丁烯,(2-甲基丁烯)
Br
Cl
C=C
(Z) -1-氯-2-溴丙烯
例2:
H3C
H
H3C
CH2CH2CH3
C=C
(E)-3-甲基-4-乙基-3-庚烯
(5) 乙烯的结构对键长、键角的影响
• 甲烷的H-C-H键角109.5º • C-C单键长:0.154nm • C=C双键键长:0.133nm • 断裂乙烷C-C 单键需要
347kJ/mol • 断裂双键需要611kJ/mol; • 说明碳碳 键断裂需要264kJ/mol
双键使烯烃有较大的活性
第三章 烯烃
• 烯烃— 分子中有一个碳碳双键的开链 不饱和烃。
• 烯烃的通式— CnH2n >C=C< 是烯烃的官能团.
一、烯烃的构造异构和命名
1、烯烃的构造异构
➢ 由于双键的位置不同引起同分异构现象
➢ 由于碳链不同引起同分异构现象(同烷烃)
例如:丁烯的三个同分异构体
(1) CH3-CH2-CH=CH2 1-丁烯 (2) CH3-CH=CH-CH3 2-丁烯
• 命名:在前加一顺(cis-)或反(trans-)字表示。
CH3
CH3
C=C
CH3
CH3
C=C
H
H
H
Cl
顺-2-丁烯
顺-2-氯-2-丁烯
CH3
H
C=C
H
CH3
反-2-丁烯
CH3CH2 H
CH3 C=C
H
顺-2-戊烯
三、 E-Z标记法—次序规则
• 若顺反异构体的双键碳原子上没有相同基团,顺 反命名法发生困难。

CH3CH=CH- 丙烯基(1-丙烯基)

CH2= C–
异丙烯基
CH3

CH2=CH-CH2-
烯丙基
二、烯烃的结构
1、 乙烯的结构 (1)乙烯分子所有的碳和氢原子都分布在同一平面
• 双键上的碳均采取 sp2杂化,形成处于同一平面 上的三个 sp2 杂化轨道
(2) sp2杂化轨道
sp2杂化轨道和乙烯的键
CH3 (4) CH3-C=CH-CH3 2-甲基-2-丁烯
CH3 (5) CH3-CH-CH=CH2 3-甲基丁烯
CH3
•若双键在第一个碳上,表示双键位置的数字可略去。
几个重要的烯基(复杂分子中也可把烯烃当取代基)
• 烯基—— 烯烃分子式中去掉一个氢原子后
剩下的一价基团。

CH2=CH- 乙烯基
A. 双键化合物的顺反异构 B. 脂环化合物的顺反异构
(3)顺反异构体的性质
物理性质:沸点、熔点、偶极矩的大小都不相同。 化学性质:反应速度、反应产物(空间构型)不相同 生物活性:不相同
H C CO O
HCC O
+ H2O
OH
HO
OH
HO
反式(有活性)
顺式(无活性)
• 只要任何一个双键上的同一个碳所连接的两个取 代基是相同的,就没有顺反异构.
2、 顺反异构现象(立体异构现象)
• 由于双键不能自由旋转,当双键的两个碳原子各连 接不同的原子或基团时,可能产生不同的异构体。
(1)产生顺反异构的条件:
A、分子中有限制旋转的因素存在 B、每个不能自由旋转的碳原子上必须连有两
个不同的原子或原子团。
a
a
C=C
b
b
a
d
C=C
b
e
(2)顺反异构的类型:
Br
Cl
Br
H
C=C
C=C
CH3
H
CH3
Cl
IUPAC规定: E - Entgegen-表示“相反” Z - Zusammen-表示“共同”
同碳上下比较
a
b
C=C
a’
b’
(a>a’,b>b’; a<a’ ,b<b’)
(1)Z构型
a
b
C=C
a’
b’
(a>a’,b<b’;a<a’,b>b’)
(2) E 构型
(3) 乙烯的键
• C: 2s12px12py12pz1 • 碳原子上未参加杂化的p轨道,
它们的对称轴垂直于乙烯分子 所在的平面,它们相互平行以侧 面相互交盖而形成键。
•键没有轴对称,不能左右旋转。
*
乙烯的成键轨道和 *反键轨道
反 键 轨 道
成 键 轨 道 乙烯的成键轨道和 *反键轨道形成示意图
相关文档
最新文档