差分约束系统详解

差分约束系统详解
差分约束系统详解

差分约束系统

在一个差分约束系统(system of difference constraints)中,线性规划矩阵A的每一行包含一个1和一个-1,A的其他所有元素都为0。因此,由Ax≤b给出的约束条件是m个差分约束集合,其中包含n个未知量,对应的线性规划矩阵A为m行n列。每个约束条件为如下形式的简单线性不等式:xj-xi≤bk。其中1≤i,j≤n,1≤k≤m。

例如,考虑这样一个问题,寻找一个5维向量x=(xi)以满足:

这一问题等价于找出未知量xi,i=1,2,…,5,满足下列8个差分约束条件:x1-x2≤0

x1-x5≤-1

x2-x5≤1

x3-x1≤5

x4-x1≤4

x4-x3≤-1

x5-x3≤-3

x5-x4≤-3

该问题的一个解为x=(-5,-3,0,-1,-4),另一个解y=(0,2,5,4,1),这2个解是有联系的:y中的每个元素比x中相应的元素大5。

引理:设x=(x1,x2,…,xn)是差分约束系统Ax≤b的一个解,d为任意常数。则

x+d=(x1+d,x2+d,…,xn+d)也是该系统Ax≤b的一个解。

约束图

在一个差分约束系统Ax≤b中,m X n的线性规划矩阵A可被看做是n顶点,m条边的图的关联矩阵。对于i=1,2,…,n,图中的每一个顶点vi对应着n个未知量的一个xi。图中的每个有向边对应着关于两个未知量的m个不等式中的一个。

给定一个差分约束系统Ax≤b,相应的约束图是一个带权有向图G=(V,E),其中

V={v0,v1,…,vn},而且E={ (vi,vj) : xj-xi≤bk是一个约束}∪{ (v0,v1) , (v0,v2) , … , (v0,vn) }。引入附加顶点v0是为了保证其他每个顶点均从v0可达。因此,顶点集合V由对应于每个未知量xi的顶点vi和附加的顶点v0组成。边的集合E由对应于每个差分约束条件的边与对应于每个未知量xi的边(v0,vi)构成。如果xj-xi≤bk是一个差分约束,则边(vi,vj)的权

w(vi,vj)=bk(注意i和j不能颠倒),从v0出发的每条边的权值均为0。

定理:给定一差分约束系统Ax≤b,设G=(V,E)为其相应的约束图。如果G不包含负权回路,那么x=( d(v0,v1) , d(v0,v2) , … , d(v0,vn) )是此系统的一可行解,其中d(v0,vi)是约束图中v0到vi的最短路径(i=1,2,…,n)。如果G包含负权回路,那么此系统不存在可行解。

差分约束问题的求解

由上述定理可知,可以采用Bellman-Ford算法对差分约束问题求解。因为在约束图中,从源点v0到其他所有顶点间均存在边,因此约束图中任何负权回路均从v0可达。如果Bellman-Ford算法返回TRUE,则最短路径权给出了此系统的一个可行解;如果返回FALSE,则差分约束系统无可行解。

关于n个未知量m个约束条件的一个差分约束系统产生出一个具有n+1个顶点和n+m条边的约束图。因此采用Bellman-Ford算法,可以再O((n+1)(n+m))=O(n^2+nm)时间内将系

统解决。此外,可以用SPFA算法进行优化,复杂度为O(km),其中k为常数。

https://www.360docs.net/doc/4d12852644.html,/JudgeOnline/problem?id=1364

Description

Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen prayed: ``If my child was a son and if only he was a sound king.'' After nine months her child was born, and indeed, she gave birth to a nice son. Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.

The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.

After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to

数与图的完美结合—浅析差分约束系统

数与图的完美结合 -------浅析差分约束系统 华中师大一附中冯威 [摘要] 在面对多种多样的问题时,我们经常会碰到这样的情况:往往我们能够根据题目题面意思来建立一些简单的模型,但却面对这些模型无从下手。这时我们应该意识到,也许能够将这种模型与其他的模型之间搭起一座桥梁,使我们能够用更简单直接的方式解决它。这里我们介绍一种方法,它很好地将某些特殊的不等式组与图相联结,让复杂的问题简单化,将难处理的问题用我们所熟知的方法去解决,它便是差分约束系统。这里我们着重介绍差分约束系统的原理和其需要掌握的bellman-ford算法。然后通过zju1508和zju1420两道题目解析差分约束系统在信息学题目中的应用,并逐渐归纳解决这类问题的思考方向。 [目录] ◆关键字 (2) ◆Bellman-ford算法 (2) ◇算法简单介绍 (2) ◇算法具体流程 (2) ◇例题一ZJU2008 (4) ◆差分约束系统 (5) ◇例题二ZJU1508 (5) ◇线性程序设计 (7) ◇差分约束系统 (7) ◇例题三ZJU1420 (8) ◆结语 (9) ◆附录 (9)

[关键字] 差分约束系统、不等式、单元最短路径、转化 [正文] 在分析差分约束系统之前,我们首先介绍一个解决单元最短路径问题的Bellman Ford算法,它的应用十分广泛,在差分约束系统中更充当着重要的角色。 Bellman-ford 算法 算法简单介绍 这个算法能在更一般的情况下解决最短路的问题。何谓一般,一般在该算法下边的权值可以为负,可以运用该算法求有向图的单元最长路径或者最短路径。我们这里仅以最短路径为例。 Bellman ford 类似于Dijkstra算法,对每一个节点v∈V,逐步减小从起点s到终点v最短路的估计量dist[v]直到其达到真正的最短路径值mindist[v]。Bellman-ford算法同时返回一个布尔值,如果不存在从源结点可达的负权回路,算法返回布尔值TRUE,反之返回FALSE。 算法具体流程 1.枚举每条边(u,v)∈E(G)。 2.对枚举到的边进行一次更新操作。 3.回到步骤1,此过程重复n-1次,以确定没有更可以优化的情况。 4.枚举每条边(u,v)若仍然存在可以更新的边,则说明有向图中出现了负权回路,于是返回布尔值FALSE。 5.返回布尔值TRUE。 注:这里的更新操作是一种松弛技术,以单元最短路径为例这个操作就是保证 dist[v]<=dist[u]+w[u,v],即if dist[v]>dist[u]+w[u,v] then dist[v]=dist[u]+w[u,v],如果是最长路径则是保证dist[v]>=dist[u]+w[u,v]。 定义一个有向图G=(V,E),w(u,v)表示由结点u到v的边的权值。 伪代码如下:

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

1755 【差分约束】Cashier Employment(出纳员的雇佣)

【差分约束】Cashier Employment(出纳员的雇佣) Time Limit:1000MS Memory Limit:65536K Total Submit:2 Accepted:2 Description 出纳员的雇佣(cashier.pas/c/cpp) 【问题描述】 Tehran的一家每天24小时营业的超市,需要一批出纳员来满足它的需要。超市经理雇佣你来帮他解决他的问题——超市在每天的不同时段需要不同数目的出纳员(例如:午夜时只需一小批,而下午则需要很多)来为顾客提供优质服务。他希望雇佣最少数目的出纳员。 经理已经提供你一天的每一小时需要出纳员的最少数量——R(0), R(1), ..., R(23)。R(0)表示从午夜到上午1:00需要出纳员的最少数目,R(1)表示上午1:00到2:00之间需要的,等等。每一天,这些数据都是相同的。有N人申请这项工作,每个申请者I在没24小时中,从一个特定的时刻开始连续工作恰好8小时,定义tI (0 <= tI <=23)为上面提到的开始时刻。也就是说,如果第I个申请者被录取,他(她)将从tI 时刻开始连续工作8小时。你将编写一个程序,输入R(I)(I = 0..23)和tI (I = 1..N),它们都是非负整数,计算为满足上述限制需要雇佣的最少出纳员数目。在每一时刻可以有比对应的R(I)更多的出纳员在工作。 Input 第一行为测试点个数(<= 20)。每组测试数据的第一行为24个整数表示R(0),R(1),..., R(23)(R(I)<= 1000)。接下来一行是N,表示申请者数目(0 <= N <= 1000),接下来每行包含一个整数tI (0 <= tI <= 23)。两组测试数据之间没有空行。Output 对于每个测试点,输出只有一行,包含一个整数,表示需要出纳员的最少数目。如果无解,你应当输出“No Solution”。 Sample Input 1

cadence16.6差分约束规则

差分对的约束设置 第一步,差分对的设置 差分对的设置有很多方法,下面介绍两种最常用的方法。 1.点击菜单Logic→Assign Differential Pair... 弹出以下对话框。 点击你想要创建差分对的Net1和Net2,填入差分的名字,点击Add后就成功创建了差分对。 点击Auto Generate按钮后,弹出以下对话框:

在第一个输入框填入Net的主要名字后,在下面的框中填入差分线的标志如N,P。点击Generate即可自动产生差分对。 2.在约束管理器中设置差分对。 在DSN上点击右键,在菜单中选择Create→Differential Pair。即可弹出下面的对话框。

和上一种方法的设置差不多,这里就不再叙述了。 第二步差分对约束规则的设置 差分对各项约束可以在约束管理器中的 Electric→Net→routing→Differential Pair中直接在各差分对上填入各项约束数值就可生效,但更好的方法是创建约束规则后赋给各个差分对。 在DSN上点击右键,在菜单中选择Create→Electrical CSet后,弹出下面的对话框; 输入规则名后点Ok,在Electric→constraimt set→outing→Differential Pair中可以看到新规则。 在表格中输入各项数值即可完成新规则的设置。如图所示 差分对约束参数主要有以下几个:

1coupling paramaters 主要包括了 Primary Gap 差分对最优先线间距(边到边间距)。 Primary Width 差分对最优先线宽。 Neck Gap 差分对Neck模式下的线间距(边到边间距),用于差分对走线在布线密集区域时切换到Neck值。 Neck Width差分对Neck模式下的线宽,用于差分对走线在布线密集区域时切换到Neck值。如图所示 设置数值时在表格中右键菜单中选择change,会出现以下各层数值表格,可以在每一层上设置不同的数值。 需要注意的是在物理(physical)约束中同样可以设置差分规则,但是电气规则约束在布线时更优先,同时电气规则可以设置更多的约束,推荐在电气规则中设置差分走线的约束。 2 Min Line Specing 差分对最小间距,一定要小于或等于"Primary gap"与(-)tolerance的数值,并且也要小于或等于"Neck gap"与(-)tolerance的数值。对于不符合约束的差分对,会显示“DS”的DRC错误提示。

约束最优化问题

约束最优化问题 一实习目的 1.熟练掌握科学与工程计算中常用的基本算法; 2.掌握分析问题,设计算法的能力; 3.掌握模块化程序设计的基本思想,注重模块的“高内聚,低耦合”; 4.采用自顶向下,逐步细化的编程思想完成程序书写; 5.牢固建立“清晰第一,效率第二”的软件设计观念; 6.掌握软件调试,测试的基本技能和方法; 7.提高科技报告的书写质量; 8.在掌握无约束最优化问题求解方法的前提下,对一般情形下的约束最优化问题进行研究,通过实习掌握外点罚函数法、内点罚函数法、乘子法、线性近似规划法和序列二次规划法在求解一般情形下的约束最优化问题的应用。 二问题定义及题目分析 问题1: 要求用外点罚函数法和内点罚函数法解决约束问题: Min f(x)=错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 问题2: 要求用乘子法解决约束问题: Min 错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 (错误!未找到引用源。) 问题3: 要求用线性近似规划法和序列二次规划法解决约束问题: Min 错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 三程序概要设计 1.外点罚函数法 Step1. 给定初始点错误!未找到引用源。,罚参数序列{错误!未找到引用源。}(常取错误!未找到引用源。),精度错误!未找到引用源。,并令k=0;

Step2. 构造增广目标函数错误!未找到引用源。; Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则:惩罚项充分小,或等价地错误!未找到引用源。近似可行)若错误!未找到引用源。,或者错误!未找到引用源。,错误! 未找到引用源。,则得解错误!未找到引用源。,否则令k=k+1,转 Step2. 2.内点罚函数法: Step1. 给定初始可行解错误!未找到引用源。,罚参数序列{错误!未找到引用源。}(常取错误!未找到引用源。),精度错误!未找到引用源。,并令 k=0; Step2. 构造增广目标函数错误!未找到引用源。; Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则)若错误!未找到引用源。,则得解错误!未找到引用源。,否则令k=k+1,转 Step2. 3.乘子法: Step1. 给定初始点错误!未找到引用源。,初始lagrange乘子错误!未找到引用源。,i错误!未找到引用源。罚参数序列{错误!未找到引用源。}, 精度错误!未找到引用源。,并令k=0; Step2. 构造增广目标函数错误!未找到引用源。 Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则)若错误!未找到引用源。,则得解错误!未找到引用源。,否则令 K=k+1,转Step2. 4.线性近似规划法: Step1. 给定初始点错误!未找到引用源。,步长限制错误!未找到引用源。,缩小系数错误!未找到引用源。。精度错误!未找到引用源。,并令k=0;Step2. 求解线性规划问题:min 错误!未找到引用源。

差分约束

(本文假设读者已经有以下知识:最短路径的基本性质、Bellman-Ford算法。)比如有这样一组不等式: X1 - X2 <= 0 X1 - X5 <= -1 X2 - X5 <= 1 X3 - X1 <= 5 X4 - X1 <= 4 X4 - X3 <= -1 X5 - X3 <= -3 X5 - X4 <= -3 不等式组(1) 全都是两个未知数的差小于等于某个常数(大于等于也可以,因为左右乘以-1就可以化成小于等于)。这样的不等式组就称作差分约束系统。 这个不等式组要么无解,要么就有无数组解。因为如果有一组解{X1, X2, ..., Xn}的话,那么对于任何一个常数k,{X1 + k, X2 + k, ..., Xn + k}肯定也是一组解,因为任何两个数同时加一个数之后,它们的差是不变的,那么这个差分约束系统中的所有不等式都不会被破坏。 差分约束系统的解法利用到了单源最短路径问题中的三角形不等式。即对于任何一条边u -> v,都有: d(v) <= d(u) + w(u, v) 其中d(u)和d(v)是从源点分别到点u和点v的最短路径的权值,w(u, v) 是边u -> v的权值。 显然以上不等式就是d(v) - d(u) <= w(u, v)。这个形式正好和差分约束 系统中的不等式形式相同。于是我们就可以把一个差分约束系统转化成一张图,每个未知数Xi对应图中的一个顶点Vi,把所有不等式都化成图中的一条边。对于不等式Xi - Xj <= c,把它化成三角形不等式:Xi <= Xj + c,就可以化成 边Vj -> Vi,权值为c。最后,我们在这张图上求一次单源最短路径,这些三角形不等式就会全部都满足了,因为它是最短路径问题的基本性质嘛。 话说回来,所谓单源最短路径,当然要有一个源点,然后再求这个源点到其他所有点的最短路径。那么源点在哪呢?我们不妨自已造一个。以上面的不等式组为例,我们就再新加一个未知数X0。然后对原来的每个未知数都对X0随便加一个不等式(这个不等式当然也要和其它不等式形式相同,即两个未知数的差小于等于某个常数)。我们索性就全都写成Xn - X0 <= 0,于是这个差分约束系 统中就多出了下列不等式: X1 - X0 <= 0 X2 - X0 <= 0 X3 - X0 <= 0 X4 - X0 <= 0

约束优化设计

行域 φ 内,选择一个初始点 X 然后确定一个可行 得一个目标函数有所改善的可行的新点 X 即完成了 第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: s .t . min f (x ) g u (x ) ≤ 0 h v (x ) = 0 x ∈ R n u = 1, 2,..., m v = 1, 2,..., p < n 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于 这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由 m 个不等式约束条件 gu(x )≤0 所确定的可 0 搜索方向 S ,且以适当的步长沿 S 方向进行搜索,取 1 一次迭代。以新点为起始点重复上述搜索过程,每次 均按如下的基本迭代格式进行计算: X k+1=X k +α k S k (k=0,1,2,..) 逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算 不论何时终止,都可以获得比初始点好的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局 部最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集

φ(X,μ1,μ2)=F(X)+∑μ 1 G??g j X)??+∑μ2H??h k(X)?? a)可行域是凸集;b)可行域是非凸 集 间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数 结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优 化问题。 m l j=1k=1 新目标函数 然后对新目标函数进行无约束极小化计算。 加权因子 间接法是结构优化设计中广泛使用的有效方法,其特点: 1)由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和数值计算的稳定性大有提高; 2)可以有效处理具有等式约束的约束优化问题; 3)目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精度,甚至导致计算失败。

allegro 16.3 约束规则设置

Allegro 16.3约束规则设置 约束管理器是一个交叉的平台,以工作簿和工作表的形式在 Cadence PCB设计流程中用于管理所有工具的高速电子约束。可以使用约束管理器和SigXplorer Expert 开发电路的拓扑并得出电子约束,可以包含定制约束、定制测量和定制激励。 所谓约束就是用户定义的限制条件,当在板上走线和放置元件时会遵守这些约束。电子约束(ECSets)就是限制PCB 上与电行为有关的对象,比如可以设置某个网络最大传输延迟为2ns。 以下图为一约束设置窗口。 一、说明 先解释一下约束的类型以及约束中用到的简写名词,如下图所示:

1、NCIs(NET CLASS) 由众多nets或者buses、differential pairs、Xnet所组成的类,可对其赋予相似的约束。如下图所示。 2、NCC(Net Class-Class) 一般用在约束组与组之间的间距的时候使用,如下图。 3、DPr(Differential Pairs)差分对 一组差分对一般由两条Xnet或者net以差分走线的方式组成,如下图。差分对的形成有两种方式:一是由模型指定的差分对,再者就是由用户自己定义的差分对。 ?模型定义的差分对:可以在器件信号模型中指定差分对,可以使用PCB Design,PCB SI,SigXplores 来将模型指定给相应的元件。 ?用户定义的差分对:可以在约束管理器中 Net 一级的对象中创建差分对,可以灵活的更改差分对命名和更改差分对成员,但是没有模型指定差分对的精确性。 以下是设置差分对规则时,需要赋予约束的项。

针对以上约束中用到的一些约束点进行解释说明:

算法总结

算法分块总结 为备战2005年11月4日成都一战,特将已经做过的题目按算法分块做一个全面详细的总结,主要突出算法思路,尽量选取有代表性的题目,尽量做到算法的全面性,不漏任何ACM可能涉及的算法思路。算法设计中,时刻都要牢记要减少冗余,要以简洁高效为追求目标。另外当遇到陌生的问题时,要想方设法进行模型简化,转化,转化成我们熟悉的东西。 图论模型的应用 分层图思想的应用: 用此思想可以建立起更简洁、严谨的数学模型,进而很容易得到有效算法。重要的是,新建立的图有一些很好的性质: 由于层是由复制得到的,所以所有层都非常相似,以至于我们只要在逻辑上分出层的概念即可,根本不用在程序中进行新层的存储,甚至几乎不需要花时间去处理。由于层之间的相似性,很多计算结果都是相同的。所以我们只需对这些计算进行一次,把结果存起来,而不需要反复计算。如此看来,虽然看起来图变大了,但实际上问题的规模并没有变大。 层之间是拓扑有序的。这也就意味着在层之间可以很容易实现递推等处理,为发现有效算法打下了良好的基础。 这些特点说明这个分层图思想还是很有潜力的,尤其是各层有很多公共计算结果这一点,有可能大大消除冗余计算,进而降低算法时间复杂度。 二分图最大及完备匹配的应用: ZOJ place the robots: 二分图最优匹配的应用: 最大网络流算法的应用:典型应用就求图的最小割。 最小费用最大流的应用: 容量有上下界的最大流的应用: 欧拉路以及欧拉回路的应用:主要利用求欧拉路的套圈算法。 最小生成树: 求最小生成树,比较常用的算法有Prim算法和Kruskal算法。前者借助Fibonacci堆可以使复杂度降为O(Vlog2V+E),后者一般应用于稀疏图,其时间复杂度为O(Elog2V)。 最小K度限制生成树: 抽象成数学模型就是: 设G=(V,E,ω)是连通的无向图,v0 ∈V是特别指定的一个顶点,k为给定的一个正整数。 首先考虑边界情况。先求出问题有解时k 的最小值:把v0点从图中删去后,图中可能会出现m 个连通分量,而这m 个连通分量必须通过v0来连接,所以,在图G 的所有生成树中 dT(v0)≥m。也就是说,当k

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

cadence Allegro16.3约束规则

约束规则设置 约束管理器是一个交叉的平台,以工作簿和工作表的形式在 Cadence PCB设计流程中用于管理所有工具的高速电子约束。可以使用约束管理器和SigXplorer Expert 开发电路的拓扑并得出电子约束,可以包含定制约束、定制测量和定制激励。 所谓约束就是用户定义的限制条件,当在板上走线和放置元件时会遵守这些约束。电子约束(ECSets)就是限制PCB 上与电行为有关的对象,比如可以设置某个网络最大传输延迟为2ns。 以下图为一约束设置窗口。 一、说明 先解释一下约束的类型以及约束中用到的简写名词,如下图所示:

由众多nets或者buses、differential pairs、Xnet所组成的类,可对其赋予相似的约束。如下图所示。 2、NCC(Net Class-Class) 一般用在约束组与组之间的间距的时候使用,如下图。 3、DPr(Differential Pairs)差分对 一组差分对一般由两条Xnet或者net以差分走线的方式组成,如下图。差分对的形成有两种方式:一是由模型指定的差分对,再者就是由用户自己定义的差分对。 ?模型定义的差分对:可以在器件信号模型中指定差分对,可以使用PCB Design,PCB SI,SigXplores 来将模型 指定给相应的元件。

?用户定义的差分对:可以在约束管理器中 Net 一级的对象中创建差分对,可以灵活的更改差分对命名和更改差分对成员,但是没有模型指定差分对的精确性。 以下是设置差分对规则时,需要赋予约束的项。

针对以上约束中用到的一些约束点进行解释说明: 差分对的worksheets包含5个主要的约束目录: (1)Pin Delay 此值指一对网络之间管脚封装上的延迟,单位是时间ns 或者长度mil。 (2) 不耦合长度(Uncoupled Length) 不耦合长度约束是用来限制差分对的一对网络之间的不匹配长度。若“gather control”设置为ignore,则实际不不耦合长度不包括两个驱动和接收之间的耦合带之外的长度。若“gather control”设置为“include”,包含出芯片的这段不耦合长度。当不耦合(即在差分对刚刚从芯片出来的走线通常是不耦合的,不耦合有一定的长度)长度超过“max”时产生冲突。 (3)相位偏差(Static Phase Tolerance) 相位偏差约束确保差分对成员在转换时是同相和同步的。实际的数值(actual value)从长度上或者时间上反应了差分对成员之间的差值,当差值超出 tolerance 值时,就会有冲突。 (4)最小线间距(Min Line Spacing) 最小线间距约束指差分对之间的最小距离,如果小于设定的最小值则报错。添加的最小线间距约束值必须小于或者等于Primary Gap减去(-)Tolerance,并且也要小于或者等于Neck Gap减去(-)Tolerance。 (5)耦合参数(Coupling Parameters) 这里面包括6个部分需要设置。1、Primary gap :设置的是差分对之间的边到边理想间距,(+/-)tolerance 值是允许Diff Pairs的偏差值,如果间距偏差在范围内,差分对被认为是耦合的;2、Primary width:差分对成员的理想宽度;3、Neck gap:约束的是最小允许的边到边的差分间距,当在密集区域走线时,可能切换到neck模式,最小可允许的gap 包括Neck Gap 减去(-)Tolerance,当差分对间距小于ECSet 指定给差分对网络的Min neck width 规则值时,Neck Gap 覆盖任何Primary Gap 值,确保 Neck gap 不要低于任何Min line spaing 值,如果设置了(-)tolerance 值,不需要定义Neck gap ,因为已经说明了需要的Neck gap。;4、Neck width:最小可允许的差分对宽度,当在比较密集的区域走线的时,可能需要切换到neck模式;5、(+)Tolerance;6、(-)Tolerance。 使用差分计算器可以完成综合线宽和线距的计算以获得特殊的差分阻抗。在约束管理器中右键点击Primary Gap,

分歧理论及其应用

现代电路理论 -------分歧理论及其应用

分歧理论及其应用 引言:近二、三十年来,分歧现象(bifurcation phenomena)及理论(bifurcation theory)在数学及自然科学上受到格外的重视及研究。随着科学技术的迅速发展,非线性问题大量出现于自然科学、工程技术乃至社会科学的许多领域,成为当前科学研究的热点。分歧现象是普遍存在的,是非线性系统的重要特点之一,它普遍地存在于数学、物理学、化学、经济学、社会学、生态学等各个领域,像数学中的解不唯一、物理学中的相变、工程中的静力与动力失稳、经济学中的马太效应、电子学中的周期振荡等等,都可以从分歧的角度去研究[1]。 1.分歧理论概述 分歧理论是近半个世纪以来逐步形成的有重要应用价值的数学分支,它反映的是流的拓扑结构随参数的变化而引起的质的变异,不论在数学理论上还是在现实应用中都具有极为重要的意义。近半个世纪以来,分歧理论的研究一直受到人们的广泛关注,也得到了很大的发展。国际电力界从20世纪80年代开始研究和应用分歧理论,在电压稳定、轴系扭振以及低频振荡的研究中均取得了新的突破。在上个世纪七十年代初,Crandall和Rabinowitz的两个基本分歧定理是由隐函数定理证明的,至今在数学,生物,工程上广为应用[2]。 分歧的含义是:对于含参数的系统,当参数发生变动并经过某些临界值时,系统的定性性态(即其拓扑结构,例如平衡状态、解的数目、周期运动的数目以及稳定性等)发生突然变化的现象。从数学角度而言,分歧理论主要是研究非线性代数方程(微分方程、积分方程、差分方程等)中参数对解的定性性质的影响,其中参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究重点。 2. 分歧的定义 首先我们来看看一个经常可见到的现象。拿一根细长的金属棒。在棒的两头向内稍稍用力,此时棒不会弯曲。当力量够大时,则棒会弯起来。再继续加大压力,棒可能会弯了两弯。其变化如下图:

五种最优化方法

五种最优化方法 1.最优化方法概述 最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法: 3)是一种函数逼近法。 原理和步骤 3.最速下降法(梯度法) 最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 最速下降法算法原理和步骤 4?模式搜索法(步长加速法) 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的 是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

模式搜索法步骤 5.评价函数法 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min (f_1(x),f_2(x),…,f_k(x)) .g(x)<=o 传统的多目标优化方法本质是将多目标优化中的各分目标函数, 经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权 求合法介绍。 线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼。种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 遗传算法基本流程 的就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤

差分约束系统详解

差分约束系统 在一个差分约束系统(system of difference constraints)中,线性规划矩阵A的每一行包含一个1和一个-1,A的其他所有元素都为0。因此,由Ax≤b给出的约束条件是m个差分约束集合,其中包含n个未知量,对应的线性规划矩阵A为m行n列。每个约束条件为如下形式的简单线性不等式:xj-xi≤bk。其中1≤i,j≤n,1≤k≤m。 例如,考虑这样一个问题,寻找一个5维向量x=(xi)以满足: 这一问题等价于找出未知量xi,i=1,2,…,5,满足下列8个差分约束条件:x1-x2≤0 x1-x5≤-1 x2-x5≤1 x3-x1≤5 x4-x1≤4 x4-x3≤-1 x5-x3≤-3 x5-x4≤-3 该问题的一个解为x=(-5,-3,0,-1,-4),另一个解y=(0,2,5,4,1),这2个解是有联系的:y中的每个元素比x中相应的元素大5。

引理:设x=(x1,x2,…,xn)是差分约束系统Ax≤b的一个解,d为任意常数。则 x+d=(x1+d,x2+d,…,xn+d)也是该系统Ax≤b的一个解。 约束图 在一个差分约束系统Ax≤b中,m X n的线性规划矩阵A可被看做是n顶点,m条边的图的关联矩阵。对于i=1,2,…,n,图中的每一个顶点vi对应着n个未知量的一个xi。图中的每个有向边对应着关于两个未知量的m个不等式中的一个。 给定一个差分约束系统Ax≤b,相应的约束图是一个带权有向图G=(V,E),其中 V={v0,v1,…,vn},而且E={ (vi,vj) : xj-xi≤bk是一个约束}∪{ (v0,v1) , (v0,v2) , … , (v0,vn) }。引入附加顶点v0是为了保证其他每个顶点均从v0可达。因此,顶点集合V由对应于每个未知量xi的顶点vi和附加的顶点v0组成。边的集合E由对应于每个差分约束条件的边与对应于每个未知量xi的边(v0,vi)构成。如果xj-xi≤bk是一个差分约束,则边(vi,vj)的权 w(vi,vj)=bk(注意i和j不能颠倒),从v0出发的每条边的权值均为0。 定理:给定一差分约束系统Ax≤b,设G=(V,E)为其相应的约束图。如果G不包含负权回路,那么x=( d(v0,v1) , d(v0,v2) , … , d(v0,vn) )是此系统的一可行解,其中d(v0,vi)是约束图中v0到vi的最短路径(i=1,2,…,n)。如果G包含负权回路,那么此系统不存在可行解。 差分约束问题的求解 由上述定理可知,可以采用Bellman-Ford算法对差分约束问题求解。因为在约束图中,从源点v0到其他所有顶点间均存在边,因此约束图中任何负权回路均从v0可达。如果Bellman-Ford算法返回TRUE,则最短路径权给出了此系统的一个可行解;如果返回FALSE,则差分约束系统无可行解。 关于n个未知量m个约束条件的一个差分约束系统产生出一个具有n+1个顶点和n+m条边的约束图。因此采用Bellman-Ford算法,可以再O((n+1)(n+m))=O(n^2+nm)时间内将系

差分方程及其应用

差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数 )(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+, 则等式两端就是相邻两月库存量的改变量。若记 ))()1()(t R t R t R -+=?, 并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。 按一阶差分的定义方式,我们可以定义函数的高阶差分。函数)(t f y t =在t 的一阶差

相关文档
最新文档