大学物理仿真实验报告
大学物理仿真实验报告

大学物理仿真实验报告大学物理仿真实验报告引言在大学物理实验中,物理仿真实验起着重要的作用。
通过仿真实验,学生可以在虚拟环境中进行各种物理实验,观察和分析实验现象,从而加深对物理原理的理解和掌握。
本文将以大学物理仿真实验为主题,探讨其在物理教学中的重要性和应用价值。
一、物理仿真实验的意义物理仿真实验是一种虚拟实验教学手段,通过计算机技术和数学模型,将真实的物理实验过程模拟到计算机软件中,使学生可以在虚拟环境中进行实验操作和观察实验现象。
与传统实验相比,物理仿真实验具有以下几个方面的意义。
1. 提供安全环境物理实验中常常涉及到高温、高压、高电压等危险因素,如果学生没有足够的实验经验和安全意识,很容易发生事故。
而物理仿真实验可以提供一个安全的环境,让学生在虚拟场景中进行实验操作,避免了实验过程中的安全隐患。
2. 提供多样实验条件物理仿真实验可以根据不同的实验要求和学生的学习进度,提供多样的实验条件。
学生可以通过调整参数、改变实验环境等方式,观察和分析不同条件下的实验现象,深入理解物理原理。
3. 提供实验重复性在传统实验中,学生可能因为操作不当或其他原因导致实验结果不准确或失败。
而物理仿真实验可以提供实验的重复性,学生可以反复进行实验,找出问题所在,并改正错误,从而提高实验的准确性和可靠性。
二、物理仿真实验的应用价值物理仿真实验在物理教学中具有广泛的应用价值,不仅可以提高学生的实验操作能力,还可以培养学生的科学思维和创新能力。
1. 提高实验操作能力物理仿真实验可以让学生熟悉实验仪器的使用方法和实验步骤,培养他们的实验操作能力。
通过虚拟实验,学生可以反复练习实验操作,掌握实验技巧,提高实验的准确性和效率。
2. 培养科学思维物理仿真实验可以培养学生的科学思维,让他们学会观察、分析和解释实验现象。
在虚拟实验中,学生需要通过观察实验现象、整理数据、分析规律等步骤,从而培养他们的科学思维和逻辑思维能力。
3. 提升创新能力物理仿真实验可以激发学生的创新能力。
大学物理仿真实验实验报告_分光计

大学物理仿真实验实验报告_分光计.大学物理仿真实验实验报告分光计土木21班2120702008崔天龙..验项目名称:分光计一、实验目的1(使学生深入了解分光计的构造和设计原理,学会调整分光计的正确方法;2(了解用最小偏向角法测棱镜材料折射率的基本原理;3(完成测量折射率实验,并正确分析实验误差。
二、实验原理1(分光计的结构分光计主要由三部分:望远镜,平行光管和主体(底座、度盘和载物台)组成。
附件有小灯泡、小灯泡的低压电源以及看度盘的放大镜。
望远镜的目镜叫做阿贝目镜,如图1所示。
2(分光计的调整原理和方法调整分光计,最后要达到下列要求:(1)平行光管发出平行光;(2)望远镜对平行光聚焦(即接收平行光);(3)望远镜、平行光管的光轴垂直仪器公共轴。
分光计调整的关键是调好望远镜,其他的调整可以以望远镜为标准。
在调整望远镜时,可以先将小灯泡的光引入分划板,当分划板的位置刚好在望远镜的焦平面上时,从载物台上放置的平面镜上反射回来的光正好落在分划板上形成一个清晰的十字象。
利用这个原理可以将望远镜调好(出射平行光以及使望远镜的主轴与仪器主轴垂直),当望远镜调好后就可以利用望远镜调节平行光管,此时就可以进行光线的角度的测量了。
3(用最小偏向角法测三棱镜材料的折射率..如下图,一束单色光以角入射到AB面上,经棱镜两次折射后,从AC面射出来,出射角为。
入射光和出射光之间的夹角称为偏向角。
当棱镜顶角A一定时,偏向角的大小随入射角的变化而变化。
而当=时,为最小(证明略)。
这时的偏向角称为最小偏向角,记为。
由上图可以看出,这时设棱镜材料折射率为n,则故..由此可知,要求得棱镜材料的折射率n,必须测出其顶角A和最小偏向角。
三、实验仪器图 1 : 分光计仪器分光计是一种基本的光学测量仪器,能准确快捷地测量各种角度,该仪器配上棱镜、光栅等可用于光谱测量。
配上偏振片、波片等,可作为椭偏仪使用。
图 2 : 分光计分光计中心为载物台,外围为刻度盘和游标盘,双游标的作用是为了消除刻度盘和游标盘中心不重合造成的偏心误差。
大学物理仿真实验报告

大学物理仿真实验报告单摆测量重力加速度一、实验目的本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
二、实验原理单摆的结构如实验仪器中所示,其一级近似周期公式为:由此公式可知,测量周期与摆长就可以计算得到重力加速度g三、实验内容一用误差均分原理设计一单摆装置,测量重力加速度g.设计要求:(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2) 写出详细的推导过程,试验步骤.(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小. 四. 自拟试验步骤用单摆实验验证机械能守恒定律.四、实验仪器实验仪器单摆仪,摆幅测量标尺,钢球,游标卡尺五、实验操作1. 用米尺测量摆线长度;测量摆线长度;测量摆线长度;2. 用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;3. 把摆线偏移中心不超过把摆线偏移中心不超过把摆线偏移中心不超过5度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过50 个周期后停止计时,个周期后停止计时,个周期后停止计时,记录所用时间;记录所用时间;六、实验结果七、数据处理D(平均)=(1.722+1.702+1.732+1.662+1.682+1.692)/6=1.698cm摆线长度+摆球直径=92.00cm摆长L=(摆线长度+摆球直径)-摆球半径=92.00-D/2=91.15cm=0.9115mT1=57.55/30=1.918sT2=76.77/40=1.919sT3=96.00/50=1.920sT=(T1+T2+T3)/3=1.919s由得:g=(4**)*L/(T*T)=9.77m/s*s=9.80-9.77=0.03m/s*sE=/g*100%=0.31%<1% 满足实验要求八、误差分析、心得体会及实验建议误差分析:1、周期的测量存在较大误差,摆线来回摆,刚开始计时以及最后一次摆结束的时刻,由于人眼的反应速度会造成或大或小的偏差;2、摆长的测量存在误差,由于不是亲手拿测量仪器测量,故而有些读数不准确,由此引起一部分误差。
最新大学物理实验仿真实验实验报告

最新大学物理实验仿真实验实验报告
实验目的:
1. 通过仿真实验加深对物理现象的理解。
2. 学习使用计算机辅助物理实验的方法。
3. 掌握数据分析和处理的基本技能。
实验原理:
本实验通过计算机仿真技术模拟物理现象,使学生能够在没有实际实验设备的情况下,也能进行物理实验的学习。
通过模拟实验,可以观察和分析各种物理规律,如牛顿运动定律、电磁学原理等。
实验设备和软件:
1. 计算机及显示器。
2. 物理仿真软件(如PhET Interactive Simulations)。
实验步骤:
1. 打开物理仿真软件,并选择合适的实验模块。
2. 根据实验要求设置初始参数和条件。
3. 运行仿真实验,观察物理现象的变化。
4. 记录实验数据,并进行必要的计算。
5. 分析实验结果,验证物理定律和公式。
6. 撰写实验报告,总结实验过程和结论。
实验数据与分析:
(此处应插入实验数据表格和分析结果,包括但不限于实验观测值、计算值、图表等)
实验结论:
通过本次仿真实验,我们成功地模拟并分析了(具体物理现象)。
实验结果与理论预测相符,验证了(相关物理定律或公式)的正确性。
同时,我们也认识到了仿真实验在物理教学和研究中的重要性和实用性。
建议与反思:
(此处应提出实验过程中遇到的问题、解决方案以及对未来实验的建议或反思)
注意:以上内容仅为模板,具体的实验数据、分析和结论应根据实际完成的仿真实验内容进行填写。
大学物理仿真实验报告

实验名称:光电效应实验实验日期:2023年4月10日学号:2120302003实验人员:张三、李四一、实验目的1. 通过仿真实验,理解光电效应的基本原理。
2. 掌握光电效应方程的推导过程。
3. 分析入射光频率与光电子最大初动能之间的关系。
4. 熟悉光电效应在光电探测技术中的应用。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光电子的最大初动能 \(E_k\) 与入射光的频率 \(v\) 和金属的逸出功 \(W_0\) 之间存在以下关系:\[E_k = hv - W_0\]其中,\(h\) 为普朗克常数。
三、实验步骤1. 打开仿真软件,设置入射光的频率和强度。
2. 调整金属表面的逸出功,观察光电子的发射情况。
3. 记录不同频率入射光下的光电子最大初动能。
4. 分析入射光频率与光电子最大初动能之间的关系。
四、实验结果与分析1. 当入射光的频率较低时,光电子的发射率较低,且光电子的最大初动能较小。
2. 随着入射光频率的增加,光电子的发射率逐渐增加,光电子的最大初动能也随之增加。
3. 当入射光的频率达到一定值时,光电子的发射率达到最大,此时光电子的最大初动能也达到最大值。
4. 当入射光的频率继续增加时,光电子的发射率逐渐降低,光电子的最大初动能也逐渐降低。
根据实验结果,可以得出以下结论:1. 光电效应方程 \(E_k = hv - W_0\) 是正确的。
2. 入射光的频率与光电子的最大初动能之间存在正相关关系。
3. 光电效应在光电探测技术中具有广泛的应用。
五、实验总结本次实验通过仿真实验,使我们深入理解了光电效应的基本原理,掌握了光电效应方程的推导过程,并分析了入射光频率与光电子最大初动能之间的关系。
通过实验,我们认识到光电效应在光电探测技术中的重要性,为今后的学习和研究打下了坚实的基础。
六、实验拓展1. 研究不同金属的逸出功对光电效应的影响。
2. 探究光强度对光电效应的影响。
仿真实验报告(推荐5篇)

仿真实验报告(推荐5篇)第一篇:仿真实验报告大学物理仿真实验报告——塞曼效应一、实验简介塞曼效应就是物理学史上一个著名得实验。
荷兰物理学家塞曼(Zeeman)在1896 年发现把产生光谱得光源置于足够强得磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化得谱线,这种现象称为塞曼效应。
塞曼效应就是法拉第磁致旋光效应之后发现得又一个磁光效应。
这个现象得发现就是对光得电磁理论得有力支持,证实了原子具有磁矩与空间取向量子化,使人们对物质光谱、原子、分子有更多了解.塞曼效应另一引人注目得发现就是由谱线得变化来确定离子得荷质比得大小、符号。
根据洛仑兹(H、A、Lorentz)得电子论,测得光谱得波长,谱线得增宽及外加磁场强度,即可称得离子得荷质比.由塞曼效应与洛仑兹得电子论计算得到得这个结果极为重要,因为它发表在J、J 汤姆逊(J、J Thomson)宣布电子发现之前几个月,J、J 汤姆逊正就是借助于塞曼效应由洛仑兹得理论算得得荷质比,与她自己所测得得阴极射线得荷质比进行比较具有相同得数量级,从而得到确实得证据,证明电子得存在。
塞曼效应被誉为继 X 射线之后物理学最重要得发现之一。
1902 年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰她们研究磁场对光得效应所作得特殊贡献).至今,塞曼效应依然就是研究原子内部能级结构得重要方法。
本实验通过观察并拍摄Hg(546、1nm)谱线在磁场中得分裂情况,研究塞曼分裂谱得特征,学习应用塞曼效应测量电子得荷质比与研究原子能级结构得方法。
二、实验目得1、学习观察塞曼效应得方法观察汞灯发出谱线得塞曼分裂; 2、观察分裂谱线得偏振情况以及裂距与磁场强度得关系;3、利用塞曼分裂得裂距,计算电子得荷质比数值。
三、实验原理1、谱线在磁场中得能级分裂设原子在无外磁场时得某个能级得能量为,相应得总角动量量子数、轨道量子数、自旋量子数分别为。
当原子处于磁感应强度为得外磁场中时,这一原子能级将分裂为层。
大学物理仿真实验报告

大学物理仿真实验报告目录1. 实验目的和意义1.1 实验目的1.2 实验意义2. 理论背景介绍2.1 牛顿力学2.2 动量守恒定律2.3 能量守恒定律3. 实验器材和原理3.1 实验器材3.2 实验原理4. 实验步骤4.1 实验准备4.2 实验具体步骤5. 实验数据记录及分析5.1 数据记录5.2 数据分析6. 实验结论与讨论6.1 实验结论6.2 结论讨论7. 实验中的问题及解决方法7.1 问题描述7.2 解决方法实验目的和意义实验目的本实验旨在通过物理仿真模拟,探究运动物体的力学规律,深入理解牛顿力学原理以及动量守恒和能量守恒定律。
实验意义通过本实验,可以加深对物理定律的理解,提高实验操作能力,培养科学思维和分析问题的能力。
理论背景介绍牛顿力学牛顿力学是经典物理力学的一个重要分支,主要描述了物体受力下的运动规律,包括牛顿三定律等内容。
动量守恒定律动量守恒定律表明,在一个封闭系统内,系统的总动量保持不变,即系统内所有物体的动量之和在任意时刻都是恒定的。
能量守恒定律能量守恒定律是物理学中的一个基本原理,即在一个封闭系统内,系统的总能量保持不变,能量可以转化形式但总量不变。
实验器材和原理实验器材本实验所需器材包括计算机、物理仿真软件等。
实验原理实验基于牛顿力学原理,通过模拟不同条件下物体的运动,验证动量守恒和能量守恒定律。
实验步骤实验准备1. 打开计算机,启动物理仿真软件。
2. 设置实验初始参数,包括物体质量、速度等。
实验具体步骤1. 进行单个物体的运动模拟,记录相关数据。
2. 进行碰撞实验,观察动量和能量的转移情况。
3. 分析实验结果,得出结论。
实验数据记录及分析数据记录在实验过程中记录了单个物体的运动轨迹、速度等数据,以及碰撞实验中的动量和能量转移情况。
数据分析通过对实验数据的分析,可以验证动量守恒和能量守恒定律是否得到满足,进一步探讨物体运动规律。
实验结论与讨论实验结论实验结果表明,在所设定条件下,动量守恒和能量守恒定律是成立的,验证了物理定律在模拟实验中的适用性。
大学物理仿真实验报告

一实验目的1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
二实验仪器牛顿环装置,读数显微镜,钠光灯。
三实验原理图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为(5)如果r k是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果r k是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
在实验中,暗纹位置更容易确定,所以我们选用式(8)来进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理仿真实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
实验名称:碰撞过程中守恒定律的研究实验日期:
实验人:
1.实验目的:
利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。
定量研究动量损失和能量损失在工程技术中有重要意义。
同时通过实验还可提高误差分析的能力。
2.实验仪器和使用:
实验仪器:主要有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等。
1.气垫导轨是以空气作为润滑剂,近似无摩擦的力学实验装置。
导轨由优质三角铝合
金管制成,长约 2m,斜面宽度约7cm,管腔约18.25cm,一端密封,一端通入压缩空气。
铝管向上的两个外表面钻有许多喷气小孔,压缩空气进入管腔后,从小孔喷出。
导轨的一端装有滑轮,导轨的二端装有缓冲弹簧,整个导轨安装在工字梁上,梁下有三个支脚,调节支脚螺丝使气垫保持水平。
2.光电计时系统由光电门和数字毫秒计或电脑计时器构成。
光电门安装在气轨上,时
间由数字毫秒计或电脑计时器测量。
3.气源是向气垫导轨管腔内输送压缩空气的设备。
要求气源有气流量大、供气稳定、
噪音小、能连续工作的特点,一般实验室采用小型气源,气垫导轨的进气口用橡皮管和气源相连,进入导轨内的压缩空气,由导轨表面上的小孔喷出,从而托浮起滑块,托起的高度一般在0.1mm以上。
3.实验原理:
如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即
i
i v m ∑=恒量 (1) 实验中用两个质量分别为m 1、m 2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有
2211202101v m v m v m v m +=+ (2)
对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。
当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。
由于滑块作一维运动,式
(2)中矢量v 可改成标量 , 的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。
1.完全弹性碰撞
完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即
2211202101v m v m v m v m +=+ (3)
222211*********/12/12/12/1v m v m v m v m +=+ (4)
由(3)、(4)两式可解得碰撞后的速度为
2
1202102112)(m m v m v m m v ++-= (5) 21101201222)(m m v m v m m v ++-=
(6)
如果v20=0,则有
2
110211)(m m v m m v +-= (7) 2110122m m v m v +=
(8) 动量损失率为 △p/0p =01
0p p p -=10
12211101)(v m v m v m v m +- (9) 能量损失率为 △E/0E =
10E E E - (10) 2.完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。
在完全非弹性碰撞中,系统动量守恒,动能不守恒。
v m m v m v m )(21202101+=+ (11)
在实验中,让v 20=0,则有v m m v m )(21101+= (12) v=2
1101m m v m + (13) 动量损失率: △p/0p =1-
10121)(v m v m m + (14) 动能损失率: △E/0E =
2
12m m m + (15) 3. 一般非弹性碰撞 一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。
牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度12v v -与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 e=10
2012v v v v --
恢复系数e 由碰撞物体的质料决定。
E 值由实验测定,一般情况下0<e<1,当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞。
4.实验内容及数据
1.研究三种碰撞状态下的守恒定律
(1)取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光
片)。
将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距
离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个光电门的时间Δ
t2,重复五次,记录所测数据,数据表格自拟,计算△p/p 、△E/E 。
(2)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。
(3)分别在两滑块上换上金属碰撞器,重复上述测量和计算。
2.验证机械能守恒定律
(1)a=0时,测量m 、m ’、me 、s 、v1、v2,计算势能增量mgs 和动能增量
1/2(e m m m ++')(2122
v v -),重复五次测量,数据表格自拟。
(2)a 不等于0时,(即将导轨一端垫起一固定高度h ,sin α=h/L ),重复以上测量。
3.数据记录
1.完全弹性碰撞
2.一般非弹性碰撞
3.完全非弹性碰撞
5.总结(误差分析,建议)
由三张表格可以看出
1.在完全弹性碰撞,完全非弹性碰撞,一般弹性碰撞时△p/p在误差范围内均约等于
0。
由此可以证明系统动量守恒。
2.第一张表格(即完全弹性碰撞)可以看到△E/E约等于0,由此可以看出完全弹性碰
撞时系统能量基本没有损失。
有二,三张表格的△E/E可以看出一般弹性碰撞与完全非弹性碰撞市系统能量均有损失,并且完全非弹性碰撞时能量损失最大。
3.根据数据显示,完全弹性碰撞时的恢复系数最大,接近于1。
完全非弹性碰撞时的
恢复系数最小,接近于0。
建议:实验中只有“三种碰撞状态下的守恒定律”的研究,而没有机械能守恒定律的相关动画。
建议下次改进。
6.思考题
1.碰撞前后系统总动量不相等,试分析其原因。
1.有可能没有完全做到正碰,是斜碰
2.气垫导轨没有调平
2.恢复系数e的大小取决于哪些因素
e的大小取决于碰撞物体反的质料决定,如弹簧钢圈, 尼龙搭扣, 金属碰撞器.
3.你还能想出验证机械能守恒的其他方法吗
利用纸带,打点计时器,重锤等仪器来验证.。