初中数学竞赛专题选讲-配方法(含答案)
最全最新初中数学竞赛——配方法

初中数学竞赛专题讲解配方法把一个式子或一个式子的部分改写成完全平方式或者几个完全平方式的和的形式,这种解题方法叫配方法。
配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段。
运用配方法解题的关键在于“配凑”,“拆”与“添”是配方中常用的技巧。
熟悉以下基本等式:1.222)(2b a b ab a ±=+±2.2222)(222c b a ac bc ab c b a ++=+++++;3.[]222222)()()(21a c c b b a ca bc ab c b a ±+±+±=±±±++ 4.a b ac a b x a c bx ax 442222-+⎪⎭⎫ ⎝⎛+=++ 一、基础过关:1.因式分解:44x +=________________________________________2.=_______________________________3.代数式222a a +-的最小值为多少?4.求方程222450x y x y ++-+=的解,x y5.已知20172018a x =+,20172019b x =+,20172020c x =+,则多项式 222a b c ab bc ca ++---的值为多少?6.若12123y z x +--==,则222x y z ++的最小值为多少? 二、例题讲解例1.因式分解:222241a b a ab b -+-+练习1:在ABC ∆中,,,a b c 为ABC ∆的三条边,且满足444222212a b c a c b c ++=+,试判断ABC ∆的形状练习2:因式分解 ①4224x x y y ++ ; ②222669x xy y x y -+-++; ③42221x x ax a +--+例2.化简下列二次根式: ①347+; ②32-; ③223410+-.练习2:(1)化简: (2练习3:如果a =45x <<时,求a 的值练习4:若152a b c +-=-,则a b c ++的值为多少?例3.求下列代数式的最大或最小值:①22101x x ++; ②2112x x -+-练习1:已知y x ,实数满足0332=-++y x x ,则y x +的最大值为练习2:设,a b 为实数,那么222a ab b a b ++--的最小值是多少?练习3:若,,a b c 满足2229a b c ++=,代数式()()()222a b b c c a -+-+-的最大值是 多少?练习4:正实数,,x y z 满足10xy yz +=,则22254x y z ++的最小值为多少练习5:已知实数,,x y z 满足2623x y z x y z +-=⎧⎨-+=⎩求222x y z ++的最小值例4.解下列方程:①422210x x xy y -+++=; ②222624100x xy x y y +++++=练习1:已知24,40a b ab c -=++=,则a b c ++的值为多少?练习2:已知,,,a b c d 都为正数,且满足44444a b c d abcd +++=,求证:a b c d ===练习3:已知实数,,x y z 满足25,9x y z xy y +==+-,求23x y z ++的值练习4:已知,,a b c 是ABC ∆的三边长,且满足222222222,,111a b c b c a a b c ===+++,试求ABC ∆的面积练习5:已知,x y 为实数,且22422y x xy y ++≤+,求x y +的值练习6:已知0a b >>,且226a b ab +=,则a b a b+-的值为多少?例5:求方程22410160x y x y +-++=的整数解练习1:已知a 是正整数,且a a 20042+是一个正整数的平方,求a 的最大值。
初中数学奥林匹克竞赛解题方法大全(配PDF版)-第08章-二次方程与方程组

第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。
例1、利用直接开平方法解下列关于x 的方程。
(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。
(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。
(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。
例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。
求ab ab b a b a --++的值。
例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。
求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。
数学培优竞赛新方法(九年级)-配方法

配方法把一个式子或一个式子的部分改写成完全平方式或者几个完全平方式的和的形式,这种解题方法叫配方法。
配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段。
运用配方法解题的关键在于“配凑”,“拆”与“添”是配方中常用的技巧。
熟悉以下基本等式:1.222)(2b a b ab a ±=+±2.2222)(222c b a ac bc ab c b a ++=+++++; 3.[]222222)()()(21a c cb b a ca bc ab c b a ±+±+±=±±±++ 4.a b ac a b x a c bx ax 442222-+⎪⎭⎫ ⎝⎛+=++ 【例1】已知y x ,实数满足0332=-++y x x ,则y x +的最大值为(镇江市中考题)思路点拨 把y 用x 的式子表示,通过配方法求出y x +的最大值。
【例2】已知c b a 、、,满足722=+b a ,122-=-c b , 1762-=-a c ,则c b a ++的值等于( )A.2B.3C.4D.5(河北省竞赛题)思路点拨 由条件等式的特点,从整体叠加配方入手【例3】已知a 是正整数,且a a 20042+是一个正整数的平方,求a 的最大值。
(北京市竞赛题)思路点拨 设222004m a a =+(m 为正整数),解题的关键是把等式左边配成完全平方式。
【例4】已知c b a 、、是整数,且01,422=-+=-c ab b a ,求c b a ++的值(浙江省竞赛题)【例5】若y x 、是实数,且y x y xy x m 446422--+-=,确定m 的最小值(北京市竞赛题)分析与解 选择x 为主元,将条件等式重新整理成x 的二次三项式,利用配方求m 的最小值。
练习1.设mn n m n m 4,022=+>>,则mnn m 22-的值等于( )A.32B.3C.6D.3(2011年南通市中考题)2.已知m m Q m P 158,15172-=-=(m 为任意实数),则Q P 、的大小关系为( ) A.Q P > B.Q P = C.Q P < D.不能确定(泰州市中考题)3.若实数z y x 、、,满足0))((4)(2=----z y y x z x ,则下列式子一定成立的是( )A.0=++z y xB.02=-+z y xC.D.02=-+y x z(2011年天津市中考题)4.化简2121722321217223---++的结果是( ) A.2 B.2- C.2 D.2-(2011年江西省竞赛题)5.已知实数c b a 、、满足016,72=++++=+-c b bc ab c b a ,则ab的值等于 (天津市竞赛题)6.当2>x 时,化简代数式1212--+-+x x x x 得(“希望杯”邀请赛试题)7.已知z y x 、、为实数,且满足52,352-=--=-+z y x z y x ,则222z y x ++的最小值为 。
配方法的题及其答案(精选3篇)

配方法的题及其答案(精选3篇)以下是网友分享的关于配方法的题及其答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一配方法及其应用初一()班学号:_______ 姓名:____________一、配方法:将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。
配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”.配方法使用的最基本的配方依据是二项完全平方公式(a +b ) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如:222a 2+b 2=(a +b ) 2-2ab =(a -b ) 2+2ab ;b 2⎛3⎫2⎛a +ab +b =(a +b ) -ab =(a -b ) +3ab =a ++ b ⎪;⎝2⎭⎝2⎭2222a 2+b 2+c 2+ab +bc +ca =[(a +b ) 2+(b +c ) 2+(c +a ) 2].下面举例说明配方法的应用:一、求字母的值【例1】已知a ,b 满足a +2b -2ab -2b +1=0,求a +2b 的值.分析:可将含x,y 的方程化为两个非负数和为0的形式, 从而求出两个未知数的值. 解:∵a +2b -2ab -2b +1=0,∴a +b -2ab +b -2b +1=0,∴(a -b ) +(b -1) =0.∵(a -b ) ≥0,(b -1) ≥0,∴a -b =0,b -1=0,∴a =1,b =1,∴a +2b =1+2×1=3,∴a +2b 的值是3.变式练习:1、已知x 2y 2+x 2+4xy +13=6x , 则x,y 的值分别为[1**********]122、已知a +b +4a -2b +5=0,则3a +5b -4的值为___ ___.4. 已知x 2+2xy +y 2-6x -6y +9=0,则x +y 的值为5、若a 、b 为有理数,且2a 2-2ab +b 2+4a +4=0,则a 2b +ab 2的值为___ ___.6、已知a 、b 、c 满足a 2+2b =7,b 2-2c =-1,c 2-6a =-17,则a +b +c 的值为______.7、已知a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则abc 的值为___ ___.228. 已知a +b +1=ab +a +b ,则3a -4b 的值为___ ___. 2222二、证明字母相等【例2】已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2-ab -bc -ac =0, ,判断这个三角形的形状.分析:等式两边乘以2, 得2a 2+2b 2+2c 2-2ab -2bc -2ac =0, 配方,得(a 2-2ab +b 2)+(b 2-2bc +c 2)+(c 2-2ca +a 2)=0,即(a -b )+(b -c )+(c -a )=0. 222由非负数的性质得a-b=0,b-c=0,c-a=0,a=b,b=c,c=a,即a=b=c.故△ABC 是等边三角形.变式练习:1、已知3a 2+b 2+c 2=(a +b +c ),求证:a =b =c 2()44442、已知:a +b +c +d =4abcd ,其中a ,b ,c ,d 是正数,求证:a=b=c=d。
九年级数学解一元二次方程--配方法(基础)(含答案)

解一元二次方程--配方法(基础)一、单选题(共10道,每道10分)1.已知关于x的一元二次方程有实数根,则m的取值范围为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一元二次方程的根的判别式2.一元二次方程的根为( )A.x=3B.C. D.答案:D解题思路:试题难度:三颗星知识点:解一元二次方程——配方法3.一元二次方程可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4答案:D解题思路:略试题难度:三颗星知识点:解一元二次方程——配方法4.用配方法解一元二次方程,下列变形正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:解一元二次方程——配方法5.用配方法解下列方程,其中应在等号左右两边同时加上16的是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:解一元二次方程——配方法6.一元二次方程配方法可化为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:解一元二次方程——配方法7.已知方程可以配方成,则2019(m-n)的值为( )A.2019B.-2019C.4038D.-4038答案:B解题思路:试题难度:三颗星知识点:解一元二次方程——配方法8.一元二次方程的解是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解一元二次方程——配方法9.一元二次方程的解是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解一元二次方程——配方法10.若一元二次方程的两根为a,b,且a>b,则2a-b的值为( )A.-57B.63C.179D.181答案:D解题思路:试题难度:三颗星知识点:解一元二次方程——配方法。
配方法的应用含答案

(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出 x、y 的值,然后代入代数式计算即可;
(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出 a、b 的值, 然后利用三角形的三边关系即可求解.
第 3页,共 3页
=(a+2)2-9.故选 D.
3. 设 A=2a+3,B=a2-a+7,则 A 与 B 的大小关系是( )
A. A>B
B. A<B
C. A≥B
D. A≤B
【答案】B
【解析】【分析】
本题考查了配方法的应用,非负数的性质以及整式的加减,配方法的理论依据是公式
a2±2ab+b2=(a±b)2,通过作差法和配方法比较 A 与 B 的大小.
D. (a+2)2-9
【答案】D
【解析】【分析】
此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改
变式子的值.若二次项系数为 1,则常数项是一次项系数的一半的平方,若二次项系数
不为 1,则可先提取二次项系数,将其化为 1 后再计算.
【解答】
解:a2+4a-5
=a2+4a+4-4-5
配方法的应用
一、选择题
1. 不论 x、y 为什么实数,代数式
的值( )
A. 总不小于 2 B. 总不小于 7 C. 可为任何实数 D. 可能为负数
【答案】A
【解析】[分析]
把代数式 x2+y2+2x-4y+7 根据完全平方公式化成几个完全平方和的形式,再进行求解.
[详解]
x2+y2+2x-4y+7=(x+1)2+(y-2)2+2≥2,
人教版 初二数学 竞赛专题:配方法(包含答案)

人教版 初二数学 竞赛专题:配方法(含答案)【例1】 已知实数x ,y ,z 满足25,z 9x y xy y +==+- ,那么23x y z ++=_____ 【例2】 若实数a ,b , c 满足2229a b c ++= ,则代数式222()()()a b b c c a -+-+- 的最大值是 ( )A 、27B 、18C 、15D 、12【例3】 已知152a b c +-=-, 求a + b + c 的值.【例4】 证明数列49,4489, 444889,44448889,…的每一项都是一个完全平方数.【例5】 一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼).【例6】 已知自然数n 使得21991n n -+ 为完全平方数,求n 的值.能力训练1=_________.2、已知2222()30a b c a b c ++-+++= ,则3333_________a b c abc ++-=.3、x ,y 为实数,且22422y x xy y ++≤+ ,则x + y 的值为__________.4、当x >2,得___________.5、已知224121049m x xy y y =-+++ ,当x =________,y =______时,m 的值最小. 6、若22221076,51M a b a N a b a =+-+=+++ ,则M -N 的值 ( )A 、负数B 、正数C 、非负数D 、可正可负7的值为 ( )A 、1 BC、 D、8、设a ,b , c 为实数,2222,2,2362x a b y b c z c a πππ=-+=-+=-+,则x ,y ,z 中至少有一个值 ( )A 、大于零B 、等于零C 、不大于零D 、小于零9、下列代数式表示的数一定不是某个自然数的平方(其中n 为自然数)的是( )A 、2333n n -+B 、2444n n ++C 、2555n n -+ D 、2777n n -+ E 、2111111n n -+10、已知实数a ,b , c 满足22227,21,617a b b c c a +=-=--=- ,则a + b + c 的值等于 ( )A 、2B 、3C 、4D 、5 解“存在”、“不存在”“至少存在一个”等形式的问题时,常从整体考虑并经常用到一下重要命题:设x 1,x 2,x 3,… x n 为实数.(1) 若120n x x x ⋅⋅⋅=L 则x 1,x 2,x 3,… x n 中至少有(或存在)一个为零; (2) 若120n x x x +++>L ,则x 1,x 2,x 3,… x n 中至少有(或存在)一个大于零; (3) 若120n x x x +++<L ,则x 1,x 2,x 3,… x n 中至少有(或存在)一个小于零.11、解方程组222222212121z x z x y x y z y⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩12、能使2256n+ 是完全平方数的正整数n 的值为多少?13、已知b a >,且()()243aa b a ab b b+++-+= ,a ,b 为自然数,求a ,b 的值.13、设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ ,求a ,b 的值.14、某宾馆经市场调研发现,每周该宾馆入住的房间数y 与房间单价x 之间存在如图所示的一次函数关系.(1) 根据图象求y 与x 之间的函数关系式(0<x <160);(2) 从经济效益来看,你认为该宾馆如何制定房间单价,能使其每周的住宿收入最高?每周最高住宿收入是多少元?间数(个)yx0 50 100540990 单价(元)答案例 1 10 提示:x =5-y 代入z 2=xy +y −9,然后配方.例2 A 提示:原式=3(a 2+b 2+c 2)−(a 2+b 2+c 2+2ab +2bc +2ac ).例 3 a+b+c =20 提示:将等式整理,得(a −1−2√a −1+1)+(b −2−4√b −2+4)+12(c −3−6√c −3+9)=0即(√a −1−1)2+(√b −2−2)2+12(√c −3−3)2=0例 4 原式=44⋯44 ⏟ n+188⋯88⏟ n+1+1=44⋯44 ⏟ n+100⋯00⏟ n+1+88⋯88⏟ n+1+1=4×11⋯11 ⏟ ×n+110n+1 +8×11⋯11 ⏟n+1+1=4()2211111111119111118111113611111211111611111n n n n n n ++++++⎛⎫⎛⎫⨯⨯⨯++⨯+=⨯+⨯+=⨯+ ⎪ ⎪⎝⎭⎝⎭L L L L L L 12312312312312314243 例5 已知,这32个人恰好是第2至第33层各住1人,对于每个乘电梯上、的人,他所住的层数一定不小于直接上楼的人所住的层数,事实上,设住S 层的人乘电梯,而住t 层的人直接上楼,S <t ,交换两人的上楼方式,其余的人不变,则不满意总分减少.设电梯停在第x 层,在第一层有y 人没有乘电梯而直接上楼,那么不满意总分为: ()()()31233312122S x y x y =+++-++++++++--⎡⎤⎡⎤⎣⎦⎣⎦L L L=()()()()()333343121222x x y y x y x y ⨯--+----++=()222102231684x y x y y -++++ =()221021215180306848y x y y +⎛⎫-+-+ ⎪⎝⎭=()2210212631631648y x y +⎛⎫-+-+≥ ⎪⎝⎭又当x=27,y=6时,=316S 最小值.故当电梯停在第27层时,总分最小,最小值为316分.例6 若2n 19n 91-+为完全平方数,则()24n 19n 91-+也是完全平方数.设()224n 19n 91=m -+(m 为自然数)配方得()222n 193=m -+,0 50 100单价(元)∴(m+2n-19)(m-2n+19)=3于是219=3219=1219=1219=3m n m n m n m n +-+--+-+⎧⎧⎨⎨⎩⎩或 解得:=2=2=10=10m m n n ⎧⎧⎨⎨⎩⎩或故当n=9或10时2n 19n 91-+是完全平方数. 能力训练1.4+ 2. 0 3. 6 4.5. -3,-2, 56. B7. C8. A 提示:()()()222x y z=a 1b 1c 13π++-+-+-+-大于0 . 9. B 提示:取n=2和3可否定A 、C 、D 、E ,而()224n 4n 4=4n n 1++++,()222n n n 11n <++<+,故2n n 1++不是完全平方数. 10. B11. (x ,y ,z )=(0,0,0)或(1,1,1) 提示:取倒数. 12. 提示:当n<8时,(22222=01+ab a b =m--,若它是完全平方数,则n 必为偶数.若n=2,则22256265n +=⨯;若n=4,则42256217n +=⨯;若n=6,则6225625n +=⨯;若n=8,则8225622n +=⨯.所以当n ≤8时,2256n +都不是完全平方数.当n>8时,8n 822562(21)n -+=+,若它是完全平方数,则n 821-+为一奇数的平方,设()2n 82121k -+=+(k 为自然数),则()n 10211k k -+=+,由于k 和k+1一奇一偶,∴k=1,于是n 1022-=,故n=11.13. 提示:设a=kb (k 为正整数),则()222124327339k b +==⨯=⨯,解得542428a a b b ==⎧⎧⎨⎨==⎩⎩或 14. 由()222292a b =5093k +⨯,得到2a+b=509k ,b=509k-2a ,代入原式得()224a 511509k 2a =5093k +-⨯,()k 5119k a=2-,因为a 为质数,故有以下情况:⑴当k=1时,5119a==2512-,为质数,b=509k-2a=7. ⑵当k=2时,a=511-18=493=17×29,不为质数,舍去. ⑶当k>2且k 为奇数时,5119k a=k 2-•为质数且k>2,则5119k=12-,此方程无整数解,舍去.⑷当k>2且k 为偶数时,()k a=5119k 2-为质数,且k12>,则511-9k=1,此方程无整数解,舍去.综上所述,a=251,b=7.15. 提示:⑴ y=-9x+1440 (0<x<160).⑵每周的住宿收入是S 元,则()()22914409144098057600S x x x x x =-+=-+=--+ 当x=80时,57600S =最大元.。
【华东师大版】九年级数学上册:22.2.2《配方法教案(含答案)

2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m)2=n(n≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗?(1)(x+3)2=25(2)x 2+6x+9=25(3)x 2+6x=16(4)x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16,两边都加上9即(26)2,使左边配成x 2+bx+(b2)2的形式,得: x 2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次)即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2 (2)x 2-x+41=(x-21)2 (3)4x 2+4x+1=(2x+1)2例2 列方程:(1)x 2+6x+5=0 (2)2x 2+6x+2=0 (3)(1+x )2+2(1+x )-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:(1)把方程化为一般形式ax 2+bx+c=0;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解下列方程:(1)2x 2-4x-8=0(2)x 2-4x+2=0(3)x 2-21x-1=0 2.如果x 2-4x+y2+6y+2 z +13=0,求(xy )z 的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中课时练习的“课时作业”部分.本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:方程 x2+y2+2x-4y+1+4=0.
配方的可化为 (x+1)2+(y-2)2=0.
x 1 0
要使等式成立,必须且只需
y
2
0
.
解得
x
y
1 2
此外在解二次方程中应用根的判别式,或在证明等式、 不等式时,也常要有配方的知识和技巧.
-3-
二、例题 例1. 因式分解:a2b2-a2+4ab-b2+1.
③
由 a2±2ab 配上 b2.
2. 运用配方法解题,初中阶段主要有:
① 用完全平方式来因式分解
例如:把 x4+4 因式分解.
原式=x4+4+4x2-4x2=(x2+2)2-4x2=……
这是由 a2+b2 配上 2ab.
② 二次根式化简常用公式: a2 a ,这就需要把被开方
数写成完全平方式.
① 74 3; ② 2 3; ③
10 4 3 2 2 . 解:化简的关键是把被开方数配方
① 7 4 3 = 4 2 2 3 3 = (2 3)2 = 2 3 =2+ 3 .
② 2 3 = 2 2 3 = 4 2 3 = ( 3 1)2
2
2
2
= 2( 3 1) =. 6 2
例如:求代数式 a2+2a-2 的最值. ∵a2+2a-2= a2+2a+1-3=(a+1)2-3 当 a=-1 时, a2+2a-2 有最小值-3. 这是由 a2±2ab 配上 b2 ④ 有一类方程的解是运用几个非负数的和等于零,则每 一个非负数都是零,有时就需要配方. 例如::求方程 x2+y2+2x-4y+5=0 的解 x, y.
初中数学竞赛专题选讲-配方法 (含答案)
初中数学竞赛专题[配方法]
一、内容提要
1. 配方:这里指的是在代数式恒等变形中,把二次三项式 a2
±2ab+b2 写成完全平方式
(a±b)2. 有时需要在代数式中添项、折项、分组才能
写成完全平方式.
常用的有以下三种:
①由 a2+b2 配上 2ab, ②由 2 ab 配上 a2+b2,
∴
x
y
y 1
3 0
0
∴
x
y
4 1
例5. 已知:a, b, c, d 都是整数且 m=a2+b2, n=c2+d2,
则 mn 也可以表示为两个整数的平方和,试写出其形式.
解:mn=( a2+b2)( c2+d2)= a2c2+ +a2d2 +b2 c2+ b2 d2
= a2c2+ b2 d2+2abcd+ a2d2 +b2 c2-2abcd
205或((
x y
4) 2 5) 2
205或(( yx
4)2 5)2
196或((
x y
4) 5)
2 2
16 9
-6-
由
x
y
4 5
0 5
得
x
y
4 0
同理,共有
12
个解
x
y
4 10
x
y
9 -5
x
y
1 5
……
三、练习
1. 因式分解:
①x4+x2y2+y4 ; ②x2-2xy+y2-6x+6y+9 ; ③
-5-
根据“几个非负数的和等于零,则每一个非负数都应等
于零”.
得
x
2
1
0
x y 0
∴
x
y
1, 1
或
x 1
y
1
②x2+2xy+y2+6x+6y+9+y2-2y+1=0 . (折项,分组)
(x+y)2+6(x+y)+9+y2-2y+1=0.
(x+y+3)2+(y-1)2=0. (配方)
例如:化简 5 2 6 .
我们把 5-2 6 写成 2-2 2 3 +3
= ( 2)2 -2 2 3 + ( 3)2
=( 2 - 3 )2.
这是由 2 ab 配上 a2+b2.
-2-
③ 求代数式的最大或最小值,方法之一是运用实数的平 方是非负数,零就是最小值.即∵a2≥0, ∴当 a=0 时, a2 的值为 0 是最小值.
(分
组,添项)
=(ac+bd)2+(ad-bc)2
例6. 求方程 x2+y2-4x+10y+16=0 的整数解
解:x2-4x+16+y2+10y+25=25
(添项)
(x-4)2+(y+5)2=25 (配方)
∵25 折成两个整数的平方和,只能是 0 和 25;9 和 16.
∴
( x ( y
4) 2 5) 2
`2 2 4
=(x+ 5 )2- 21 .
2
4
∵(x+ 5 )2≥0,其中 0 是最小值.
2
即当 x= 5 时,x2+5x+1 有最小值- 21 .
2
4Байду номын сангаас
②-2x2-6x+1 =-2(x2+3x- 1 )
2
=-2(x2+2× 3 x+ 9 9 - 1 )
2 44 2
=-2(x+ 3 )2+ 11
2
2
③ 10 4 3 2 2 = 10 4 ( 2 1)2
= 10 (4 2+1)
-4-
= 64 2 = 422 2 2 =
(2 2)2 =2- 2 .
=
例3. 求下列代数式的最大或最小值:
① x2+5x+1; ② -2x2-6x+1 .
解:①x2+5x+1=x2+2× 5 x+ 5 2 - 25 +1
x4+x2-2ax-a2+1.
2. 化简下列二次根式:
① 4x2 12x 9 4x2 20x 25 (- 3 <x< 5 );
2
2
② x2 4 x x3 3x 2 (1<x<2);
4
x2
③ 17 12 2 ; ④ 3 5 ;
⑤ 11 4 4 2 3 ; ⑥ 3 5 3 5 ; ⑦ ( 14 + 6 5 ) ÷ ( 3 + 5 ); ⑧ ( 3 x ) 2 +
解:a2b2-a2+4ab-b2+1=a2b2+2ab+1+(-a2+2ab-b2) (折项,分组)
= ( ab+1 ) 2 - (a - b)2 (配方)
= ( ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)
本题的关鍵是用折项,分组,树立配方的思想.
例2. 化简下列二次根式:
2
2
∵-2(x+ 3 )2≤0,其中 0 是最大值,
2
∴当 x=- 3 时,-2x2-6x+1 有最大值 11.
2
2
例4. 解下列方程:
①x4-x2+2xy+y2+1=0 ; ②x2+2xy+6x+2y2+4y+10=0.
解:①(x4-2x2+1)+(x2+2xy+y2)=0 . (折项,分组) (x2-1)2+(x+y)2=0. (配方)