中考数学模拟试题与答案12

合集下载

2023届中考数学模拟考试试题(附答案)

2023届中考数学模拟考试试题(附答案)

2023年中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的相反数是()A.3B.﹣3C.D.﹣2.如图是由几个小立方块所搭成的儿何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.3.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°4.正比例函数y=﹣kx的y值随x值的增大而减小,则此函数的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.3a•3a2=3a3D.(a﹣b)2=a2﹣b26.如图,在△ABC中,AC=BC,∠C=90°,AD平分∠BAC,交BC于点D,若CD=1,则AC的长度等于()A.B.+1C.2D.+27.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)8.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE =3,则矩形ABCD的面积为()A.B.C.12D.329.如图,过⊙O外一点A引圆的两条切线,切点分别为D,C,BD为⊙O的直径,连接BC,DC.若AD=CD,BD=4,则AC的长度为()A.2B.2C.2D.410.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12二、填空题(木大题共4个小题,每小题3分,共12分)11.分解因式:a2﹣2a+1=.12.正六边形的外接圆的半径与内切圆的半径之比为.13.如图,在平面直角坐标系中菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为10,则k的值为.14.如图,已知∠BAC=45°,线段DE的两个端点在角的两边AB,AC上运动,且DE=2.以线段DE为边在DE的右侧作等边三角形DEF,则AF的最大值为.三、解答题(本大题共11小题,计78分.解答应写出过程)15.(5分)计算:+4cos260°﹣|﹣1|16.(5分)解分式方程:+3=.17.(5分)尺规作图:已知⊙O,求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).18.(5分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.19.(7分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在暑假期间阅读量(阅读本数为正整数)为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读4本及4本以上课外书者为“优秀阅读者”,据此估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有多少人?20.(7分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为60°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(≈1.4,≈1.7结果保留整数)21.(7分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A ,B 两种垃圾桶,负责人小李调查发现:购买数量种类购买数量少于100个购买数量不少于100个A 原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元.(1)求A ,B 两种垃圾桶的单价各为多少元?(2)若需要购买A ,B 两种垃圾桶共200个,且B 种垃圾桶不多于A种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.22.(7分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.23.(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB .(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.24.(10分)设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求抛物线的解析式(2)已知过点A的直线y=x+1交抛物线于另一点E,且点D(1,﹣3)在抛物线上问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.25.(12分)问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.2023年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的相反数是()A.3B.﹣3C.D.﹣【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选:C.2.如图是由几个小立方块所搭成的儿何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】由已知条件可知,左视图有3列,每列小正方形数目分别为2,3,2.据此可作出判断.【解答】解:从左面看可得到从左到右分别是3,2个正方形.故选:A.3.如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°【分析】直接利用平行线的性质以及三角形的性质进而得出答案.【解答】解:由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°﹣45°﹣60°=75°.故选:C.4.正比例函数y=﹣kx的y值随x值的增大而减小,则此函数的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【分析】根据正比例函数的性质进行判断.【解答】解:∵正比例函数y=﹣kx的y值随x值的增大而减小,∴﹣k<0,∴此函数的图象经过第二、四象限.故选:D.5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.3a•3a2=3a3D.(a﹣b)2=a2﹣b2【分析】直接利用积的乘方运算法则以及整式的混合运算法则分别判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、(﹣b2)3=﹣b6,正确;C、3a•3a2=9a3,故此选项错误;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:B.6.如图,在△ABC中,AC=BC,∠C=90°,AD平分∠BAC,交BC于点D,若CD=1,则AC的长度等于()A.B.+1C.2D.+2【分析】过D作DE⊥AB于E,依据△BDE是等腰直角三角形,即可得到BD的长,进而得到BC的长,可得答案.【解答】解:如图所示,过D作DE⊥AB于E,∵AC=BC,∠C=90°,AD平分∠BAC,∴DE=CD=1,∠B=45°,∴∠BDE=∠B=45°,∴BE=DE=1,∴Rt△BDE中,BD==,∴BC=+1,∴AC=+1,故选:B.7.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.8.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE =3,则矩形ABCD的面积为()A.B.C.12D.32【分析】由矩形的性质得出OA=OC,由线段垂直平分线的性质得出AE=CE=3,求出BE=1,由勾股定理求出AB,即可得出答案.【解答】解:连接AE,如图所示:∵四边形ABCD是矩形,∴OA=OC,∠ABC=90°,BC=AD=4,∵OE⊥AC,∴AE=CE=3,∴BE=BC﹣CE=1,∴AB===2,∴矩形ABCD的面积=AB×BC=2×4=8;故选:B.9.如图,过⊙O外一点A引圆的两条切线,切点分别为D,C,BD为⊙O的直径,连接BC,DC.若AD=CD,BD=4,则AC的长度为()A.2B.2C.2D.4【分析】利用切线长定理得到AD=AC,则可判断△ADC为等边三角形,所以∠ADC=60°,再利用切线的性质得到AD⊥DB,所以∠CDB=30°,接着根据圆周角定理得到∠BCD=90°,然后根据含30度的直角三角形三边的关系求出CD即可.【解答】解:∵AD、AC为⊙O的两条切线,切点分别为D,C,∴AD=AC,而AD=CD,∴AD=CD=AC,∴△ADC为等边三角形,∴∠ADC=60°,∵AD为切线,∴AD⊥DB,∴∠CDB=90°﹣60°=30°,∵BD为⊙O的直径,∴∠BCD=90°,在Rt△BCD中,BC=BD=×4=2,∴CD=BC=2,∴AC=2.故选:C.10.二次函数y=x2+mx﹣n的对称轴为x=2.若关于x的一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,则n的取值范围是()A.﹣4≤n<5B.n≥﹣4C.﹣4≤n<12D.5<n<12【分析】根据对称轴求出m的值,从而得到x=﹣1、6时的函数y=x2﹣4x值,再根据一元二次方程x2+mx﹣n=0在﹣1<x<6的范围内有解相当于y=x2+mx与y=n在x的范围内有交点解答.【解答】解:∵抛物线的对称轴x=﹣=2,∴m=﹣4,则方程x2+mx﹣n=0,即x2﹣4x﹣n=0的解相当于y=x2﹣4x与直线y=n的交点的横坐标,∵方程x2+mx﹣n=0在﹣1<x<6的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=6时,y=36﹣24=12,又∵y=x2﹣4x=(x﹣2)2﹣4,∴当﹣4≤n<12时,在﹣1<x<6的范围内有解.∴n的取值范围是﹣4≤n<12,故选:C.二、填空题(木大题共4个小题,每小题3分,共12分)11.分解因式:a2﹣2a+1=(a﹣1)2.【分析】观察原式发现,此三项符合差的完全平方公式a2﹣2ab+b2=(a﹣b)2,即可把原式化为积的形式.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.12.正六边形的外接圆的半径与内切圆的半径之比为2:.【分析】从内切圆的圆心和外接圆的圆心向三角形的边长引垂线,构建直角三角形,解三角形i可.【解答】解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,因而是r,因而正六边形的外接圆的半径与内切圆的半径之比为2:.故答案为:2:.13.如图,在平面直角坐标系中菱形ABCD的顶点A、B在反比例函数y=(k>0,x>0)的图象上,点A、B横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为10,则k的值为.【分析】连接AC交BD于E,如图,利用菱形的性质得AC⊥BD,AE=CE,DE=BE,设A(1,k),B(4,),则BE=3,AE=k﹣=k,根据菱形的面积公式得到4××3×k=10,然后解关于k的方程即可.【解答】解:如图,连接AC交BD于E,∵四边形ABCD为菱形,∴AC⊥BD,AE=CE,DE=BE,∵BD∥x轴,设A(1,k),B(4,),∴BE=3,AE=k﹣=k,∵菱形ABCD的面积为10,=10,∴4S△ABE即4××3×k=10,解得k=.故答案为.14.如图,已知∠BAC=45°,线段DE的两个端点在角的两边AB,AC上运动,且DE=2.以线段DE为边在DE的右侧作等边三角形DEF,则AF的最大值为+1+.【分析】当AF⊥DE时,AF的值最大,设AF交DE于H,在AH上取一点M,使得AM =DM,连接DM.分别求出MH、AM、FH即可解决问题.【解答】解:如图,当AF⊥DE时,AF的值最大,设AF交DE于H,在AH上取一点M,使得AM=DM,连接DM.∵FD=FE=DE=2,AF⊥DE,∴DH=HE,AD=AE,∠DAH=∠DAE=22.5°,∵AM=DM,∴∠MAD=∠MDA=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=1,∴DM=AM=,∵FH==,∴AF=AM+MH+FH=+1+.∴AF的最大值为+1+,故答案为:+1+.三、解答题(本大题共11小题,计78分.解答应写出过程)15.(5分)计算:+4cos260°﹣|﹣1|【分析】原式利用二次根式性质,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【解答】解:原式=2+4×()2﹣(﹣1)=2+4×﹣+1=2+1﹣+1=+2.16.(5分)解分式方程:+3=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+3x﹣6=x﹣1,解得:x=1.5,经检验x=1.5是分式方程的解.17.(5分)尺规作图:已知⊙O,求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).【分析】根据垂径定理即可作⊙O的内接正方形ABCD.【解答】解:如图正方形ABCD即为所求作的图形.18.(5分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:DE=DF.【分析】由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质就可以得出△CDF△BDE就可以得出DE=DF.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB.在△CDE和△BDF中,∴△CDF≌△BDE(AAS),∴DE=DF.19.(7分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在暑假期间阅读量(阅读本数为正整数)为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读4本及4本以上课外书者为“优秀阅读者”,据此估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有多少人?【分析】(1)根据读两本的人数除以读两本人数所占的百分比,可得抽测人数,根据中位数的定义,可得答案;(2)根据有理数的减法,可得读4本的人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)10÷20%=50,∴被调查的人数为50,被抽查学生课外阅读量的中位数3;(2)50﹣4﹣10﹣15﹣6=15,补充如图;(4)2500×1050(人),答:估计该校2500名学生中,在这次暑假期间“优秀阅读者”约有1050人.20.(7分)某学校有一栋教学楼AB,小明(身高忽略不计)在教学楼一侧的斜坡底端C处测得教学楼顶端A的仰角为60°,他沿着斜坡向上行走到达斜坡顶端E处,又测得教学楼顶端A的仰角为45°.已知斜坡的坡角(∠ECD)为30°,坡面长度CE=6m,求楼房AB的高度.(≈1.4,≈1.7结果保留整数)【分析】过E作EF⊥AB于F,得到四边形BDEF是矩形,根据矩形的性质得到EF=DB,BF=DE,解直角三角形即可得到结论.【解答】解:过E作EF⊥AB于F,则四边形BDEF是矩形,∴EF=DB,BF=DE,在Rt△CDE中,∵∠EDC=90°,CE=6m,∠DCE=30°,∴DE=3m,CD=3m,设BC=xm,∵∠AEF=45°,∴EF=AF=BD=(3+x)m,∴AB=AF+BF=(3+3+x)m,在Rt△ABC中,tan60°===,解得:x=6+3,∴AB≈19m.答:楼房AB的高度大约为19米.21.(7分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A ,B 两种垃圾桶,负责人小李调查发现:购买数量种类购买数量少于100个购买数量不少于100个A原价销售以原价的7.5折销售B 原价销售以原价的8折销售若购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元.(1)求A ,B 两种垃圾桶的单价各为多少元?(2)若需要购买A ,B 两种垃圾桶共200个,且B 种垃圾桶不多于A 种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.【分析】(1)设A 种垃圾桶的单价为x 元,B 种垃圾桶的单价为y 元,根据“购买A 种垃圾桶80个,B 种垃圾桶120个,则共需付款6880元;若购买A 种垃圾桶100个,B 种垃圾桶100个,则共需付款6150元”列出方程组并解答;(2)设购买A 种垃圾桶为a 个,则购买B 种垃圾桶为(200﹣a)个,根据“B 种垃圾桶不多于A 种垃圾桶数量的”列出不等式并求得a 的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设A 种垃圾桶的单价为x 元,B 种垃圾桶的单价为y 元,根据题意得,解得,答:A 种垃圾桶的单价为50元,B 种垃圾桶的单价为30元;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200﹣a)个,根据题意得,解得a≥150;设购买A,B两种垃圾桶的总费用为W元,则W=0.75×50a+30(200﹣a)=7.5a+6000,∵k=7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.22.(7分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.【分析】(1)根据概率公式计算即可.(2)画树状图展示所有12种等可能的结果数,找出小红获胜的结果数,然后根据概率公式求解【解答】解:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是.故答案为.(2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.23.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.【分析】(1)连接OC、OE,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠DAC=∠OAC,根据圆周角定理、圆心角、弧、弦之间的关系定理证明结论;(2)根据勾股定理求出AB,证明△DAC∽△CAB,根据相似三角形的性质列出比例式,代入计算得到答案.【解答】(1)证明:连接OC、OE,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,由圆周角定理得,∠BOC=2∠OAC,∠EOC=2∠DAC,∴∠BOC=∠EOC,∴CE=CB;(2)解:由(1)可知,BC=CE=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB===3,∵∠DAC=∠BAC,∠ADC=∠ACB=90°,∴△DAC∽△CAB,∴=,即=,解得,DC=.24.(10分)设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求抛物线的解析式(2)已知过点A的直线y=x+1交抛物线于另一点E,且点D(1,﹣3)在抛物线上问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线的解析式可知OC=2,由于∠ACB=90°,可根据射影定理求出OB的长,即可得出B点的坐标,也就得出了m的值.然后根据A,B,C三点的坐标,用待定系数法可求出抛物线的解析式.(2)本题要分情况进行讨论,如果过E作x轴的垂线,不难得出∠DBx=135°,而∠ABE是个钝角但小于135°,因此P点只能在B点左侧.可分两种情况进行讨论:①∠DPB=∠ABE,即△DBP∽△EAB,可得出BP:AP=BD:AE,可据此来求出P点的坐标.②∠PDB=∠ABE,即△DBP∽△BAE,方法同①,只不过对应的成比例线段不一样.综上所述可求出符合条件的P点的值.【解答】解:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2∴OB===4,∴m=4,∴B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2得,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)解得,,,∴E(6,7),过E作EH⊥x轴于H,则H(6,0),∴AH=EH=7,∴∠EAH=45°,过D作DF⊥x轴于F,则F(1,0),∴BF=DF=3∴∠DBF=45°,∴∠EAH=∠DBF=45°,∴∠DBH=135°,90°<∠EBA<135°则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△BAE,则=,∴BP1===∴OP1=4﹣=,∴P1(,0);②若△DBP2∽△BAE,则=,∴BP2===∴OP2=﹣4=,∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).25.(12分)问题探究:(1)如图1,∠AOB=45°,在∠AOB内部有一点P,分别作点P关于边OA、OB的对称点P1,P2顺次连接O,P1,P2,则△OP1P2的形状是等腰直角三角形.(2)如图2,在△ABC中,AB=AC,∠BAC=30°,AD⊥BC于D,AD=2+,求:△ABC的面积.问题解决:(3)如图3,在四边形ABCD内有一点P,点P到顶点B的距离为10,∠ABC=60°,点M、N分别是AB、BC边上的动点,顺次连接P、M、N,使△PMN在周长最小的情况下,面积最大,问:是否存在这种情况?若存在,请求出△PMN的面积的最大值;若不存在,请说明理由.【分析】(1)如图,△OP1P2是等腰直角三角形.证明OP1=OP2,∠P1OP2=90°即可.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.证明∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,构建方程求出x即可解决问题.(3)不存在.首先证明MN是定值.由题意PM+PN≥MN,推出当点P落在AB或BC 上时,PM+PN=MN=定值,此时△PMN不存在.【解答】解:(1)如图1中,△OP1P2是等腰直角三角形.理由:∵点P关于边OA、OB的对称点分别为P1,P2,∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2(∠AOP+∠BOP)=90°,∴△OP1P2是等腰直角三角形.故答案为等腰直角.(2)如图2中,在AD上取一点E,使得AE=EC,连接EC.∵AB=AC,AD⊥BC,∴∠EAC=∠BAC=15°,∵EA=EC,∴∠EAC=∠ECA=15°,∴∠DEC=∠EAC+∠ECA=30°,设CD=BD=x,则EC=EA=2x,DE=x,∵AD=2+,∴2x+x=2+,∴x=1,∴BC=2CD=2,=•BC•AD=×2×(2+)=2+.∴S△ABC(3)如图3中,不存在.理由:∵点P关于AB,BC的对称点分别为M,N,∴PB=BM=BN=10,∠PBA=∠ABM,∠PBC=∠CBN,∵∠ABC=60°,∴∠MBN=2(∠ABP+∠PBC)=120°,∴△BNM是顶角为120°,腰长为10的等腰三角形,∴MN为定值,∵PM+PN≥MN,∴当点P落在AB或BC上时,PM+PN=MN=定值,此时△PMN不存在,∴△PMN的周长不存在最小值.。

广东中考第二次模拟检测《数学试题》含答案解析

广东中考第二次模拟检测《数学试题》含答案解析

广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.432.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m25.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行7.某青少年篮球队有12名队员,队员的年龄情况统计如下: 年龄(岁) 12 13 14 15 16 人数 31251则这12名队员年龄的众数和中位数分别是( ) A. 15岁和14岁 B. 15岁和15岁 C. 15岁和14.5岁 D. 14岁和15岁8.已知下列命题: ①若a >b ,则ac >bc; ②若a=1a ③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( ) A. 1个B. 2个C. 3个D. 4个9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 3 210.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A 20° B. 35° C. 40° D. 55°11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 612.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=2EM;④BN2+EF2=EN2;⑤AE•AM =NE•FM,其中正确结论的个数是( )A 2 B. 3 C. 4 D. 5二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =(3﹣2,﹣2),OH =(3+2,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >mx的解集是_____.16.如图,Rt △ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三.解答题(共7小题)17.计算:3016sin 45227()(20192019)2-︒+-+.18.先化简2728333x x x x x -⎛⎫+-÷⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A:非常了解;B:比较了解;C:了解较少;D:不了解“四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m=______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)22.如图,AB是⊙O直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.答案与解析一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.43【答案】B 【解析】【分析】根据负数的绝对值等于它的相反数即可得出34的绝对值.【详解】解:|-34|=34,故选:B.【点睛】本题考查求一个数的绝对值.理解一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解决此题的关键.2.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.【答案】A【解析】分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m2【答案】B【解析】【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【详解】A.2m3+3m2,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选B.【点睛】本题考查了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.5. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台【答案】C【解析】试题分析:首先设去年购置计算机数量为x台,则今年购置计算机的数量为3x台,根据题意可得:x+3x=100,解得:x=25,则3x=3×25=75(台),即今年购置计算机的数量为75台.考点:一元一次方程的应用.6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行【答案】B【解析】【分析】根据轴对称图形的性质和纸片上的四个灰色小正方形,确定出对称轴,即可得出小正方形的位置.【详解】解:根据题意得:涂成灰色的小方格在第二列第一行.故选B.点评:此题考查了利用轴对称设计图案,解答此题的关键是根据题意确定出对称轴,画出图形.7.某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁) 12 13 14 15 16人数 3 1 2 5 1则这12名队员年龄的众数和中位数分别是( )A. 15岁和14岁B. 15岁和15岁C. 15岁和14.5岁D. 14岁和15岁【答案】C【解析】【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是1512名队员的年龄数据里,第6和第7个数据的平均数14152=14.5,因而中位数是14.5.故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.已知下列命题:①若a>b,则ac>bc;②若a=1,则a =a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1,则a =a 是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 32【答案】B【解析】【分析】由 S △ABC =16、S △A ′EF =9且 AD 为 BC 边的中线知 1922A DE A EF S S '∆'∆==,182ABD ABC S S ∆∆== ,根据△DA ′E ∽△DAB 知2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,据此求解可得. 【详解】16ABC S ∆=、9A EF S ∆'=,且AD 为BC 边的中线,1922A DE A EF S S ∆∆''∴==,182ABD ABC S S ∆∆==, 将ABC ∆沿BC 边上的中线AD 平移得到A B C '''∆,//A E AB ∴',DA E DAB '∴∆~∆,则2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,即22991816A D A D ⎛⎫== '⎪+⎝⎭', 解得3A D '=或37A D '=-(舍), 故选.【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A. 20°B. 35°C. 40°D. 55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 6【答案】C【解析】【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为4,2,可得出横坐标,即可求得AE,BE的长,根据菱形的面积为5AE的长,在Rt△AEB中,即可得出k的值.【详解】过点A作x轴的垂线,交CB的延长线于点E,∵A,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B(2k ,2), ∴AE=2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为25,∴BC×AE=25,即BC 5=, ∴AB=BC 5=,在Rt△AEB 中,BE 22AB AE =-=1 ∴14k =1, ∴k=4.故选C .【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 12.如图,以矩形ABCD 对角线AC 为底边作等腰直角△ACE ,连接BE ,分别交AD ,AC 于点F ,N ,CD =AF ,AM 平分∠BAN .下列结论:①EF ⊥ED ;②∠BCM =∠NCM ;③AC =2EM ;④BN 2+EF 2=EN 2;⑤AE •AM =NE •FM ,其中正确结论的个数是( )A 2B. 3C. 4D. 5【答案】C【解析】【分析】①正确,只要证明A,B,C,D,E五点共圆即可解决问题;②正确,证明BE平分∠ABC,再证明点M是△ABC的内心即可;③正确,证明∠EAM=∠EMA可得EM=AE,即可解决问题;④正确.如图2中,将△ABN逆时针旋转90°得到△AFG,连接EG.想办法证明△GEF是直角三角形,利用勾股定理即可解决问题;⑤错误.利用反证法证明即可.【详解】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∵∠AEC=90°,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,BD直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM+∠ABM,∠ABM=∠EAC=45°,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=2EA=2EM,故③正确,如图2中,将△ABN绕点A逆时针旋转90°,得到△AFG,连接EG,∵将△ABN绕点A逆时针旋转90°,得到△AFG,∴∠NAB=∠GAF,∠GAN=∠BAD=90°,AG=AN,GF=BN,∵∠EAN=45°,∴∠EAG=∠EAN=45°,∵AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,∵∠AFG=∠ABN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴EC EN FM AM,∴只有△ECN∽△MAF才能成立,∴∠AMF =∠CEN ,∴CE ∥AM ,∵AE ⊥CE ,∴MA ⊥AE (矛盾),∴假设不成立,故⑤错误,故选:C .【点睛】本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,圆等知识.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.【答案】9(m ﹣2n )(m +2n ).【解析】【分析】先提取公因式9,再利用平方差公式(22()()a b a b a b -=+-)因式分解即可.【详解】解:原式=9(m 2﹣4n 2)=9(m ﹣2n )(m +2n ),故答案为:9(m ﹣2n )(m +2n ).【点睛】本题考查综合运用提公因式法和公式法因式分解.一般来说,因式分解时,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG ,﹣2),OH 12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵33cos301tan45sin60322⨯+⋅=+=, ∴OE 与OF 不垂直. ③∵()()()13232202-++-⨯=, ∴OG 与OH 垂直. ④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=m x(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >m x的解集是_____.【答案】x <﹣1或0<x <2.【解析】【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式m kx b x+>的解集. 【详解】解:由函数图象可知,当一次函数y 1=kx +b (k ≠0)的图象在反比例函数y 2=m x (m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2,∴不等式kx +b >m x的解集是x <﹣1或0<x <2, 故答案为:x <﹣1或0<x <2.【点睛】本题考查一次函数图象与反比例函数图象的交点问题,主要考查了由函数图象求不等式的解集.利用数形结合思想分析是解题的关键.16.如图,Rt△ABC,AB=3,AC=4,点D在以C为圆心3为半径的圆上,F是BD的中点,则线段AF的最大值是_____.【答案】4【解析】【分析】取BC的中点N,连接AN,NF,DC,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得AN和NF的长,然后确定AF的范围.【详解】解:取BC的中点N,连接AN,NF,DC,∵Rt△ABC,AB=3,AC=4,∴BC22AB AC5,∵N为BC的中点,∴AN=12BC=52,又∵F为BD的中点,∴NF是△CDB的中位线,∴NF=12DC=32,∵52﹣32≤AF ≤52+32,即1≤AF ≤4. ∴最大值为4,故答案为:4.【点睛】本题考查圆的综合问题,三角形中位线定理,直角三角形斜边上的中线,勾股定理.熟练掌握直角三角形中线定理和三角形中位线定理,能正确构造辅助线是解题关键.三.解答题(共7小题)17.计算:3016sin 457()(20192-︒+-+.【解析】【分析】原式利用特殊角的三角函数值,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.【详解】原式6781=--+= 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值. 【答案】42x x+;1x =时,原式52=(或当2x =时,原式32=.) 【解析】【分析】根据分式的运算法则进行化简,再选择使分式有意义的值代入. 【详解】解:原式22162833x x x x x --=÷-- (4)(4)332(4)x x x x x x -+-=⋅-- 42x x+= ∵0,3,4x ≠,∴当1x =时,原式52=(或当2x =时,原式32=.) 【点睛】本题考查了分式化简求值.,解题的关键是熟练掌握运算法则.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A :非常了解;B :比较了解;C :了解较少;D :不了解 “四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.【答案】(1)20(2)500(3)12【解析】分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校”非常了解”与”比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校”非常了解”与”比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)【答案】74.7米【解析】【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【详解】解:作AM⊥EF于点M,作BN⊥EF于点N,如图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=40°,∠BDF=52.44°,∴CM=60tan400.84AM≈︒≈71.43(米),DN=60tan52.44 1.3BN︒≈≈46.15(米),∴AB=CD+DN﹣CM=100+46.15﹣71.43≈74.7(米),即A、B两点的距离是74.7米.【点睛】本题考查的知识点是解直角三角形,读懂题目,作出合适的辅助线是解此题的关键.21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)【答案】(1)进价为180元;(2)至少打6折.【解析】分析】(1)根据题意,列出等式24003370025x x⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x元,则24003370025x x⨯=+,解得180x=.经检验,180x=是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.则:3700370022580%225(180%)0.13700440 18051805y⨯⨯+⨯⨯-⨯-≥++,解得6y≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.22.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【答案】(1)证明见解析;(2)BH=125.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线; (2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OC OE BF EB=,∵OB=2,∴OC=OB=2,AB=4,23 OEEB=,∴223 BF=,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=12AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.【答案】(1)y =14x 2+x ;(﹣2,﹣1);y =x +4;(2)(﹣163,169);(3)P (﹣22,2﹣22). 【解析】【分析】 (1)根据对称轴可求得A 点坐标,再根据B 点坐标,利用待定系数法即可求得抛物线以及一次函数解析式,再利用对称轴为x =﹣2可求得抛物线顶点坐标;(2)证明四边形GDHD′为正方形,点D (-2,-1),则点G (-5,-1),则正方形的边长为3,则点D′(-5,2),求得直线BD′的解析式,与抛物线联立即可求解;(3)证明四边形PQHO 为平行四边形,则x Q -x P =x H -x O ,即可求解.【详解】解:(1)对称轴为直线x =﹣2,则点A (﹣4,0),将点A 、B 的坐标代入抛物线表达式得0=1648164a b a b -⎧⎨=+⎩ ,解得141a b ⎧=⎪⎨⎪=⎩. 故抛物线的表达式为:y =14x 2+x …①, 当x=-2时,21(2)(2)14y =⨯-+-=- ∴顶点D 的坐标为:(﹣2,﹣1),设直线AB 的表达式为y kx c =+,将点A 、B 的坐标代入一次函数表达式0484k c k c =-+⎧⎨=+⎩,解得14k c =⎧⎨=⎩, 所以,直线AB 的表达式为:y =x +4…②,故答案为:y =14x 2+x ;(﹣2,﹣1);y =x +4; (2)作点D 关于AB 的对称点D ′,分别过点D 、D ′作x 轴的平行线交直线AB 与点G 、H ,则','DH D H D G DG ,'D GH HGD ,∵直线AB 的解析式为y =x +4,'D H ∥x 轴,GD ∥x 轴,∴'45D HGHAO HGD , ∴''45D GHHGD D HG , ∴'90D GD ,''DH D H D G DG ,则四边形GDHD ′为正方形,根据点D (﹣2,﹣1),可得点G (﹣5,﹣1),所以,正方形的边长为3,则点D ′(﹣5,2),设直线BD ′的表达式为:11y k x c ,所以11112584k c k c =-+⎧⎨=+⎩,解得1123163k c ⎧=⎪⎪⎨⎪=⎪⎩, 所以,直线BD ′的表达式为:y =23x +163…③; 联立①③并解得:x =﹣163或4(舍去), 故点E (﹣163,169); (3)取OB 的中点H (2,4),则S △OQH =12S △OBQ ,而S △POQ :S △BOQ =1:2,故S △OQH =S △POQ ,∵PQ ∥OH ,故PQ =OH (四边形PQHO 为平行四边形),则x Q ﹣x P =x H ﹣x O ,设点P (m ,14m 2+m ), 直线OB 的表达式为:y =2x ,则直线PQ 的表达式为:y =2x +b 1,将点P 的坐标代入上式得21124m m m b +=+,解得2114b m m =-, 所以,直线PQ 的表达式为:y =2x +14m 2﹣m …④, 联立②④并解得:x Q =﹣14m 2+m +4, 而x Q ﹣x P =x H ﹣x O , 即﹣14m 2+m +4﹣m =2,解得:m =-或m =(舍去),故点P (﹣,2﹣).【点睛】本题考查二次函数综合,求一次函数解析式,正方形的性质和判定,平行四边形的性质和判定.(1)能利用对称轴求得A 点坐标是解题关键;(2)中能巧用轴对称的性质,得出作点D 关于AB 的对称点D ′时,∠D ′BA =∠ABD 是解题关键;(3)证明四边形PQHO 为平行四边形是解题关键.。

2024年吉林省松原市吉林油田第十二中学九年级第三次中考模拟考试数学试题(含答案)

2024年吉林省松原市吉林油田第十二中学九年级第三次中考模拟考试数学试题(含答案)

吉林油田第十二中学初三第三次模拟考试数学试卷*试卷满分120分,时间120分钟*一、选择题(每题2分,共12分)1. 在3,0,-2,四个数中,最小的数是()A. 3 B. 0C. -2D. 2. 下列计算正确的是()A. B. C. D. 3. 某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A. B. C. D.4. 关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点;乙:函数图像经过第四象限;丙:当时,y 随x 的增大而增大.则这个函数表达式可能是()A. B. C. D. 5. 如图,PA ,PB 是切线,A ,B 为切点,点C 在优弧ACB 上,且,则等于( )(第5题图)A. B. C. D. 6. 如图,平行四边形ABCD 中,分别以点B ,D为圆心,大于的长为半径画弧,两弧交于点M ,223a a a +=()236a a -=()222a b a b =--3=±()1,1-0x >y x =-1y x =2y x =1y x=-O 70APB ∠=︒ACB ∠55︒110︒70︒125︒12BDN ,直线MN 分别交AD ,BC 于点E ,F ,连接BD 、EF ,若,,,则线段BF 的长是( )(第6题图)A. B. C. 3 D. 二、填空题(每题3分,共24分)7. 分解因式:______.8. 原子很小,1个氧原子的直径大约为0.000000000148m ,将0.000000000148用科学记数法表示为______.9. 如图所示,第四套人民币中菊花1角硬币.则该硬币边缘镌刻的正九边形的一个外角的度数为______.(第9题图)10. 已知一元二次方程有两个相等的实数根,则m 的值为______.11. 综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量米,若小宇的身高是1.6米,则假山AC 的高度为______米.(结果保留整数)(第11题图)12. 若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是______.13. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,,,则线段OH 的长为______.(第13题图)120BAD ∠=︒1AE =2AB=1++3222a a b ab -+=260x x m ++= 2.4BE =︒3AC =4BD =14. 如图,在扇形AOB 中,,半径.将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点C 处,折痕交OA 于点D ,则图中阴影部分的面积为______.(第14题图)三、解答题(每题5分,共20分)15. 先化简,再求值:,其中16. 如图,小妍同学做了一个可以自由转动的均匀转盘,转盘均分为三等份,分别标有1,2,3三个数字,她邀请小嘉同学一起玩游戏,规则如下:转动转盘,转盘停止后,指针指向一个数字所在的扇形得到对应的数字(若指针恰好指在分隔线上,则重转一次,直到指针指向某一个数字为止).(1)小妍转动一次转盘转到数字2的概率是______;(2)小妍同学先转动一次,然后小嘉同学同样转动转盘,再将两人转动的数字相加,如果两个数字的和是奇数则小妍同学胜,否则小嘉同学胜.请利用画树状图或者列表格的方法判断这个游戏对两人公平么?17. 《九章算术》是我国古代经典数学著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大、小器各容几何?”译文“今有大容器5个,小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛,问大、小容器的容积各是多少斛?”18. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:.四、解答题(每题7分,共28分)19. 如图,在的方格纸中,线段AB 的端点在格点上,请按要求画图.图① 图② 图③90AOB ∠=︒4OA =22424412x x x x x x x -+-÷+-++-2x =OE OF =55⨯(1)如图①,画出一条线段AC ,使,C 在格点上;(2)如图②,画出一条线段EF 使EF 、AB 互相平分,E 、F 均在格点上;(3)如图③,以A 、B 为顶点画出一个四边形,使其是中心对称图形而不是轴对称图形,且顶点均在格点上.20. 2024年3月22日是第32届世界水日,学校开展了节约和保护水资源的知识竞赛,从全校2000名学生中随机抽取部分学生的竞赛成绩进行调查分析,并将成绩(满分:100分)制成如图所示的扇形统计图和条形统计图.请根据统计图回答下列问题:(1)本次调查共抽取了______名学生,这些学生成绩的中位数是______;(2)补全上面不完整的条形统计图;(3)根据比赛规则,98分及以上(含98分)的学生有资格进入第二轮知识竞赛环节,请你估计全校2000名学生进入第二轮知识竞赛环节的人数.21. 在一次课外活动中,某数学兴趣小组测量一棵树CD 的高度.如图所示,测得斜坡BE 的坡度,坡底AE 的长为8米,在B 处测得树CD 顶部D 的仰角为,在E 处测得树CD 顶部D 的仰角为,求树高CD .(结果保留根号)22. 如图,在平面直角坐标系xOy 中,正比例函数与反比例函数的图象交于A ,B 两点,A 点的横坐标为2,轴于点C ,连接BC .(1)求反比例函数的解析式;(2)结合图象,直接写出时x 的取值范围;AC AB =1:4i =30︒60︒2y x =k y x=AC x ⊥2k x x>(3)若点P 是反比例函数图象上的一点,且满足与的面积相等,求出点P 的坐标.五、解答题(每题8分,共16分)23. 已知A 、B 两地之间有一条长300千米的公路,甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地两车行驶的路程之和y (千米)与甲车行驶的时间x (小时)之间的函数关系如图所示.(1)a 的值为______;(2)求乙车出发后,y 与x 之间的函数关系式;(3)当甲、乙两车相距150千米时,直接写出甲车行驶的时间.24.【推理】如图1,在边长为10的正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连接BE ,CF ,延长CF 交AD 于点G ,BE 与CG 交于点M .图1图2 图3(1)求证:.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H ,若,求线段DH 的长.【拓展】(3)如图3,在【推理】条件下,连接AM ,则线段AM 的最小值为______.六、解答题(每题10分,共20分)25. 如图,在中,,,动点P 从点A的速度沿AB 向终点B 运动,过点P 作交折线于点Q ,将点P 绕点Q 顺时针旋转至点D ,连结DQ 、PD .设点P 运动的时间为x (s ),与重叠部分图形的面积为.(1)AQ 长为______cm (用含x 的代数式表示);k y x=OPC △ABC △CE DG =6CE =ABC △90ACB ∠=︒4cm AC BC ==PQ AB ⊥AC CB -90︒PQD △ABC △()2cm y(2)当点D落在边BC上时,求x的值;(3)求y关于x的解析式,并写出自变量x的取值范围.26. 在平面直角坐标系xOy中,已知抛物线与x轴交于点,.(1)求抛物线的表达式.(2)若抛物线,当时,y有最大值12,求m的值.(3)若将抛物线平移得到新抛物线,当时,新抛物线与直线有且只有一个公共点,直接写出n的取值范围.参考答案1. C2. B3. C4. D5. A6. D7. 8. 1.48×10−109. 40° 10. 911. 14 12. 120 13. 14.15.解:原式=﹣=﹣+=……………………………………………………………………3分当x=2分16.解:(1);……………………………………………………………………1分(2)根据题意画树状图如下:……………………………………………………………………3分共有9种等可能的情况数,两个数字和是奇数的有4种,则小妍同学胜的概率是;∴小嘉同学胜的概率是,2y x bx c=++()1,0A-()5,0B22y x bx c mx=++-2123m x m-≤≤+2y x bx c=++2y x bx c n=+++23x-<< 1y=()2a a b-544π-2(2)(2)1(2)22x x x xx x x+-+⋅+-+-12xx+-2xx-12x--134959∵,∴这个游戏对两人不公平.……………………………………………………………………5分17.解:设大容器的容积是斛,小容器的容积是斛…………………………………………………1分依题意,得:……………………………………………………………………3分解得:,答:大容器的容积是斛,小容器的容积是斛.……………………………………………………5分18.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ……………………………………………………………………1分∴∠BAO =∠ACD ,即∠EAO =∠FCO ………………………………………………………2分又∵∠AOE =∠COF ,∴△AOE ≌△COF (ASA )……………………………………………………………………4分∴OE =OF .……………………………………………………………………5分19.【答案】如图所示:图① 图② 图③20.(1)故答案为:60,96分;……………………………………………………………………2分(2)解:补全统计图:;………………………………………………5分(3)解:2000×=900(名).答:估计全校2000名学生进入第二轮知识竞赛环节的人数是900名.……………………7分21.解:作于点,设米………………………………………………1分4599<x y 5352x y x y +=⎧⎨+=⎩1324724x y ⎧=⎪⎪⎨⎪=⎪⎩132472418960+BF CD ⊥F DF x =在中,,则(米………………………………………………2分∵,且AE =8∴∴………………………………………………3分在直角中,米,在直角中,,米.………………………………………………4分.解得:, (5)分则米.答:的高度是米.………………………………………………7分22.(1)………………………………………………2分(2)或………………………………………………4分(3)或……………………………………………7分23.(1)600;………………………………………………2分(2)设与之间的函数关系式为,………………………………………………3分由图可知,函数图象经过,,,解得,………………………………………………5分与之间的函数关系式为;………………………………………………6分Rt DBF ∆tan DF DBF BF ∠=tan 30DF BF ==︒)14AB AE =2AB =2CF AB ==DCE ∆(2)DC x CF x =+=+DCE ∆tan DC DEC EC ∠=22)tan 60x EC x +∴==+︒BF CE AE -= 2)8x +=1x =+123)CD =+=CD 3)+8y x=20x -<<2x >()1,8()1,8--y x y kx b =+(2,100)(6,600)∴21006600k b k b +=⎧⎨+=⎩125150k b =⎧⎨=-⎩y ∴x 125150(26)y x x =-≤≤(3)小时或小时.………………………………………………8分24.(1)………………………………………………3分(2)………………………………………………6分(3)………………………………………………7分25.(1)∵AC =BC ,∠ACB =90°∴∠A =45°∵PQ ⊥AB ,∴,∴,故答案为(2)当点D 落在BC 上时,如图①AP =QD =,AQ =,∵AB ⊥PQ ,DQ ⊥PQ ,∴PA ∥DQ ,∴∠DQC =∠BAC =45°,∴△DCQ 为等腰直角三角形∴,QC =x ∵AQ +QC =AC ∴∴图①(3)当时,如图②,PQ =DQ =∴即图②当时,如图③,∵PA =DQ ,PA ∥DQ ,∴四边形PAQD 是平行四边形,1252451435AP =cos AP A AQ ∠=2cos AQ AQ x A ===∠x2x 2x 222)2(2x QC =42=+x x 34=x 403x <≤x 22222121x x x DQ PQ y =⋅=⋅=2x y =234≤<x∴PE ∥AC ,PD =AQ =∴∵∴,∴∴整理得:图③当时,如图④,PB =PQ =∴sin ∠EPQ =,∴∴即图④26.(1)解:把点,代入抛物线得,,解得,x2ABBP AC PE =24442222=+=+=BC AC AB 242244x PE -=x PE -=443)4(2-=--==x x x EF ED 22)43(212121--=⋅-⋅=-=∆∆x x EF ED DQ PQ S S y DEF PQD 81242-+-=x x y 42≤<x x224-PQEQ x x EQ -=-⨯=4)224(45sin 08421)4(212122+-=-=⋅=x x x EP EQ y 84212+-=x x y ()1,0A -()5,0B y 2x bx c =++102550b c b c -+=⎧⎨++=⎩45b c =-⎧⎨=-⎩抛物线表达式为;(2)解:由()知,抛物线,∴抛物线的对称轴为直线,开口向上,∵时,有最大值,最大值只能在或时取得,当时,即,此时,有最大值,即,解得,符合题意;当时,即,此时,有最大值,即,解得,不合,舍去;当,即,当时,有最大值,即,解得,不合,舍去;当,有最大值,即,解得,不合,舍去;综上,的值为;(3)解:由题意得,新抛物线为是把抛物线平移个单位得到的,如图所示:当时,新抛物线与直线相交且有一个交点时,则∴245y x x =--1()22452425y x x mx x m x =---=-+-2x m =+2123m x m -≤≤+y 12∴21x m =-23x m =+232m m +≤+1m ≤-21x m =-y 12()()()2122142215m m m =--+--65m =-221m m +<-3m >23x m =+y 12()()()2122342235m m m =+-++-10m =-21223m m m -≤+≤+13m -≤≤21x m =-y 12()()()2122142215m m m =--+--65m =-23x m =+y 12()()()2122342235m m m =+-++-10m =-m 65-245y x x n =--+245y x x =--||n ①23x -<<1y =485191251n n +-+≥⎧⎨--+≤⎩解得;当抛物线与直线相切时,就是把抛物线,向上平移10个单位,即,的取值范围为或.69n -≤≤②245y x x =--1y =2245(2)9y x x x =--=--10n =n ∴69n -≤≤10n =。

模拟中考数学试题及答案

模拟中考数学试题及答案

模拟中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 1/3答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 一个长方形的长是宽的两倍,如果宽增加2米,长减少2米,面积不变,那么原来长方形的长是:A. 4米B. 6米C. 8米D. 10米答案:B4. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则多边形D. 圆答案:D6. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A7. 一个等腰三角形的底边长为6厘米,底角为45度,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 9厘米答案:B8. 以下哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^2+bxC. y=a(x+b)(x+c)D. y=ax+b答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个数的倒数是1/4,那么这个数是______。

答案:413. 一个三角形的内角和是______度。

答案:18014. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

答案:1115. 一个等比数列的首项是2,公比是3,那么它的第三项是______。

答案:1816. 一个直角三角形的两直角边长分别是3和4,那么它的斜边长是______。

答案:517. 一个圆的直径是10厘米,那么它的面积是______平方厘米。

中考模拟考试数学试题含答案

中考模拟考试数学试题含答案

中考模拟考试数学试题一.选择题(本大题共8小题,每小题3分,共24分.每小题只有一个正确答案,请把你认为正确的一个答案的代号填涂在答题纸的相应位置) 1.5-的倒数是【▲】 A .15-B .5C .5-D .152.生活中有许多图案具有对称美,下列四个图案中既是轴对称又是中心对称图形的是【▲】A .B .C .D .3.下列运算中,正确的是【▲】A .()257a a = B .224426a a a += C .()2222a b a ab b --=++ D .22122xx-=4.如图①是一个正三棱柱毛坯,将其截去一部分,得到一个工件如图②.对于这个工件,俯视图、主视图依次是【▲】A . c 、aB . c 、dC .b 、dD . b 、a 5.如果把分式2x y x y-+中的x 和y 的值都缩小为原来的13,那么分式的值【▲】A .扩大3倍B .缩小为原来的13C .缩小为原来的16D .不变6.以下是甲、乙、丙三人看地图时对四个处所的描述:甲:从学校向北直走600米,再向东直走200米可到图书馆. 乙:从学校向西直走200米,再向北直走100米可到邮局. 丙:邮局在火车站西方300米处.根据三人的描述,若从图书馆出发,下列四种走法中,终点是火车站的是【▲】 A .向南直走500米,再向西直走800米 B .向南直走500米,再向西直走100米 C .向南直走700米,再向西直走200米 D .向南直走700米,再向西直走600米7.如图,O 是一根均匀木杆的中点,定点B 处悬挂重物A ,动点C 处用一个弹簧秤垂直下拉,使杠杆在水平位置平衡.在这个杠杆平衡实验中,弹簧秤的示数()y N 与弹簧秤作用点C 离点O 的距离()x cm之间的函数关系的大致图象是【▲】A .B .C .D .① ② a bc d O x y O x y O x y O x y C BO Ax8.如图,在梯形ABCD 中,AD ∥BC ,∠B = ∠C = 70°, 点E 是DC 上一点,沿直线AE 折叠,使点D 落在点'D 处,则∠1 +∠2等于【▲】A .180°B .150°C .135°D .120°二.填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请把最后的结果填在答题纸的相应位置)9.据《盐城晚报》报道,到2009年3月底为止,一季度盐城市金融存款余额1626.4亿元,同比增长36%,用科学记数法表示1626.4亿元为 ▲ 元. 10.分解因式(4)4x x ++的结果为 ▲ .11.已知α∠与β∠互补,若'4326α∠= ,则β∠= ▲ .12.已知圆锥的底面半径为2,其母线长为5,则它的侧面积约为 ▲ (π取3.14结果保留两个有效数字). 13.如图,已知一次函数y ax b =+和y kx =的图象相交于点P ,则根据图象可得二元一次方程组0y ax b kx y =+⎧⎨-=⎩的解是 ▲ .14.一只袋内装有3只红球和2只白球,这5只球除颜色外均相同,5人依次从袋中取一只球后并放回,则第四人摸到白球的概率是 ▲ .15.为解决群众看病难问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6 元,则平均每次降价的百分率为 ▲ . 16.如图,有反比例函数1y x=、1y x=-的图象和一个以原点为圆心、2为半径的圆,则S =阴影 ▲ .(结果保留π) 17.如图,直角梯形ABCD 的顶点在相互平行的三条直线1l 、2l 和3l 上,1l 、2l 之间的距离为2,2l 、3l 之间的距离为1,AD ∥BC ,AB ⊥BC ,AB=BC , 则该梯形的高为 ▲ .18.按下面的程序计算,若开始输入的值10,最后输出的结果为 ▲ .三.解答题(8分×4+10分×4+12分×2=96分)19.(1)计算:()211220096tan 302π-⎛⎫+-+-- ⎪⎝⎭输入x 3⨯ 5+ 300>输出结果 是 否3l2l 1lBADCOxyPxO -2-4 D ABC'D 12E(2)解方程410541362x x x x +-=+--20.化简并求值:232224a aa a a a ⎛⎫-÷⎪+--⎝⎭,其中a 的值从不等式组30210a a -<⎧⎨+≥⎩的解集中选取一个你认为合适的整数.21.△ABC 和△111A B C 关于点E 成中心对称,在平面直角坐标系中位置如图所示(正方形网格每格边长为1).(1)画出对称中心E ,并写出点E 、A 、C 的坐标;(2)(,)P a b 是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为2(6,2)P a b ++,请画出上述平移后的△222A B C ,并写出点2A 、2C 的坐标;(3)判断△222A B C 和△111A B C 的位置关系(直接写出结果).22.在一次化学实验课上,甲杯装满水,乙杯空着.现在老师把甲杯中的水全部倒入乙杯中,如图.已知这两个圆柱形 杯高度相等且底面直径之比为1∶2,请你求出图中点P 与乙杯中水面之间的距离.23.甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图23-1、图23-2的统计图. (1)在图23-2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况; (2)已知甲队五场比赛成绩的平均分甲x =90分,请你计算乙队五场比赛成绩的平均分乙x ; (3)就这五场比赛,分别计算两队成绩的极差;(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?O yxPAB C •B 1A 1C 111得分/分8011086 9091 87 95839880甲、乙两球队比赛成绩条形统计图甲队 乙队甲、乙两球队比赛成绩折线统计图10 20 30 40 50 60 70 80 90 100 0得分/分甲110 30°AB24.如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B 被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A 和B ;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率; (2)游戏公平吗?若不公平,请你设计一个公平的规则.25.近日全球多个国家暴发猪流感疫情,为预防疫情,某食品厂对屠宰加工车间进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量()y mg 与燃烧时间(min)x 成正比例;燃烧后,y 与x 成反比例(如图所示).现测得在点燃药物后3m in 与12m in ,室内每立方米空气含药量为2m g .据以上信息解答下列问题:(1)药物燃烧时y 与x 的函数关系式为_________;燃烧后y 与x 的函数关系为_______。

中考仿真模拟考试 数学试题 附答案解析

中考仿真模拟考试 数学试题 附答案解析
A. B.
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4

中考数学仿真模拟试卷(含答案)

中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

中考仿真模拟测试《数学试题》含答案解析

中考仿真模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题(12)说明:考试时间90分钟,满分120分.一、选择题(本题有10小题,每题3分,共30分)每小题给出4个答案,其中只有一个是正确的.1、光年是天文学中的距离单位,1光年大约是9 500 000 000 000km ,这个数字用科学记数法可表示为( )(A) 950×1010 km (B) 95×1011 km (C) ×1012 km (D) ×1013 km2、如图1是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )(A )4个 (B )5个 (C )6个 (D )7个3、下列计算正确的是 ( )(A )(-2)0=-1 (B )-23=-8(C )-2-(-3)=-5 (D )3-2=-64、在下列图形中,即是轴对称图形,又是中心对称图形的是( )(A ) (B ) (C ) (D ) 5、要使二次根式x 2有意义,字母x 必须满足的条件是( )(A )x ≤2 (B )x <2 (C )x ≤-2 (D )x <-26、对“五·一”黄金周7天假期去某景区旅游的人数进行统计,每天旅游的人数统计如下表:其中众数和中位数分别是 ( )A .,2B .2,C .2,2D ., 7、在△ABC 中,∠C =90°,如果AB =2,BC =1,那么sin A 的值是( ).(A)21 (B) 55(C)33 (D) 238、如图2,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B =70°,则∠BAC 等于( )。

(A) 70° (B) 35° (C) 30° (D) 20°9、小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序.他日期 5月1日 5月2日 5月3日 5月4日 5月5日 5月6日 5月7日人数(单位:万)222主视左视俯视图1 OAB C图2们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是( ) (A )31 (B )91 (C )181 (D )27110、如图3,给出的是2007年4月份的日历,任意圈出一竖列上相邻的三个数,请运用方程的思想来研究,你发现这三个数的和不可能是( )(A )27(B )40 (C )54 (D )72二、填空题(本题有5小题,每题3分,共15分.)11、不等式组21,215x x -<⎧⎨+>⎩的解集是 。

12、光线以如图4所示的角度α照射到平面镜Ⅰ上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=60°,∠β=50°,∠γ= 度。

13、如图5,⊙O 直径CD 与弦AB (非直径)交于点M ,添加一个条件:______,就可得到点M 是AB 的中点。

14、一个函数具有下列性质:①它的图象不经过第三象限;②图象经过点(-1,1);③当1x >-时函数值y 随自变量x 增大而增大.试写出一个满足上述三条性质的函数的解析式 。

15、“抛出的篮球会下落”,这个事件是 事件(填“确定”或“不确定”) 三、解答题(每小题6分,共36分)16、计算:︒--+-÷+⎪⎭⎫⎝⎛-30tan 3)2005()2(1631031π°解:原式=17、有这样一道题:“计算:2222111x x x x x x x-+-÷--+的值,其中x =2007.”甲同学把“x =2007”错抄成“x =2070”,但他的计算结果也是正确的.你说这是怎么回事?解:日 一 二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30图3试一试, 你就会有收获! 图4 DCB AO图5M18、解方程:解方程:2211.11x x -=-- 解:19、如图6,有一块三角形的地,现要平均分给四农户种植(即四等分三角形面积).请你在图上作出分法.(不写作法,保留作图痕迹)20、如图7,大拇指与小拇指尽量张开时,两指尖的距离称为指距. 某项研究表明,一指距d(cm) 20 21 22 23 身高h(cm)160169178187;(3分) (2)某人身高为196cm ,一般情况下他的指距应是多少?(2分) 解: 21、中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少? 解:四.证明题(8分)22、已知:如图8,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一A图6 B C 图7点,且EA⊥AF.求证:DE=BF.证明:五、应用题(本题9分)23、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品的原销售价分别为多少元?解:六、图表阅读分析题(本题10分)24、2007年,某校三个年级的初中在校学生共796名,学生的出生月份统计如下,根据图9中数据回答以下问题:(1)出生人数多于60人的月份有哪些?解:(2)出生人数最多的是几月?解:(3)在这些学生中至少有两人生日在10月5日是不可能的,还是可能的,还是必然的?解:(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月的概率最小?解:七、综合题(本题12分)25、如图10,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2=17,且线段OA、OB的长度是关于x的一元二次图9GCy方程x2-mx+2(m-3)=0的两个根.(1)求C点的坐标;(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E三点的抛物线的解析式,并画出此抛物线的草图;(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由.参考答案二、填空题(本题有5小题,每题3分,共15分)16、原式=3-2+1-1=117、∵2222111x x xxx x x-+-÷--+=()()()()211111x x xxx x x-+⋅-+--=x x-=0只要x的取值使这个代数式有意义,其值就为0.∴x=2007错抄成x=2070不影响结果,都为0 。

18、.解:去分母,得222(1) 1.20.,2,1.x x x x x x x x x -+=-∴+-==-=∴12解这个方程得=-2,=1.经检验:是原方程的根是增根原方程的根是=-2.19、不惟一①BC 任意四等分 ②任意的AD 四等分 ③各边中点连结20、(1)设一次函数的解析式为:y =kx +b ,依题意,得:⎩⎨⎧=+=+1692116020b k b k 解得:⎩⎨⎧-==209b k 所以,h 与d 之间的函数关系式为:h =9d -20。

(2)当h =196cm 时,196=9d -20, 解得:d =24答:若某人身高为196cm ,一般情况下他的指距应是24cm 。

21、20个商标中2个已翻出,还剩18张,18张中还有3张有奖的, 所以中奖的概率为:61183=。

四.证明题22、∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =∠ADE =∠ABF =90°∵EA ⊥AF ,∴∠BAF +∠BAE =∠BAE+∠DAE =90°,∴∠BAF =∠DAE , ∴Rt △ABF ≌Rt △ADE ,∴DE =BF . 五.应用题23、设甲、乙两种商品的原销售价分别为x ,y 元,根据题意,得:⎩⎨⎧=+=+3869.07.0500y x y x ,解得:⎩⎨⎧==180320y x 答:甲、乙两种商品的原销售价分别为320元,180元。

六.图表阅读分析题 24、(1)1月份、2月份、3月份、7月份、8月份、9月份、10月份、11月份、12月份; (2)1月;(3)可能的; (4)5份月份。

B C A DB C A B C七.综合探究题 25、解:(1)∵线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根,∴⎩⎨⎧-=•=+) ( 2)3(2)1(m OB OA m OB OA 又 ∵OA 2+OB 2=17,∴(OA+O B )2-2·OA ·OB =17.(3)∴把(1)(2)代入(3),得m 2-4(m -3)=17. ∴m 2-4m -5=0., 解得m =-1或m =5. 又知OA+OB =m >0,∴m =-1应舍去. ∴当m =5时,得方程x 2-5x +4=0. 解之,得x =1或x =4. ∵BC>AC, ∴OB>OA . ∴OA =1,OB =4.在Rt △ABC 中,∠ACB =90°,CO ⊥AB , ∴OC 2=OA ·OB =1×4=4. ∴OC =2, ∴ C (0,2).(2)∵OA =1,OB =4,C 、E 两点关于x 轴对称, ∴A (-1,0),B (4,0),E (0,-2).设经过A 、B 、E 三点的抛物线的解析式为y=ax 2+bx+c ,则1,20,31640,,,22. 2.a b c a b c b c c ⎧⎪-+=⎧⎪⎪⎪++==-⎨⎨⎪⎪=-⎩=-⎪⎪⎩a=解之得 ∴所求抛物线解析式为2132.22y x x =-- (3)存在.∵点E 是抛物线与圆的交点,∴Rt △ACB ≌△AEB . ∴E (0,-2)符合条件. ∵圆心的坐标(32,0)在抛物线的对称轴上, ∴这个圆和这条抛物线均关于抛物线的对称轴对称. ∴点E 关于抛物线对称轴的对称点E ′也符合题意. ∴可求得E ′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2)。

相关文档
最新文档