人教版必修一《集合的概念》课件

合集下载

人教版必修一:1.1集合的概念(共31张PPT)

人教版必修一:1.1集合的概念(共31张PPT)


2、互异性:集合中的元素是互异的。即集合元素是没有重复现象的。 (互不相同)
集合中元素的特性(判定是否是集合的依据)
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合?

③ 2, 4, 2 这三个数能否组成一个集合?

④ 玩斗地主时,3、4、5、6、7是一个顺子,那如果出牌时摆成5、6、3、4、7,还
集合中元素的特性(判定是否是集合的依据)
集合相等: 只要构成两个集合的元素是一样的,我们就称这两个集合相等.
下面两组集合分别是否相等?
集合一:不超过5的自然数组成的集合 集合二:0,1,2,3,4,5组成的集合
集合三:不超过5的奇数组成的集合

集合四:1,3, 5组成的集合
元素与集合的关系
高一级所有的同学组成的集合记为A, a是高一(7)班的同学,b是高二(7)班的同 学,那么a与A,b与A之间各自有什么关系?
B={0,1}
集合B:印度洋,大西洋,太平洋组成的集合
(5)函数y x 1图象上的点组成的集合: A={0,1,2,3,4,5,6,7,8,9}
一般的,我们把研究对象统称为元素,通常用小写拉丁字母a,b,c…表示,把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母A,B,C …表示。 集合中元素的特性(判定是否是集合的依据)
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
2、试选用适当的方法表示下列集合 (1)方程x2 9 0的所有实数组成的集合; (2)由小于8的所有素数组成的集合; (3)y x 3与y 2x 6的图象的交点组成的集合; (4)不等式4 x 5 3的解集

数学人教A版(2019)必修第一册1.1集合的概念(共24张ppt)

数学人教A版(2019)必修第一册1.1集合的概念(共24张ppt)

新课引入
课堂小结
1. 集合的定义; 3. 集合的分类;
元素
新课引入
概念形成
一、概念 元素:一般地,我们把研究对象统称为元素.
集合:把一些元素组成的总体叫做集合(简称为集).
我们通常用大写拉丁字母
表示集合,用小
写拉丁字母
表示集合中的元素.
康托尔(Georg Cantor,1845~ 1918) 德国数学 家, 集合论创始 人, 他于1895年 谈到“集合”一词.
新课引入
新知探究
探究1 分别找出下列例子的研究对象:
(1)
之间的所有偶数;
(2)武鸣高中今年入学的全体高一学生;
(3)所有的正方形;
(4)到直线 的距离等于定长 的所有点;
(5)方程
的所有实数根;
(6)地球上的四大洋.
集合
2, 4, 6, 8, 10
全体高一新生 全部正方形 点构成了直线
太平洋,大西洋,北冰洋, 印度洋
新课引入
概念深化
二、集合中元素的特性 1.确定性: 主要用来判断元素是否能构成集合; 2.互异性:考察较多,主要用来求参数的值; 3.无序性:主要用来判断两集合是否相等.
新课引入
概念深化
三、 元素与集合的关系
属于:如果 是集合 的元素,就说 属于集合 ,记作 ;
不属于:如果 不是集合 的元素,就说 不属于集合 ,记 作.
概念深化
二、集合中元素的特性
2.互异性:一个给定的集合中的元素是互不相同的.也就是说, 集合中的元素是不重复出现的.
例:英语单词mathematics(数学)中所有英文字母构成的集合 有________个元素.
8
新课引入

人教版高中数学必修第一册第一章1.1集合的概念课时1集合的概念【课件】

人教版高中数学必修第一册第一章1.1集合的概念课时1集合的概念【课件】
集,能求两个集合的并集与交集和给定子集的补集.
知识要点及教学要求
4. 能使用Venn图表达集合的基本关系并进行集合的基本运算,
体会数形结合的数学思想.
5. 通过对典型数学命题的梳理,帮助学生理解必要条件、充分条
件、充要条件的意义,理解性质定理与必要条件的关系、判定定
理与充分条件的关系、数学定义与充要条件的关系.
(3) 所有等边三角形;
(4) 方程 = 的实数解;
(5) 不等式x+2>0的所有实数解.
思路点拨:判断一组对象能否构成集合,关键是看这组对象是否确定.
【解】“高一(1)班个子高的男生”无确定的标准,因此(1)不能构成
集合.(2)(3)(4)(5)的元素有点、图形、实数等,虽然不尽相同,但它
怎么表示一个集合和集合中的元素?
【问题3】结合问题1,你能说出集合中的元素应具
有怎样的特征吗?
【活动2】理解元素与集合的关系,熟悉常用数集的
表示方法
【问题4】某中学2021级高一年级的20个班构成一个集合,
则高一(1)班是这个集合中的元素吗?高二(2)班呢?
【问题5】结合问题4,你能说出集合与元素之间 具有怎
(3)(4)中的元素表示出来.
【问题9】从上面的例子看到,我们可以用自然语言描述一
个集合.除此之外,还可以用什么方式表示集合呢?
【问题10】什么是列举法?什么是描述法?怎样用列举法和
描述法表示集合?
典例精析
【例1】(教材改编题)下列元素的全体能否构成一个集合?
(1) 高一(1)班个子高的男生;
(2) 平面上到原点的距离等于1的所有点;
3. 在呈现方式上,以选择题、填空题为主.
学法指导
用观察、比较法研究典型的数学实例、回顾旧知,

高中数学人教A版必修第一册课件集合的概念(课件共14张PPT)

高中数学人教A版必修第一册课件集合的概念(课件共14张PPT)

(2){(x, y)y 2x 3, x, y N*} (2){(1,1)}
(3){rr (1)n, n Z}
(3){1,1}
12345 (4){ , , , , , }
23456 (5){ x N | 9 N }
9 x
(6){ 9 N | x N } 9 x
(4){ xx n , n N * } n1
(5){0, 6, 8}
(6){1, 3, 9}
三、例题讲授
例5、设集合P={0, 2, 5}, Q={1, 2, 6},试求集 合S={a+b|a∈P, b ∈Q}。
例6、已知集合 A x | ax2 2x 1 0, a R, x R
(1)若A中有且只有一个元素,求a值,并求出相 应集合A;
1.1.1 集合的表示
2024年11月9日星期六
1、集合的表示方法
(1)列举法:把集合的元素一一列举出来,并 用花括号“{ }”括起来
列举法的优点: 可以很清楚地看清其中的元素和元素的个数
使用列举法必须注意: ①元素间用“,”分隔. ②元素不能遗漏. ③适用范围:ⅰ.含有有限个元素且个数较少的集合. ⅱ.元素个数较多或无限个但构成集合的元素有明显规律. 例如:不超过100的正整数构成的集合可表示为 {1,2,3,…,100}
错误表示法:实数集不能表示成 {实数集}或{全体实数}
R R
(3)描述法二(代表元素描述法)用集合 中元素的特征来描述集合。 描述法的一般情势:{x∈A| P(x)} ,简记为{x| P(x)} .
含义:在集合A中满足条件P(x)的x的集合,其中x为集 合的代表元素, P(x)为元素的共同特征(限定条件).
例如 (1) 大于0小于10的实数可表示为 {x|0<x<10} (2)大于0小于10的整数可表示为 {x∈N|0<x<10}

人教版高中数学必修1《集合的概念》PPT课件

人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.

数学人教A版必修第一册1.1集合的概念课件

数学人教A版必修第一册1.1集合的概念课件

常用的数集 自然数集 正整数集 整数集 有理数集 实数集
记法
—N— —N—或—N— —Z—
—Q— —R—
新知探究3
练习
用符号“∈”或“∉”填空.
(1)0 N; 2
(3)0.5 Z;
(5) 1 Q.
3
(2)-3 N;
(4) 2 Z.
(6) R.
新知探究4
集合的表示方法
思考6:(1)地球上的四大洋 组成的集合如何表示? 列举法
x∈R
(2)集合中的元素都小于10;
x<10
这个集合可以通过描述其元素性质的方法来表示,
写作:x R x 10 .
新知探究4
集合的表示方法:描述法
描述法:设A是一个集合,我们把集合A中所有具有共同特征 P( x)的元素
所组成的集合表示为 { x A | p( x)} ,这种表示方法称为描述法.
元素与集合的概念
1.元素:一般的我们把研究对象统称为元素,
通常用小写拉丁字母a,b,c,...来表示.
2.集合:我们把一些元素组成的总体叫做集合(简称为集).
通常用大写拉丁字母A,B,C,...来表示.
集合中的元素
问题:组成集合的元素一定是数吗? 有哪些特性呢?
组成集合的元素可以是物、数、图、点等
新知探究2
方程x2-2=0的所有实数根
所有正整数组成的集合
1—10之间所有偶数组成的集合 方程x2-2=0所有实数根组成的集合
点 同一平面内到一个顶点的距离等于定长的所有点——圆 集 到定直线l的距离等于定长2的所有点——两条平行直线
所有正方形
其他 集合
石龙中学202X年入学的全体高一学生 地球上的四大洋

集合的概念ppt课件

集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质

高中数学集合的概念课件人教版必修一【实用课件】29页PPT

高中数学集合的概念课件人教版必修一【实用课件】29页PPT


29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
一【实用课件】
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!高中数学集合的概念课件人Fra bibliotek版必修•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化) 范围,再划一条竖线,在竖线后写出这个集合中元素的共同特征.
例 不等式x-7<3的解集。
集合的表示
(1)自然语言表示法
1~20以内的质数组成的集合。 (2)列举法
把集合中的元素一一列举出来,以逗号隔开,并用花括号“{ }”括起来的表示 集合的方法叫做列举法.
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合?

③ 2, 4, 2 这三个数能否组成一个集合?

2、互异性:集合中的元素是互异的。即集合元素是没有重复现象的。 (互不相同)
集合中元素的特性(判定是否是集合的依据)
先思考以下两个问题:
解:(1) A {3, 3}
(2)B {2, 3,5,7}
y x3
(3)C

{(
x
,
y)
|

y

2x 6
} {(1, 4)}
(4)D { x | x 2}
例3
(1)所有偶数组成的集合:
{x | x 2k,k Z }
数集
(2)不等式2 x 3 0的解集: { x | 2 x-3<0}
解: (1)设小于10的所有自然数组成的集合为A, 则 A={0,1,2,3,4,5,6,7,8,9}
(2)设方程 x2=x 的所有实数根组成的集合为B, 则 B={0,1}
(3)设所求集合为C, 则 C={6,12,18}
集合的表示
你能用列举法表示不等式 x -7< 3 的解集吗? 无限集
(3)描述法: 用集合所含元素的共同特征表示集合的方法称为描述法。
或B={11,12,13,14,15,16,17,18,19 } (3)由所有非负偶数组成的集合
C={x | x=2n,n N }
集合的表示
(3)描述法: 用集合所含元素的共同特征表示集合的方法称为描述法。
A={x R | x<10 } B={x R | x2 -2=0 } C={x Z | 10<x<20 }
元素与集合的关系
练习1.若集合M 是由1和3两个数构成的集合, 则下列
表示方法正确的是( ).
A. 3 M
B.1 M
C. 1 M
D.1 M且3 M
元素与集合的关系
练习2.设A为1 20以内的质数组成的集合,则
1 ____ A, 2 ____ A 9 ____ A, 13 ____ A
所有描述的内容 都写在集合符号

写清楚元素的 一般符号
写清楚元素的 性质
集合的表示
描述法
列举法
A={x R | x2 2=0 }
A { 2, 2}
B={x Z | 10<x<20 } B={11,12,13,14,15,16,17,18,19 } C={x | x=2n,n N }
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
1、用、 填空
(1)设A为所有亚洲国家组成的集合,则
中国____A, 美国____A 印度____A, 英国____A
(2)若A Leabharlann x | x2 x}, 则 1 ____ A
集合中元素的特性(判定是否是集合的依据)
集合相等: 只要构成两个集合的元素是一样的,我们就称这两个集合相等.
下面两组集合分别是否相等?
集合一:不超过5的自然数组成的集合 集合二:0,1,2,3,4,5组成的集合
集合三:不超过5的奇数组成的集合

集合四:1,3, 5组成的集合
元素与集合的关系
高一级所有的同学组成的集合记为A, a是高一(7)班的同学,b是高二(7)班的同 学,那么a与A,b与A之间各自有什么关系?
1、集合中元素的三个特性: 确定性、互异性、无序性
2、元素与集合的关系
元素与集合的关系是个体与总体的关系 和
3、集合的表示方法:
(1)自然语言表示法
(2)字母法 (3)列举法 (4)描述法
4、集合的分类:有限集,无限集
(5)图示法——Venn图
如:2, 4, 2 这三个数不能组成一个集合,但2,4可组成集合. 无序性: 集合中的元素是不讲顺序的。即元素完全相同的两个集合,不论元素顺序
如何,都表示同一个集合。(不考虑顺序) 如:集合A:大西洋,太平洋,印度洋组成的集合
集合B:印度洋,大西洋,太平洋组成的集合
集合中元素的特性(判定是否是集合的依据)
集合的表示
(1)自然语言表示法
1~20以内的质数组成的集合。 (2)列举法
把集合中的元素一一列举出来,以逗号隔开,并用花括号“{}”括起来 的表示集合的方法叫做列举法.
{ } 2,3,5,7,11,13,17,19
例:地球上四大洋组成的集合: {太平洋,大西洋,印度洋,北冰洋}
集合的表示
例1、用列举法表示下列集合: (1) 小于10的所有自然数组成的集合; (2) 方程 x2=x 的所有实数根组成的集合; (3) 由1~20以内既能被2整除,又能被3整除的所有自然数组成的集合.
2,3,5,7,11,13,17,19 (3)描述法:
用集合所含元素的共同特征表示集合的方法称为描述法。
集合的表示
例2 用描述法和列举法描述下列集合
(1)方程 x2 -2=0 的所有实数根组成的集合 A={x R | x2 2=0 } (2)由大于10小于20的所有整数组成的集合
B={x Z | 10<x<20 }
∴-3,-1,1,3 满足题意.
例5 10.已知集合 A={x|ax2-3x+2=0}. (1)若 A 是单元素集合,求集合 A; [解析] (1)因为集合 A 是方程 ax2-3x+2=0 的解集, 则当 a=0 时,A={23},符合题意; 当 a≠0 时,方程 ax2-3x+2=0 应有两个相等的实数根, 则 Δ=9-8a=0,解得 a=98,此时 A={43},符合题意. 综上所述,当 a=0 时,A={23},当 a=98时,A={43}.
有限集通常用列举法来表示
无限集通常用描述法来表示
1、用、 填空
(1)设A为所有亚洲国家组成的集合,则
中国____A, 美国____A 印度____A, 英国____A
(2)若A { x | x2 x}, 则 1 ____ A
(3)若B { x | x2 x 6 0}, 3 ____ B
不满足集合中元素的互异性,∴a=-1 舍去.
当 a=-32时,经检验,符合题意.故 a=-32.
例4
6

(2015·湖





)








{
3 3-x

Z|x

Z}

________.
[解析] ∵3-3 x∈Z,x∈Z,
∴3-x=±1,或 3-x=±3.
∴3-3 x=±3,或3-3 x=±1.
跟踪训练1 (1)下列给出的对象中,能构成集合的是( ) A.著名数学家 B.很大的数 C.聪明的人 D.小于3的实数
解析 只有选项D有明确的标准,能构成一个集合.
集合中元素的特性(判定是否是集合的依据)
(2)下列各组对象可以组成集合的是( ) A.数学必修1课本中所有的难题 B.小于8的所有素数 C.直角坐标平面内第一象限的一些点 D.所有小的正数
那么这两个集合的元素一样吗?
一样
集合中元素的特性(判定是否是集合的依据)
确定性: 集合中的元素必须是确定的。即确定了一个集合,任何一个元素是不是这 个集合的元素也就确定了。 (具有某种属性)
如:高一级身高160cm以上的同学组成的集合. 互异性: 集合中的元素是互异的。即集合元素是没有重复现象的。 (互不相同)
点集
(6)函数y x 1与y 1的图象交点组成的集合:
{(x,y) | y x+1,y 1,x、y R} 或{(0,1)}
例3 9.已知集合 A 含有 a-2,2a2+5a,12 三个元素,且-3∈A,求 a 的值. [解析] ∵-3∈A,则-3=a-2 或-3=2a2+5a, ∴a=-1 或 a=-32. 当 a=-1 时,a-2=-3,2a2+5a=-3,
(3)若B { x | x2 x 6 0}, 3 ____ B
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
2、试选用适当的方法表示下列集合 (1)方程x2 9 0的所有实数组成的集合; (2)由小于8的所有素数组成的集合; (3)y x 3与y 2x 6的图象的交点组成的集合; (4)不等式4 x 5 3的解集
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合?

③ 2, 4, 2 这三个数能否组成一个集合?

④ 玩斗地主时,3、4、5、6、7是一个顺子,那如果出牌时摆成5、6、3、4、7,还
是一个顺子吗?

⑤ 集合1中元素是: 3、4、5、6、7
集合2中元素是: 5、6、3、4、7
不等式的解集
(3)函数y x 1的自变量的值组成的集合:
{ x | y x+1}
函数自变量构成的集合
(4)函数y x 1的因变量的值组成的集合:
{ y | y x+1}
相关文档
最新文档