材料力学知识点归纳总结(完整版)
(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。
因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。
应力的单位是帕斯卡(Pa),即XXX/平方米。
第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。
应变分为线性应变和非线性应变两种。
线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。
非线性应变则不满足这个比例关系。
2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。
3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。
XXX模量的大小反映了材料的柔软程度和刚度。
杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。
综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。
构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。
截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。
胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。
应力是指在截面m-m上某一点K处的力量。
它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。
其中,σ称为正应力,τ称为切应力。
将应力的比值称为微小面积上的平均应力,用表示。
在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。
杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。
某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学知识点总结免费版

材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。
它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。
本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。
1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。
弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。
弹性力学的基本理论包括胡克定律、泊松比等。
2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。
塑性力学主要关注材料的塑性应变、塑性流动规律等。
常见的塑性变形方式包括屈服、硬化、流变等。
3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。
破裂力学主要关注材料的断裂韧性、断口形貌等。
常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。
4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。
疲劳力学主要关注材料的疲劳寿命、疲劳强度等。
材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。
5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。
断裂力学主要关注材料的应力集中系数、应力集中因子等。
在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。
6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。
成形加工力学主要关注材料的流变性质、加工硬化等。
常见的成形加工方式包括挤压、拉伸、压缩等。
7.热力学力学热力学力学研究材料在高温条件下的力学行为。
热力学力学主要关注材料的热膨胀、热应力等。
材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。
通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。
在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。
因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面:1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x 轴逆时针转到截面的法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=xyσταατασστα2cos 2sin 2x yx +-=yx xtg σστα--=22022minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-= [])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r xσ2243τσσ+=r五、强度理论破坏形式脆性断裂塑性断裂强度理论 第一强度理论 (最大拉应力理论)莫尔强度理论第三强度理论(最大剪应力理论)第四强度理论(形状改变比能理论) 破坏主要因素 单元体内的最大拉应力 单元体内的最大剪应力 单元体内的改变比能 破坏条件 b σσ=1 s ττ=max fs f u u =强度条件 []σσ≤1[]σσσ≤-31 适用条件脆性材料脆性材料塑性材料塑性材料*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r 六、材料的力学性质脆性材料 <5% 塑性材料≥5%低碳钢四阶段: (1)弹性阶段 (2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ, E tg ==εσα拉压扭bσsσαe σρσεσ低碳钢断口垂直轴线 剪断τs τb 铸铁拉断 断口垂直轴线b σ 剪断拉断断口与轴夹角45ºτb七.组合变形类型 斜弯曲拉(压)弯弯扭 弯扭拉(压)简 图公式)sin cos (y Z I z I y M ϕϕσ+=WM A P ±±=σ][4223στσσ≤+=r ][3224στσσ≤+=r][4)(223στσσσ≤++=N M r ][3)(224στσσσ≤++=N M r强度 条 件 )sin cos (max max y Z W W M ϕϕσ+=][σ≤ WM A P m ax m ax m ax ±±=σ][σ≤ 圆截面][223σσ≤+=ZW T M r][75.0224σσ≤+=ZW T M r22)(4)(3tZ W T A N W M r ++=σ][σ≤22)(4)(4tZ W T A N W M r ++=σ][σ≤中 性 轴ϕαtg I I Z y tg y Z -== y Z y Z e i Ae I y 2*-=-= 八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,cr<p,>p柔度:iul=λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓4545º 中性轴Z α ϕM p滑移线与轴线45,剪只有s ,无σ22λπσE cr =cr=a-b>p——大柔度杆:22λπσE cr = o<<p——中柔度杆:cr=a-b<——小柔度杆:cr =s稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
完整版材料力学各章重点内容总结

完整版材料力学各章重点内容总结材料力学各章重点内容总结第一章绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章轴向拉压、轴力图:注意要标明轴力的大小、单位和正负号。
、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
、轴向拉压时横截面上正应力的计算公式: F N注意正应力有正负号,A拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:注意角度是指斜截面与横截面的夹角七、线应变一-没有量纲、泊松比一没有量纲且只与材料有关、l胡克定律的两种表达形式: E , I 出注意当杆件伸长时I 为正,EA缩短时I 为负。
八、低碳钢的轴向拉伸实验:会画过程的应力一应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p,弹性极限e )、屈服阶段(屈服极限s )、强化阶段(强度极限 b )和局部变形阶段会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力一应变曲线cos 2 ,sin2五、轴向拉压时横截面上正应力的强度条件F N,maxmaxA六、利用正应力强度条件可解决的三种问题: 1?强度校核maxF N ,maxA定要有结论 2.设计截面A F N,max3.确定许可荷载F^max A180八、圆轴在扭转时的刚度条件maxT maxGI p(注意单位:给出的许用单九、衡量材料塑性的两个指标:伸长率耳100 及断面收缩率 A-A 1100,工程上把 5 的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
对没有明显屈服极限的塑性材料,如何来确定其屈服指标?见课本第24页。
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===n i i ni ci i c A y A y 11 ; ∑∑===ni i ni ci i c A z A z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-”τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min 2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:i ul =λ;ρρσπλE=;ba s σλ-=0, 柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w Icr n P P n ≥=,折减系数法:][σϕσ≤=A P提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学知识点归纳总结(完整版)
1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构
4.件应当满足以下要求:强度要求、刚度要求、稳定性要求
5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念
1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,
所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程
N-F=0 可得N=F
3.综上所述,截面法可归纳为以下三个步骤:
1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
例如,有同样材料而截面面积大小不等的两根杆件,若它们所受的外力相同,那么横截面上的内力也是相同的。
但是,从经验知道,当外力增大时,面积小的杆件一定先破坏。
这是因为截面面积小,其上内力分布的密集程度大的缘故。
如图所示,在杆件横截面m-m上围绕一点K取微小面积,并设上分布内力的合力为。
的大小和方向与所取K点的位置和面积有关。
将与的比值称为微小面积上的平均应力,用表示,即:
称为截面m-m上一点K处的应力。
应力的方向与内力N的极限方向相同,通常,它既不与截面垂直也不与截面相切。
将应力分解为垂直于截面的分量σ和相切于截面的分量τ,其中σ称为正应力,τ称为切应力。
在国际单位制中,应力单位是帕斯卡,简称帕(Pa)。
工程上常用兆帕(MPa),有时也用吉帕(GPa)。
5.杆件变形的基本形式:在机器或结构物中,构件的形状是多种多样的。
如果构件的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大得多,这样的构件称为杆件。
杆是工程中最基本的构件。
如机器中的传动轴、螺杆、房屋中的梁和柱等均属于杆件。
某些构件,如齿轮的轮齿、曲轴的轴颈等,并不是典型的杆件,但在近似计算或定性分析中也简化为杆。
6.杆件变形的基本形式有如下四种:拉伸或压缩:图示简易吊车。
在载荷P作用下,AC杆受到拉伸,而BC杆受到压缩。
这类变形形式是由大小相等、方向相反、作用线与杆件轴线重合的一对力引起的,表现为杆件的长度发生伸长或缩短。
起吊重物的钢索、桁架的杆件、液压油缸的活塞杆等的变形,都属于拉伸或压缩变形。
7.剪切:图示铆钉联接a),在P力作用下,铆钉受到剪切。
这类变形形式是由大小相等、方向相反、相互平行的力引起的,表现为受剪杆件的两部分沿外力作用方向发生相对错动b)。
机械中常用的联接件,如键、销钉、螺栓等都产生剪切变形。
8.弯曲:图示梁的变形即为弯曲变形。
这类变形形式是由垂直于杆件轴线的横向力,或由作用于包含杆轴的纵向平面内的一对大小相等、方向相反的力偶引起的。
变形表现为杆件轴线由直线变为曲线。
在工程中,受弯杆件是最常遇到的情况之一。
桥式起重机的大梁、各种心轴以及车刀等的变形都属于弯曲变形。
9.扭转:图示转轴AB,在工作时发生扭转变形。
这类变形形式是由大小相等、方向相反、作用面垂直于杆件轴线的两个力偶引起的,表现为杆件的任意两个横截面发生绕轴线的相对转动。
汽车的传动轴、电机的主轴等,都是受扭杆件。