碎纸片复原
碎纸片拼接复原的数学方法

碎纸片拼接复原的数学方法拼图游戏,一种看似简单却富含深度的游戏,给人们带来了无穷的乐趣。
然而,大家是否想过,这样的游戏其实与数学有着密切的?让我们一起探索碎纸片拼接复原背后的数学方法。
碎纸片拼接复原,其实就是一个计算几何问题。
在数学领域,欧几里得几何和非欧几里得几何是两个基本而又重要的分支。
欧几里得几何主要研究的是在平面上两点之间的最短距离,这是我们日常生活中常见的几何学。
而非欧几里得几何则研究的是曲面上的几何学,这种几何学并不符合我们日常生活中的直觉。
碎纸片拼接复原的问题就是一种非欧几里得几何问题。
在计算机科学中,图论是研究图形和网络的基本理论。
其中,图形遍历算法可以用来解决碎纸片拼接复原问题。
这种算法的基本思想是:从一点出发,尽可能多地遍历整个图形,并在遍历的过程中对图形进行重建。
对于碎纸片拼接复原问题,我们可以将每一张碎纸片看作是图中的一个节点,当两张碎纸片拼接在一起时,它们就形成了一个边。
通过这种方式,我们可以将所有的碎纸片连接起来,形成一个完整的图形。
在计算机科学中,碎纸片拼接复原问题被广泛应用于图像处理、数据恢复等领域。
例如,在数字图像处理中,如果一张图片被切割成若干块,我们可以通过类似的方法来恢复原始的图片。
在数据恢复领域,当一个文件被删除或格式化时,我们也可以通过类似的方法来恢复文件。
碎纸片拼接复原的问题不仅是一个有趣的拼图游戏,更是一个涉及计算几何、图论等多个领域的数学问题。
通过运用这些数学方法,我们可以有效地解决这个问题,从而更好地理解和应用这些数学理论。
在我们的日常生活中,我们经常会遇到一些破碎的物品,例如碎镜子、破碎的瓷器,或是碎纸片等。
这些物品的复原过程都需要一种科学的方法来帮助他们重新拼接起来。
这种科学方法就是碎纸片拼接复原技术。
碎纸片拼接复原技术是一种基于数学模型的方法,它通过比较碎纸片边缘的形状、纹理、颜色等特征,来找到碎纸片之间的相似性和关联性,从而将它们拼接起来。
碎纸片自动拼接复原模型的实现

式) a =( a , 1 , …, 口 : ) 与a , =( 日 , 以 1一 , ), 我们定义相似度:
通过对图 中碎片的观察与分析 , 我们发现这些碎片具有共同的
特征。 如图 4 6 ) 中碎片上被标记的部分所示。 l 8 O ∑n 0 n 由图 4 6 ) 可以看出, 这些图片都是有一行 缺少英文字符 , 使得碎片 ( , Z ) 这些特殊的5 ' , -  ̄ l t 图片都是可以人工干预处理的。 ( 2 ) 对应的模式比较异常。 在 此基 础上 考虑 碎 片拼接 过程 , 先 对分 类 的碎 片左 右 拼接 , 匹配 仅 其中 为临界值。若 , x o 则我们认为 与 同属一类, 对于 在所在行匹配合成 。 上下匹配还要考虑行内其他元素的上下匹配。 合成 那些存在特殊情况的碎片 , 我们在分好类的基础上 , 再进行人工干预处 时整行都要合成。 综合考虑以上因素 , 我们对所有可以拼接的数据进行 理。c 同 类碎片拼接。 按照单面纵向拼接方法对每—类中的所有碎片进 拼接整 合 。( 图5 ) 行拼接 ,则可得到 同一类中碎片的拼接方案 ,进而得到横 向的 “ 大碎 在这里,处理特殊碎片需遵循 的原则 :以第二次拼接 的图片为底 片” 。c L 不同类“ 大碎片” 的拼接。“ 大碎片” 为横向的, 但此 问题- 仍 属于单 图, 剩下的 1 8 块依次和底图匹配 , 匹配原则包含经此处理之后便于观 面单向的拼接问题 , 因此可采用计算灰度值耦合度的方法进行拼接。 察整体拼接隋况, 但是拼接后在合成部分已做断开划线处理 , 这样便于 2 . 2 . 2英文单面纵横切碎片拼接。 考虑到英文的特殊 陛, 根据英文的 将剩下 的碎片进行拼接分析。 经过此次拼接过程 , 可以观察已组合部分 书写版式原则 , 可以将整篇文章放在带有英文四线格的底面中。 既然可 是否匹配正确 , 若不匹配 的话 , 可 以暂时先将那块碎片剔除, 放到第 三 以放在 四线格中, 这里我们把一行四线格看成一行, 可以确定每相邻行 部分再进行匹配组合。 碎片四边都要依次匹配 , 匹配度最高的就是缺少 的行间距是一定的。行宽也是一定的, 考虑字母仅占有上中、 中、 中下 、 块部分。按 以上方法对样本文件 4中的碎片进行拼接 ,结果见图 5所 上中下等几种情况 , 可 以确定每一个字母都是在中间有书写笔画的, 四 不 。 线格中上下行都具有英文笔画的是少数。 结束 语 基于这种考虑, 可以对每一行四线格的中间内容进行求和, 当其和 通过 研究 规 则切割 碎 纸片 的拼 接复原 问题 ,我们 针 对单 面 中英 文 的值小于某一值的时候我们忽略四线格上面和下面的内容 ,进而只考 纵向切割碎片以及单面中英文纵横双向切割碎片提 出了不同的拼接复 虑 四线 格 的中 间部 分 。 对 于那些 特殊 的碎 片 , 我们 可采用 人 工干预 的方 原模型以及方法。该方法将一张张碎片文件转换成 了一个个像素点值 式将其挑出, 所以将英文中四线格的上半部分和下半部分的内容忽略 , 矩阵, 对于计算机来说 , 碎片文件 的处理就变成了矩阵集合 的操作 ; 另 可以采取中文碎片模式转换的类似方法, 从而到英文碎片的模式。 外引入欧式距离将图像的拼接转化为耦合度的计算 ;接着考虑到印刷 3 实验 结果 及分析 文本文件的排版特点 , 引入模式识别的概念 , 可 以将大量杂乱碎片进行 实验是在 Mi c r o s o f t Wi n d o w s 7系统上进行 ,内存限定是 2 G B , 算 分类 , 然后逐类拼接 , 最终将双向拼接问题转化为单 向拼接问题 ; 最后 法实现语言为 M A T L A B 7 . 0版本。根据不同的样本文件使用相应的拼 所建立的模型效率好 , 精度高, 从实验结果上可以看 出该模型的可行性 接算 法 , 从 而得到 下面 的模拟 结果 。 和有 效 胜。 3 . 1 中英文单面纵切拼接实验。 样本文件 1 和2 分别为中英文单面 致谢 纵切碎片数据 ,其中每页纸被切为 1 9 条碎片 ,分别用 O 0 0 . b mp 一 0 1 8 . 感谢对此项研究工作提供基金资助的西北民族大学 中央高校基本 b mp 编号命名。利用 MA T L A B工具中的 自 带 函数 i m2 b w和 i m r e a d , 将 科研业务费专项资金 N o . 3 1 9 2 0 1 3 0 0 0 8 ) t ) 2 及西北民族大学科研创新 团 图像转化为仅包含 0和 1 的向量 ,接着根据中英文单面纵切算法可以 队计划 , 同时感谢参与本论文讨论的赵习猛 、 任宗秀和王本涛。 得到碎片的耦合度矩阵 , 由此可得样本文件 1 , 即中文单面纵切碎片的 参考 文献 拼接 复 利l 赙 为:
纸张撕碎重新复原的方法

纸张撕碎重新复原的方法
将纸张撕成小块后,可以试用以下方法重新复原:
1. 拼图法:根据纸张上的图案或文字的特征,将撕碎的纸张小块一一拼接在一起。
可以使用胶水或透明胶带将小块粘接在一起,直到整张纸张还原为完整的状态。
2. 粘贴法:将所有纸张小块按照纸张上的线条方向,粘贴在一张背景纸上。
根据纸张上的文字或图案特征,可以推测纸张的排列顺序。
3. 数字法:对每个纸张小块进行编号,然后根据编号重新排列纸张小块。
4. 计算机辅助法:使用扫描仪或相机将撕碎的纸张进行扫描或拍照,然后使用图像处理软件将图像还原,最后打印出完整的纸张。
请注意,纸张撕碎再复原的难度取决于撕碎的程度和纸张的特性。
有些纸张可能不易复原或需要特殊的技术手段,如复印纸、碎纸机处理后的纸张等。
全国大学生数学建模大赛安徽赛区二等奖

摘要
碎纸片自动拼接技术是碎纸片处理与模式识别领域中一个较新的且典型的应用。 本 文为了解决碎纸片的拼接复原问题,建立了相似度匹配、图像灰度的数值化角点匹配和 SIFT 特征的拼接等三种碎纸片拼接复原模型及相应的算法,得出了附件中碎纸片的拼 接复原碎纸片与对应碎纸片的编号顺序。 对于问题一,首先对碎纸片进行二值化处理,使碎纸片转化为各像素值为 0 或 1 的 矩阵。人工干预选出即将复原碎纸片的第一列,依次计算剩余碎纸片与该列碎纸片的相 似性度量,将相似性度量最大的碎纸片与其拼接。然后,建立基于相似性度量的相似度 匹配模型,并利用序列相似度检验方法对该模型进行了验证,通过快速匹配迭代,找到 基于下一幅二值碎纸片的像素矩阵与上一幅二值碎纸片的像素矩阵的最佳匹配碎纸片。 利用回溯搜索算法对此模型进行求解,得到中文碎纸片的顺序为(复原图片见附录 1): 008 014 012 015 003 010 002 016 001 004 005 009 013 018 011 007 017 000 006; 英文碎纸片的顺序为(复原图片见附录 1): 004 003 006 002 007 015 018 011 000 005 001 009 013 010 008 012 014 017 016。 对于问题二,利用问题一中对碎纸片的二值化处理以及碎纸片匹配相似程度,初始 化每列碎纸片的相似性度量,并以此作为匹配依据,在选出第一列的碎纸片(无序) 的 基础上, 根据行相似性度量和二值碎纸片的像素矩阵来建立图像灰度的数值化角点匹配 模型和算法分析。依据每张碎纸片中每两行文字之间的距离相等为约束条件,筛选出可 进行匹配的碎纸片,同问题一,通过列相似性度量将各行纸片进行拼接。最后,人工干 预选出第一行图片,依据行相似性度量对各行纸片进行拼接,所有的二值碎纸片依次进 行迭代,最终输出完整的匹配碎纸片。 (中文、英文的复原碎纸片见附录 2) 对于问题三,首先需要对碎纸片进行二值化处理,依据尺度不变特征变换原理, 找 出各碎纸片的特征点,并依照此原理,将具有相同特征点的碎纸片进行两两匹配,配对 的结果放入特征匹配的集合中。 然后利用随机一致性抽样算法, 使用采样和验证的方法, 得到大部分特征点都能满足的数学模型的参数。 不断找出特征匹配集合的各匹配结果的 内点,内点数量最大的匹配即为此匹配的最优解,并将结果进行同样组合,不断匹配直 至所有碎纸片拼接完成。 最后,对本文模型的算法进行改进,并对模型进行评价与推广。
基于汉字识别的碎纸片拼接复原模型研究

量 明月,
( 7 2 _ _ i ) , 则只需要对剩余所有图片 自左向右读取第
n -( 7 2 一j ) 列、 第t 到t + n 行像素的灰度值 。若该行
有缺 损文 字 , 则 与第一 张 图 片 同一 行 的后 ( 7 2 一i ) 列 像 素 灰 度值 进行 匹配 , 再 利 用模 式 识别 判 断 能 否成 字 ,这样 就 可 以找 到 与第 一 张 图片 相 匹 配 的 图片 。 如果 没有 缺损 文字 , 则从 上往 下读 取第 t + ( i 一1 ) n + ( i 一1 ) 到t + i n + ( i —1 ) 水 h ( i 为 读 取 字 的行 数 ) 行
( 7 2 一j ) 。
1 1 0 - “
『l l 帕 + 1 r
h
第三步 , 由于 每个 印 刷体 方 块 字 的字 宽 和字 高
n
、 f 一
l 入
都是一定的 , 所 以可以推断出剩余 图片中与第一张 图 片缺损 部 分相 匹配 的 缺损 部 分 的宽 度 为 n 一
t
j
n
t
‘ -・
第二步 , 通 过 Ma t l a b软件 读取 出第 一 张 图片缺
h
l 窗前
毛旦 籼
N C L
月光 ,
卜霞
[ = 】 1. / I 、 日 。
损字 的左边距 i , 每个方体字 的字宽和字高 n , 字间
距 h 。这样 第一 张 图 片最右 边 的缺损 字 的宽 度 即为
图四 图 片拼 接 展 示 图
进行灰度值处理 、 匹配 , 确保 了模 型建立的合理性 ,
编程 实现 简单 , 通俗 易懂 。且利 用 函数 的连续性 , 证
基于欧氏距离的规则碎纸片拼接复原模型

其中, D 中第 i 行第 J 列元素表示第 i 号二值
矩 阵 所属 的碎 片 的左 边缘 和第 J 号 二值 矩 阵所 属 的
d 一 0 =
, j 等于 1 或2
( 5 )
d 一 =
, j 等于 1 或2
( 4 )
氏距 离 ( i , l = 0 , 1 , 2 , …, n ) 。
其中, d u - U 表示列向 量磊 与列向量 之间的欧
3 - 3 分割横 向复原图片并纵 向拼接
根据 已知每横行碎片个数 ,分割碎片横向拼接
图片,仅取各个横 向复原拼接图片的第一个碎片二 值矩阵的第一行与最后一行 , 组成矩阵 s ’ , 转置得到
矩阵 s i T计算 中各 列 向量 间的欧 氏距 离 。 记第 i 幅分 割后 的横 向拼 接 图片 中第 一 个碎 片
一
列之间的排列顺序 , 继而得到碎片的复原顺序。 由于 些碎片的边缘全为白色, 无法确定其位置 , 此时需
虑将碎纸片横向复原 , 得到横向呈带状的拼接图片 ; 然后根据附件 5的每横行碎片个数 , 分割横 向拼接 图片并进行纵 向复原 , 最后对无法判定 的碎片进行
人工 干 预 。
要 人 工干 预 。
运用 Ma t l a b 软件 , 得到附件 5 所有碎片数据的
二值 矩 阵 。
记碎片的正面的二值矩 阵为第 1 号至第 n 号, 碎片的反面的二值矩阵为第 n + l 号至 n + 2号 , 将所 有读人碎片的二值矩阵的第一列和最后一列取 出, 组成矩阵 s , 计算 s中各列 向量间的欧氏距离。 记第 i 号二值矩阵的第一列为 , 最后一列为
数学建模碎纸片拼接复原题目
数学建模碎纸片拼接复原题目《数学建模碎纸片拼接复原:一场奇妙的探索之旅》我呀,最近在学校里遇到了一个超级有趣又超级难的事儿,那就是关于数学建模里的碎纸片拼接复原题目。
这可不是一般的题目,就像是一个超级复杂的拼图游戏,但又比普通拼图难上好多好多倍呢!咱们先来说说这个碎纸片是怎么回事吧。
想象一下,有好多好多的碎纸片,就像被大风吹散了的树叶一样,到处都是。
每一片碎纸片都像是一个小秘密,它上面只有一部分的文字或者图案。
这些碎纸片有的边缘是平滑的,有的却是弯弯曲曲的,就像不同形状的小云朵在纸上飘着。
我和我的小伙伴们刚开始看到这个题目的时候,都瞪大了眼睛,嘴巴张得能塞下一个大鸡蛋。
“这可怎么拼啊?”我的小伙伴小明忍不住叫了出来。
我也在心里直犯嘀咕,这简直就像是要把散落在地上的星星重新组合成原来的星座一样困难。
不过,我们可没有被这个难题吓倒。
我们就像一群勇敢的小探险家,准备去解开这个谜题。
我们首先想到的是从碎纸片的边缘入手。
就好比我们在搭积木的时候,先找那些有特殊形状的积木块一样。
那些边缘有独特形状的碎纸片,可能就是我们找到拼接复原方法的关键。
我拿起一片碎纸片,上面有一点点像是字母“e”的半边。
我就大声地对小伙伴们说:“你们看,这个会不会和另一片能组成一个完整的‘e’呢?”大家都围了过来,眼睛里闪烁着兴奋的光芒。
小红说:“那我们快找找看呀!”于是我们就开始在那一堆碎纸片里翻找起来。
这感觉就像是在寻宝,每一片碎纸片都可能是宝藏的一部分。
可是,找了半天,我们发现事情并没有那么简单。
有好多碎纸片的边缘看起来好像能拼接在一起,但实际上它们的内容却对不上。
这就像你以为你找到了两块合适的拼图,结果发现上面的图案根本不是一回事儿。
我有点沮丧地说:“这也太难了吧,感觉就像在黑暗里摸东西,怎么也找不到正确的方向。
”这时候,聪明的小刚说话了:“我们不能只看边缘呀,还得看看纸片上的文字或者图案的内容呢。
比如说,如果一片碎纸片上有一个单词的开头部分,那我们就得找有这个单词结尾部分的碎纸片。
碎纸复原文档
碎纸复原简介碎纸复原是一种通过将被撕碎的纸张片段重新拼接起来的技术,以恢复原始纸张的内容。
这种技术在犯罪调查、情报收集和文件重建等领域有着很重要的作用。
随着技术的不断发展,碎纸复原的方式和工具也在不断改进,为碎纸复原的效率和准确性提供了更好的保障。
历史碎纸复原的历史可以追溯到十九世纪末。
最早期的碎纸复原是通过手工将纸张碎片逐个拼接起来,这种方法耗时耗力,效果也不太理想。
随着科技的进步,人们开始尝试使用化学方法进行碎纸复原。
在二战期间,间谍机构和情报部门开始开展碎纸复原的工作,并且相应的科研机构也加大了对于这方面的研究力度。
到了20世纪中后期,计算机图像处理技术的兴起使得碎纸复原取得了长足的进步。
碎纸复原的技术方法传统方法传统的碎纸复原方法主要是基于手工拼接和化学试剂辅助处理的方式。
手工拼接需要对纸张碎片进行分类、匹配和拼接,这需要较高的人力和耐心。
而化学试剂辅助处理则是通过柔软和粘附性较强的化学物质,使得碎片能够更容易地连接起来。
这些方法只能处理尺寸较大的碎纸,对于小碎片或者碎纸数量很多的情况效果较差。
计算机辅助方法随着计算机图像处理技术的发展,碎纸复原在20世纪中后期开始快速发展。
计算机辅助方法通过将碎纸片段进行数字化处理,利用计算机的图像处理能力进行拼接和恢复原始图像。
这种方法主要包括图像匹配算法、特征提取算法和图像重建算法等。
图像匹配算法通过比对不同碎纸片段之间的特征,找到匹配的碎片进行拼接;特征提取算法则是提取碎纸片段的特征,构建特征数据库以供匹配算法使用;而图像重建算法则是对拼接后的碎片进行修复和还原。
碎纸复原的应用领域碎纸复原在犯罪调查、情报收集、文件重建等领域具有重要的应用价值。
犯罪调查碎纸复原在犯罪调查中能够帮助警方或侦查人员还原被破坏或删除的证据。
例如,在一起谋杀案中,嫌疑人可能会试图将重要的证据纸张撕碎以销毁,但通过碎纸复原技术,警方可以恢复碎纸片段上的文字、图像或指纹等关键证据,从而推进案件的侦破。
碎纸片拼接复原matlab程序
碎纸片拼接复原是一个有趣的图像处理问题,通常需要使用计算机视觉或图像处理技术。
下面是一个简单的 MATLAB 程序示例,用于演示碎纸片拼接复原的基本思路。
请注意,这只是一个简单的示例,实际应用中可能需要更复杂的算法和技术。
这个简单的 MATLAB 程序包含了三个函数:
1.shredImage: 将原始图像切成碎片。
2.shufflePieces: 随机打乱碎纸片的顺序。
3.reconstructImage: 进行拼接复原。
请注意,这只是一个基本的示例,实际应用中可能需要更复杂的图像处理技术,例如特征匹配、拼接算法等。
碎纸片的拼接复原数学模型的构建
碎纸片的拼接复原数学模型的构建摘要院本文讨论在碎纸机以不同方式破碎纸片的情况下建立碎纸片的拼接复原模型,以解决碎片数量巨大时人工拼接的难题,本文建立了三个具有针对性的模型。
模型一:方差分析法下的碎纸片拼接模型。
在以纵切方式破碎纸片的情况下,提取碎纸片左右边缘的灰度列向量,利用碎纸片边缘处为单边同宽空白区域的特殊性对碎纸片进行定位,再利用方差分析法和欧式距离解决了纵切碎纸片的拼接复原问题。
模型二:文字行间距一致性的碎纸片拼接模型。
以纵横方式破碎纸片,利用同行文字行间距一致性的主要特性可解决横向碎纸片的拼接复原问题,简化了模型,将离散的像素灰度矩阵平均化处理,进而利用欧氏距离对碎纸片进行匹配,得到了碎纸片复原后的完整图片。
模型三:二值化Otsu 算法的碎纸片拼接复原模型。
本文从双面纵横破碎纸片的问题出发,建立了纸片二值化Otsu 法拼接模型,先对碎纸片分组预处理,为将复杂模型简单化,再利用全局阈值方法中典型的Otsu 法求取碎纸片的最佳阈值,以该阈值对碎纸片中所含灰度值信息进行划分实现二值化处理,将边缘区域明显化,利用统计学方法求取拼接后的纸片间成功匹配的像素点占纸片边缘的概率,最终双面纵横破碎纸片的拼接复原问题得以解决。
Abstract: This paper discusses the construction of splicing scrap recovery model under the condition of shredder breaking paper intopieces in different ways, so as to solve the problem of artificial splicing when there is a great amount of pieces. This paper establishes threecorresponding model.Model One: Paper Scrap Splicing Model under Analysis of Variance.Shredding paper through longitudinal mode, the paper selects the gray scraps of paper around the edge extraction column vector,locates the paper scrap by using edge of paper scraps as blank area with same width, then solves the problem of reconstruction of thelongitudinal cutting paper splicing through analysis of variance method and Euclid Distance.Model Two: Paper Scrap Splicing Model with Consistency of Text Line Spacing.Shredding paper through vertical and horizontal mode, its main characteristics of peer text line spacing consistency can solve theproblem of reconstruction of splicing transverse paper scraps, simplifies the model, processes the pixel matrix of discrete in average andmatches the paper scraps through Euclid Distance and then gets the complete picture of paper scrap afterrecovery.Model Three: Paper Scrap Splicing Model Based on Binaryzation Otsu Algorithm.This paper firstly expounds the double side's vertical and horizontal mode, establishes the paper scrap splicing model based onbinaryzation Otsu algorithm. The paper firstly does preconditioning for paper scraps into groups, simplifies the complex model, and then getsthe optimal threshold of the paper scraps by using typical Otsu algorithm of global threshold method. The paper classifies the gray valueinformationof paper scraps through this threshold to realize binaryzation processing, specifies the edge area, evaluates the probability ofsuccessful matching pixels on edge of splicing paper, and finally solves the mosaic and restoration problems of double side's vertical andhorizontal mode.关键词院离散;方差分析;置信区间;阈值;Otsu 算法Key words: discrete;analysis of variance;confidence interval;threshold;Otsu algorithm中图分类号院TQ018 文献标识码院A 文章编号院1006-4311(2014)25-0238-031模型一考虑以为空间拼接情况,为了获取拼接图像所必须的数据,文章以像素为单位离散所得碎片:利用VC++使用了Windows.H 头文件并调用RGB 等结构定义获得不同像素点的g 值[1],生成了多个灰度矩阵。