减震橡胶计算
空调压缩机橡胶减震垫的设计计算

空调压缩机橡胶减震垫的设计计算粘弹性橡胶材料在受到冲击时能将部分动能转化为热能耗散掉,因而具有良好的减震和降噪性能。
橡胶减震制品已广泛应用于汽车、飞机、轮船、桥梁、铁路、建筑物、机械和仪器仪表等领域。
本文介绍空调压缩机橡胶减震垫特性参数和尺寸的计算。
1设计原理空调压缩机的振动传至基础部位(机壳)会引发系统振动和噪声。
在空调压缩机与基础部位之间安装橡胶减震垫,会减少振动的传递,这种减震方法称为主动减震法。
一般来说,减震垫安装在空调压缩机4个地脚底,按压缩机重心呈对称分布,起支撑、减震和降噪作用。
在空调压缩机振动的激励下,减震垫产生相应的固有频率振动.(1)式中——减震垫的固有频率,Hz;——减震垫的动刚度,N·mm;——标准重力加速度,取9800mm·s;——压缩机的重力,N。
减震垫振动传输率(),即输入振动的传递率决定减震率(),表征减震垫的减震能力,=1-。
越小,减震垫的减震效果越好。
与减震垫损耗因子(tanδ)和压缩机振动频率()与的比值(ν)的关系式为:(2)不同tanδ值下与ν的关系曲线如图1所示。
从图1可以看出,与ν呈非线性关系。
随着ν的增大,先急剧增大,在ν=l时达到最大值,此时体系产生共振,造成压缩机基础部位强烈振动,从而致使压缩机不能正常工作和减震垫疲劳损坏;其后减小,且不同tanδ值的曲线均交于ν=处。
当ν≤时,≥1,减震垫不能起减震作用;当ν>时,<l,减震垫发挥减震作用,且tanδ越小、ν越大,减小的幅度越大,减震效果越好。
可见,研制减震垫时,应选用低阻尼橡胶材料,同时注意v值的选取。
由于压缩机的厂是固定的,因此一般通过调整减震垫的控制v。
但v不能过大,否则减震垫的过低,相应的减震垫的K’过小,要达到相同的减震效果,减震垫的体积过大。
试验得出,v一般取2.4~4.5。
当v>时,对于低阻尼橡胶材料(tanδ≈0)式(2)可简化为:(3)在主动减震法中,橡胶减震垫要承受空调压缩机的重力,因此所用橡胶材料的压缩永久形变较小。
减震橡胶相关知识及应用

减震橡胶相关知识及应用减震橡胶作为现代工程领域中不可或缺的一部分,其重要性不言而喻。
它能够降低振动、减少噪音,进而提高设备的稳定性和可靠性,同时也有助于增加设备的使用寿命。
本文将介绍关于减震橡胶的相关知识和应用。
一、减震橡胶的组成和结构减震橡胶是由橡胶材料和所需添加的填料、助剂以及化学试剂等所组成。
不同的配方会决定橡胶的性质和特点,因此在不同的应用场合中,需要选择不同类型的减震橡胶。
减震橡胶的结构分为三种:薄层式、中空式和密封式。
薄层式的减震橡胶通常是由若干薄层的橡胶片和层间粘合剂构成,可以避免噪音和振动的产生。
中空式的减震橡胶是将橡胶材料制成中空形状,使其能够吸收来自各个方向的振动与冲击力。
而密封式的减震橡胶是将橡胶材料制成密封形状,在内部注入气体或液体,达到减震的效果。
二、减震橡胶的应用领域减震橡胶广泛应用于各种行业和领域中,主要包括以下几个方面:1、建筑工程领域中,减震橡胶常用于建筑物的基础和地下车库等地面的控制,以减少因地震或风雨等天气带来的振动和噪音。
2、机械制造领域中,减震橡胶常用于各种机械设备、车辆和船舶等中,以减少设备运转时产生的振动和噪音,以及保护机械装置和工具的稳定性。
3、电子电器领域中,减震橡胶常用于各种电子设备、电视机、音响和消费电子等中,以减少这些设备运转时产生的振动和噪音,保护设备的性能和寿命。
4、医疗领域中,减震橡胶常用于手术室和医疗设备中,以减少隆起的地板对手术室微小切口和精细手术的影响。
5、其他方面,减震橡胶可以应用于管道、阀门、制动器、减速器等。
三、减震橡胶的性能减震橡胶的性能有:抗压缩性能、剪切应变能力、回弹性、在动态应变下的刚度和耐磨性等。
其中,抗压缩性能是一项最基本的性能,它通过应力-应变曲线来描述。
在减震橡胶板材的生产制造中常用的材料是SBR橡胶,良好的SBR橡胶板材常具有良好的密封性能,以及坚韧耐用的特点。
四、减震橡胶的保养及维护在减震橡胶使用过程中,需要注意以下几点:1、定期检查减震橡胶的状况与安装位置。
橡胶压力计算公式

橡胶压力计算公式橡胶压力计算公式是指通过计算橡胶材料受力面积和压力之间的关系,以确定物体的压力大小。
橡胶是一种具有可塑性、弹性和可伸展性的材料,常用于制作密封件、弹簧、挡圈等。
其特点是能够在受力作用下发生变形,但在去除外力后能够恢复原状。
对于橡胶受到的压力,可以用以下公式进行计算:P=F/A其中,P表示橡胶的压力,F表示施加在橡胶上的力,A表示橡胶所受力的面积。
该公式基于压力等于力除以面积的定义。
橡胶受力面积的计算涉及到橡胶的几何形状。
以下是几种常见橡胶形状的受力面积计算方法:1.矩形橡胶材料的受力面积计算:矩形橡胶材料的形状长宽分别为L和W,面积计算公式为:A=L*W2.圆形橡胶材料的受力面积计算:圆形橡胶材料的形状直径为D,面积计算公式为:A=π*(D/2)²=(π*D²)/43.椭圆形橡胶材料的受力面积计算:椭圆形橡胶材料的形状长轴和短轴分别为a和bA=π*a*b4.不规则形状橡胶材料的受力面积计算:如果橡胶材料的形状不规则,可以通过离散化的方法来计算面积。
将不规则形状划分为多个规则形状的组合,并分别计算这些规则形状的面积,最后将所有面积相加得到总面积。
橡胶压力计算公式可以通过上述面积计算方法得到橡胶的受力面积,再利用压力等于力除以面积的关系式,计算出压力的大小。
这个公式在工程和物理学中都得到广泛应用,帮助工程师和科学家预测和设计橡胶材料的性能和使用情况。
需要注意的是,橡胶材料的强度、刚度和材质等因素也会影响其受力和压力的计算。
因此,在进行橡胶压力计算时,还需要考虑这些因素,并结合实际情况进行综合分析。
用ANSYS计算拱形橡胶减震垫的极限荷载

第23卷第3期海南大学学报自然科学版V ol.23N o.3 2005年9月NATURA L SCIENCE JOURNA L OF H AINAN UNIVERSIT Y Sep.2005 文章编号:1004-1729(2005)03-0238-04用ANSYS计算拱形橡胶减震垫的极限荷载李正中1,陈玉骥2(1.怀化铁路总公司张家界工务段,湖南张家界427001;2.中南大学铁道校区土建学院,湖南长沙410075)摘 要:通过实验确定了橡胶材料的M ooney2Rivlin常数,再以拱形橡胶减震垫为对象,建立了用于计算的空间有限元模型.考虑材料非线性和几何非线性,用工程软件ANSY S得到了拱形橡胶减震垫的极限荷载以及与之相对应的拱形橡胶减震垫的压缩量.关键词:拱形橡胶减震垫;超弹性材料;极限荷载中图分类号:O344.5 文献标识码:A在铁路线路上,钢轨和混凝土轨枕之间设置了减震垫,目的在于减少火车在运行时对混凝土轨枕面的冲击,改善行车的舒适度.目前,主要应用的减震垫有板式橡胶垫和圆柱式橡胶垫,其各有优缺点.板式橡胶减震垫的承载力较大,但是减震效果欠佳;而圆柱式橡胶减震垫,因为采用空心的构造,具有较好的减震效果,但由于构造上的原因,在圆柱与上部块体的结合处易产生应力集中现象,因而极限荷载偏低,疲劳寿命也较短.拱形橡胶减震垫是一种新型减震产品(见图1),与板式橡胶减震垫和圆柱式橡胶减震垫相比,拱形橡胶减震垫具有独特的优点.由于拱形橡胶减震垫采用半球形空腔的构造,减少了局部应力集中所带来的危害,从而提高了极限荷载和使用寿命,而且空心结构在工作时所产生的空气压力可以起到气体弹簧的作用,有助于减少振动的传递和冲击.可见,拱形橡胶减震垫是一种较好的减震装置.对于这种新型减震垫的力学性能研究,还未见公开报道.为了考察拱形橡胶减震垫的强度储备和变形情况,本文采用工程软件ANSY S对其极限荷载进行了分析,以下分4个方面进行讨论.1 拱形橡胶减震垫有限元模型的建立1.1 有关橡胶材料的超弹性理论 拱形橡胶垫的橡胶是主要的受力材料.橡胶不同于一般的弹性材料,它属于超弹性材料,即它的应力应变关系不是线性规律,也不同于应力应变关系曲线的切线斜率逐渐下降的塑性材料.而是随着应力的增长,应变的增长速度逐渐减小的超弹性材料.橡胶具有超弹性,在较小的外力作用下就能显示出高度的变形能力,由此决定了橡胶在变形过程中会呈现较强的几何非线性和材料非线性[1].对于橡胶超弹性性质的描述有不同的方式[2~4],其中,有从统计理论入手分析的,也有从分子之间的连接力入手分析的.随着计算机技术的发展以及有限元理论的广泛应用,一种被称之为唯象理论的概念逐渐引入了有关橡胶材料的理论计算中,此理论的基本思想是直接从橡胶材料的大变形现象出发,不考虑具体的分子结构,推导出可以完全或比较近似表达橡胶材料的应力应变关系的一种数学格式,从而同经典的弹性理论一样,不用考虑分子和结构等细节.这种方收稿日期:2004-11-26作者简介:李正中(1967-),男,四川广元人,怀化铁路总公司张家界工务段助理工程师.法由M ooney (1940)创始,而后Rivlin 将其推广到了一种更通用更合理的形式.图1 拱形橡胶减震垫的尺寸(单位:mm )Rivlin (1956)假设橡胶材料是不可压缩的,在小应变状态下是各向同性的,而各向同性不可压缩材料的应变能函数W 可以用下式表达W =∑∞i =0,j =0C ij (I 1-3)i (I 2-3)j ,(1)式中I 1和I 2为应变不变量.(1)式中每一项都是(I 1-3)和(I 2-3)的幂函数,此处之所以选用(I 1-3)和(I 2-3)而不用I 1和I 2是为了在零应变时(即I 1=I 3=3),W 将自动消失.1.2 拱形橡胶减震垫的材料常数的确定 M ooney 2Rivlin 常数是一种适用于不可压缩橡胶类材料的材料常数,可使用2、5、9等常数来描述.在有关手册中通常查不到超弹材料的M ooney 2Rivlin常数,但可通过对材料的标准试样的实验所得的实测数据来确定这些常数[5].为得到橡胶材料的物理特性,选取了部分样品做单向压缩实验,测得材料的应力应变关系,并将所测得的数据通过工程软件ANSY S 自带的超弹性分析程序进行材料特性的拟合计算[2],得出应变能函数所需要的常数,从而确定所用橡胶材料的材料属性.按上述办法得到的由M ooney 2Rivlin 模型所描述的应力应变关系如图2所示. 图2 在ANSY S 中定义的应力应变曲线 图3 1Π4拱形橡胶减震垫有限元模型1.3 拱形橡胶垫有限元建模 由于拱形橡胶减震垫具有对称性,故采用1Π4拱形橡胶减震垫建立有限元模型.建模时,采用H yper158单元,材料属性由以上实验所得的数据以及在ANSY S 中计算所得的M ooney 2Rivlin 超弹性模型确定.拱形橡胶减震垫的网格划分有限元模型如图3所示.实际的橡胶减震垫是支撑在混凝土轨枕上的,但为了简化计算,不考虑橡胶减震垫与轨枕的接触摩932 第3期 李正中等:用ANSY S 计算拱形橡胶减震垫的极限荷载擦,故在模型底面只约束竖向位移,而在对称面上则约束在对称面法线方向上的位移.2 荷载施加形式的确定作用于拱形橡胶减震垫的荷载有顶面铁轨所传递的列车轴重荷载以及半球内部的气体压力荷载.轴重荷载采用标准特种荷载,即火车的轴重为25t ,每个拱形橡胶减震垫上的荷载为25Π2=12.5t.半球内部的气体压力荷载是由顶面荷载的作用使半球体积发生变化所引起,它与半球体积的变化有关,故事先无法知道该气体压力的值.为了得到半球内气体的荷载,需进行必要的试算.为此,先做如下假设:1)在施加荷载的过程中,半球内气体不会漏掉;2)半球内的气体变化为等温变化;3)气体的压力随着轴重的增加而线性增加;4)半球内气体的初始压力为标准大气压.试算时,首先忽略半球内气体的存在,对橡胶减震垫施加顶面的列车轴重荷载,加载采用分级加载方式,每级加载10%(即1.25t ),求解过程考虑橡胶材料的材料非线性和由于大变形引起的几何非线性.然后根据橡胶减震垫在12.5t 荷载作用下半球的变形情况,计算半球在变形后的体积,通过与变形前的体积做比较,得到此时的半球内气体的压力.计算表明,所有半球的变化形状都很接近,几乎都是椭球形,故为了简化计算,假设所有半球变化后的尺寸都一样,并取平均尺寸进行计算.根据假设2计算出在顶面荷载12.5t 作用下,有如下关系:P 0V 0=P 1V 1,(2)式中P 0为标准大气压,取为1.01×105Pa ,P 1为变形后的半球内的气体压力,V 0、V 1分别为半球变形之前、后的体积.由于半球在变形后成为一个椭球形的空腔,所以V 0=43πR 3,V 1=43πab 2.(3)式中R 为半球在变形之前的半径;a ,b 分别为半球在变形之后椭球长半轴和短半轴的长度.由(2)、(3)式得P 1=V 0V 1P 0=R 3ab 2P 0,(4)通过上述公式,得到受压变形后半球内的气体压力P 1.在拱形橡胶减震垫未受到荷载时,整个橡胶减震垫边界(包括半球内)都受到一个标准大气压作用,该标准大气压为一平衡荷载,故这时的气压不计入荷载,即以后加载时所有气体压力荷载均应以标准大气压为起点开始计算,所以在变形后半球内的气体压力应该用以下气体压力作为荷载P =P 1-P 0.(5)由于该气体压力的数值是在没有考虑气体压力的情况下得到的,与实际情况的气体压力有所不同.因此,应该将气体压力按假定3施加于半球表面上,再进行求解计算,求得的结果再与上一次的计算结果比较,依此循环计算,直到相邻两次计算结果相差较小时方可认为这时的压力为顶面荷载12.5t 荷载时的气体压力.经过反复试算,最终得到在12.5t 荷载时的平均气体压力为0.35个大气压.3 拱形橡胶减震垫的极限荷载为简化计算,先引入以下假设:042海南大学学报自然科学版 2005年 1)计算时,只考虑到材料的超弹性性质,不考虑到其它的因素,如橡胶材料的疲劳以及其工作环境对材料的影响.图4 顶面位移随荷载变化2)半球内气体压力在加载过程中随顶面荷载同比例逐渐加大,到正常使用荷载时,假设气体压力达到最大值,然后随着荷载的增加,认为气体出现了泄漏现象,气体压力逐渐减小,当达到极限荷载时,气体正好全部漏完,即此时半球内无气体压力.采用上一节的有限元模型,考虑材料非线性,以及橡胶材料受力过程中产生的大变形,通过迭代计算,得到拱形橡胶垫的极限荷载.具体计算结果见图4.从以上计算结果可以看出,拱形橡胶减震垫顶面的位移(压缩量)随着荷载的增加而增加,在荷载均匀增加的情况下,压缩量的增加率是先快后慢,表现出超弹性材料的性质.该拱形橡胶减震垫的极限荷载为37.5t ,相对应的顶面位移为6.67m m.4 结 论1)拱形橡胶减震垫的橡胶材料属于超弹性材料,在计算过程中必须考虑材料的非线性特征,同时还要考虑超弹性材料的大变形能力;2)拱形橡胶减震垫顶面的位移随着荷载的增加逐渐增加,但增量则逐渐减小;3)该拱形橡胶减震垫的极限荷载为37.5t ,安全系数37.5Π12.5=3,顶面的极限位移大小为6.67mm ,约为其厚度的一半.参考文献:[1]史守峡.平面应力不可压缩橡胶薄片的非线性有限元分析[J ].哈尔滨工程大学学报,1998,19(3):11-15.[2]特雷劳尔L G R.橡胶弹性物理学[M].王梦蛟,等译.北京:化学工业出版社,1982.[3]弗雷克利P K,佩恩A R.橡胶在工程中应用的理论与实践[M].杜承泽,等译.北京:化学工业出版社,1985.[4]朱敏.橡胶化学与物理[M].北京:化学工业出版社,1984.[5]易太连,翁雪涛,朱石坚.不可压缩橡胶体的静态性能分析[J ].海军工程大学学报,2002,1(14):76-80.C alculation on the U ltim ate Load of the Arch Rubber Shock P adby E ngineering Softw are ANSYSLI Zheng 2zhong 1,CHE N Y u 2ji 2(1.Zhangjiajie Engineering Workgroup ,Huaihua Railway Parent 2company ,Zhangjiajie 427001,China ;2.Institute of Civil Engineering ,Railway Campus of Mid 2South University ,Changsha 410075,China )Abstract :This paper determined the M ooney 2Rivlin constants for rubber materials by test ,and then taking the arch rubber shock pad as an object ,established a spatial finite element m odel used for calculation.When their material non 2linearity and geometrical non 2linearity were taken into account ,the ultimate load and the corresponding com pressive load of the arch rubber shock pad could be obtained by engineering s oft 2ware ANSY S.K ey w ords :arch rubber shock pad ;super 2elastic materials ;ultimate load 142 第3期 李正中等:用ANSY S 计算拱形橡胶减震垫的极限荷载。
jsd橡胶减震器标准尺寸

jsd橡胶减震器标准尺寸橡胶减震器是一种广泛应用于各种机械设备、汽车、船舶等领域的减振元件,其主要作用是减小设备运行时产生的振动和冲击,提高设备的运行稳定性和使用寿命。
橡胶减震器的尺寸参数对其性能和适用范围有很大影响,因此了解橡胶减震器的标准尺寸对于选择合适的减震器非常重要。
橡胶减震器的主要尺寸参数包括:外径、内径、厚度、长度等。
以下是一些常见橡胶减震器的标准尺寸:1. 外径:橡胶减震器的外径是指减震器外部圆柱面的直径,通常用D表示。
外径的大小直接影响到减震器的承载能力和适用范围。
常见的橡胶减震器外径有:25mm、30mm、35mm、40 mm、45mm、50mm、55mm、60mm、65mm、70mm、75 mm、80mm、85mm、90mm、95mm、100mm等。
2. 内径:橡胶减震器的内径是指减震器内部圆柱面的直径,通常用d表示。
内径的大小影响到减震器的压缩量和承载能力。
常见的橡胶减震器内径有:15mm、20mm、25mm、30mm、35mm、40mm、45mm、50mm、55mm、60mm、65mm、70mm、75mm、80mm、85mm、90mm、95mm、100mm 等。
3. 厚度:橡胶减震器的厚度是指减震器上下两平面之间的距离,通常用t表示。
厚度的大小影响到减震器的承载能力和刚度。
常见的橡胶减震器厚度有:10mm、12mm、15mm、18mm、20mm、22mm、25mm、28mm、30mm、32mm、35mm、38mm、40mm等。
4. 长度:橡胶减震器的长度是指减震器两端面之间的距离,通常用L表示。
长度的大小影响到减震器的适用范围和安装空间。
常见的橡胶减震器长度有:100mm、150mm、200mm、250m m、300mm、350mm、400mm、450mm、500mm等。
需要注意的是,橡胶减震器的标准尺寸并非固定不变的,不同厂家和不同型号的减震器可能会有所差异。
在选择橡胶减震器时,应根据实际应用场景和设备要求,选择合适的尺寸参数。
橡胶剪切减震器参数

橡胶剪切减震器参数橡胶剪切减震器是一种应用广泛的减震、消振装置,常被用于建筑、机械、桥梁、酒店、地铁等工程中。
它具有结构简单、体积小、重量轻、性能稳定等特点,因此它成为了许多工程中不可或缺的重要组成部分。
本文旨在介绍橡胶剪切减震器的参数,以便读者更全面了解此类减震器的特点和应用。
1.橡胶材料橡胶剪切减震器是由铸铁、钢板和橡胶材料等组成的。
其中橡胶材料是最主要的组成部分,也是决定橡胶剪切减震器性能的关键因素。
橡胶材料一般分为三类:天然橡胶(NR)、合成橡胶(SBR、NBR、EPDM、CR等)和热塑性弹性体(TPE)。
天然橡胶具有极佳的弹性、耐热性和耐磨性,但耐腐蚀性较差;合成橡胶的耐腐蚀性和耐油性要优于天然橡胶,但弹性和耐磨性不如天然橡胶。
热塑性弹性体则具有优异的弹性、耐磨和耐腐蚀性。
选择什么类型的橡胶材料,应根据具体的工作条件而定。
例如在酸碱环境下工作的场合,需要选择合成橡胶或热塑性弹性体。
2.橡胶硬度橡胶剪切减震器的硬度是衡量减震器性能的重要参数。
硬度的单位为shore,常用的硬度指标有70 shore和80 shore等。
硬度越大,橡胶的振动衰减能力就越强,即减震效果越好。
但硬度越大,橡胶的变形能力就越差,抗拉强度和韧性也会降低,容易发生断裂破坏。
选择减震器硬度时,需要根据工程需要和橡胶材料的特性做一个合理的平衡。
3.橡胶层数橡胶剪切减震器的减震效果还与层数有关。
通常情况下,橡胶剪切减震器的橡胶层数为2~3层。
当橡胶层数增加时,减震效果会更好。
但橡胶的变形能力会更差,因此橡胶层数太多也容易导致橡胶剪切减震器的寿命缩短。
4.剪切稳定度橡胶剪切减震器的剪切稳定度是衡量橡胶剪切减震器性能的另一个重要参数。
剪切稳定度又分为水平剪切稳定度和垂直剪切稳定度两种。
水平剪切稳定度指橡胶剪切减震器受到水平方向力作用时产生的变形程度。
垂直剪切稳定度指橡胶剪切减震器受到垂直方向力作用时产生的变形程度。
这两项指标相互独立,但同时也会相互影响。
减震橡胶知识及应用

减震橡胶知识及应用一.绪论现实生活中振动无处不在,振动的现象是不容忽视也是不可缺少的,人们一直致力于振动的产生,控制和消除的研究,所有的物体的振动都会产生声音,如果没有振动就不会有音乐,人类也无法进行语言交流了.但是振动也会对人们的生活产生许多不利的影响,如:共振会导致装置的损坏,噪音会影响人类的生活环境等.怎样将振动对人们产生的不利影响减到最小,是当前减震技术发展和追求的方向.减震技术的核心是消除干扰性振动或找出解决的方法,现在比较适用和成熟的减震方法是橡胶减震系统,早在橡胶应用于工业之初,人们就使用了橡胶隔离来进行减震,但当时还没有有效的橡胶粘接技术,橡胶在减震领域的应用没有获得成功,随着橡胶粘接技术的的发展和运用,于1932年出现了最早的橡胶减震制品,使得减少底盘和引擎系统产生的振动成为可能,随后越来越多的金属和橡胶粘接的零件应用于差速器、后轴等汽车驱动系统,20世纪50年代起越来越多的发动机悬置得以应用,早在1979年德国大众成功地将液压悬置应用到发动机悬置系统,使得减震技术得到很大的发展,现在人们正在研究可转换装置和主动装置在工程上的实际应用.二.减震橡胶基础理论1.减震基础当沿重心轴方向对橡胶装置进行碰撞会产生一定频率的振动,如果系统内没有外力作用,激发振动将逐步衰减,衰减的速度取决于橡胶材料的减幅,根据牛顿定律将得到下面公式: 质量+阻力+弹力=0若忽略减幅不计,可以得到橡胶的固有频率如下:f0=1/2πc/mf0 :固有频率; c:弹簧刚度; m:质量当碰撞力远离重心橡胶装置系统会在三个轴中产生扭转振动,各自的角频率为:ωD = c v /JωD:角频率; c v:扭转刚度; J:惯量机悬置有三个直移和三个转动的自由度,六个固有频率需抵制共振使激振力减少到一定程度,该装置系统主要是减少重心处的振动使之趋向于零,使不同方向的激振不再相互影响.该装置系统的设计目标是根据客户的开发设想决定悬置布置的位置和悬置的刚度,使得所有的固有频率远不等于干扰频率,最初的装置主要是决定临时的位置和刚度,最后安装到车上时要考虑到发动机装置子系统的相互作用,现在人们已能通过有限元分析软件系统建立汽车整车模型,并通过计算机模拟进行悬置的优化设计,设计时需考虑找到使舒适性和减少噪音的最好的折中方法,使得零件可以抵挡所有外力并使力的传递达到袄最小化,同时还需满足零件的最大运动和外界环境的要求.3.减震橡胶概要3.1减震橡胶的作用:代替金属弹簧起到消振,吸振作用.其主要的性能要求在静刚度、动刚度、耐久性能上.3.2减震橡胶的特点:(与金属弹簧相比胶)①橡胶是由多种材料相组合而成,同一种形状通过材料调整可以拥有不同的性能.②橡胶内部分子之间的摩擦使它拥有一定的阻尼性能,即运动的滞后性(受力过程中橡胶的变形滞后于橡胶的应力).③橡胶在压缩、剪切、拉伸过程中都会产生不同的弹性系数.3.3减震橡胶的工作原理:①吸收振动: 此类减震橡胶件主要是用于发动机与车身之间的连接,此状态下发动机是振动源, 减震橡胶的作用是吸收发动机产生的振动,避免传递到车身上,同时也减轻发动机自身的振动.②消减振动: 此类减震橡胶件主要是用于底盘与车身之间的连接,此状态下底盘车轮是振动源, 减震橡胶的作用是将路面与车轮产生的振动通过高阻尼作用迅速消减,防止振动通过底盘传递到车身.4.减震橡胶的性能特征4.1静刚度围不同所得到的静刚度值是不同的,即(F2-F1)/(X2-X1)≠(F3-F2)/(X3-X2)而金属弹簧在任意位移范围内其所受载荷变化量与其位移变化量的比值是一定的,即(F2-F1)/(X2-X1)=(F3-F2)/(X3-X2)将金属弹簧和减震橡胶同时压缩到极限后,金属弹簧的压力会一直保持不变,而减震橡胶的压力会随着时间的推移出现压力松弛的现象,如图5所示,减震橡胶的这种压力松弛的特性使它具有比金属弹簧更好的消振作用.4.1.2静刚度的计算方法:减震橡胶的静刚度是与产品的形状和橡胶的自身特性有关,静刚度方柱的形状系数为:S=AL/AF=(a*b)/(2(a+b)*h)圆柱的形状系数为:S=AL/AF=π(d/2)2/π*d*h=d/4h中空圆柱的形状系数为:S=AL/AF=(π(d1/2)2-π(d2/2)2)/( π*d1*h+π*d2*h)= (d1 -d2)/4hb.计算表征弹性率(微小变形):方柱的表征弹性率:1/3≤a/b≤3时: Eap/G=3+6.58S2Gap/G=1/((3+6.580S2)(1+1/48 S2)1/3≥a/b或a/b≥3时: Eap/G=4+3.29 S2Gap/G=1/((4+3.29 S2)(1+1/36 S2)圆柱和中空圆柱的表征弹性率: Eap/G=3+4.935 S2Gap/G=1/((3+4.935 S2)(1+1/36 S2)Eap:表征纵向弹性率; Gap:表征剪切弹性率; G:静态剪切弹性率; S:形状系数;c. 计算静刚度:形状a: 径向静刚度:Kc= Eap(AL/h)=1.36(Eap+G)*L/ log(r2/r1)轴向静刚度:Ks=Gap(AL/h)=2.73 Gap*L/ log(r2/r1)形状b: 径向静刚度:Kc= Eap(AL/h)=1.36(Eap+G)*((L1*r2-L2*r1)/(r2-r1))/ log(L1r2/L2r1) 轴向静刚度:Ks=Gap(AL/h)=2.73 Gap*((L1*r2-L2*r1)/(r2-r1))/ log(L1r2/L2r1)c.计算25%时的定拉伸应力σε=Fε/Aσε: 25%定拉伸应力; Fε:25%的定拉伸时的负荷; A:试验片的截面积;d.静态剪切弹性率G的计算:Gε=σε/(α-1/α2) ε=25%时Gε: 25%定拉伸的静态剪切弹性率; α=1+ε=1.25计算时取4个数据的平均值,有效数值保留小数点后两位.0000σ0cosδ*coswt是与变形同相位的应力分量σ0 sinδ* coswt是与变形相位差为90°的应力分量求两个方向应力分量与变形量峰值的比值为:G1=σ0cosδ*coswt/ r0G2=σ0sinδ* coswt/ r0G1:存储弹性模量或动态弹性模量G2:损耗弹性模量在振动学中通常将损耗弹性模量G2与存储弹性模量G1的比值称之为损耗系数τ=G2/G1=(σ0sinδ* coswt/ r0)/(σ0cosδ*coswt/ r0)=tgδ因损耗弹性模量G2=c(阻尼系数)*2π*f(振动频率),因此得出:τ=c*2π*f/G1 或G1= c*2π*f/ tgδ从上式可以看出:a.减震橡胶的损耗系数与橡胶自身的阻尼系数成正比,与振动频率成正比.b.减震橡胶的动刚度是橡胶自身特性,当橡胶自身的阻尼系数确定时,动刚度与振动频率成正比.c. 当橡胶自身的阻尼系数确定时,随着振动频率的增减, 损耗系数和动刚度同时增减但增减的幅度并不一致.4.3动倍率:4.3.1动倍率的定义指减震橡胶在一定的位移范围内所测定的动刚度与静刚度的比值,即:Kd/Ks因Kd∽G1*S2 ,Ks∽G*S2 因此: Kd/Ks∽G1/GG1:存储弹性模量; G:静态剪切弹性模量从上式可以看出:动倍率与产品形状无关,是橡胶材料自身的特性.对于发动机用减震橡胶而言,减震机理是吸收振动,要求动倍率越小越好,从动倍率的定义可以看出,若想减小动倍率需从两个方面入手:①增大静刚度②减小动刚度.如增大静刚度可以使减震橡胶在静态时的支承作用增强,而减小动刚度可以减小振动的传递率,防止将发动机倍率才具有可比性和实际意义.4.4损耗系数: 在减震橡胶的受力过程中,橡胶的变形与橡胶的应力之间存在着一定的相位差,而橡胶的应力一般要超前于橡胶的变形一定的相位角δ.通常所说的损耗系数就是橡胶应力与橡胶变形的相位角δ的正切,即损耗系数τ=tgδ.4.5扭转刚度: 指减震橡胶在一定的扭转角范围内,其扭转力矩与扭转角之间的比值.4.6耐久性能: 指减震橡胶在一定的方向一定的预加载荷、振幅、振动频率下,经往复振动n 次后产品完好或将产品往复振动直至破坏时的振动次数, 耐久性能是衡量一个减震橡胶件的安全性能和综合性能的重要指标.三.减震橡胶制品常用材料1.弹性体材料1.1减震橡胶用弹性体材料的选用:做为减震橡胶用的弹性体材料一般主要有以下几种:NR,SBR,BR,NBR,CR,EPDM,IIR,RUP等,其选用原则为:一般常用减震橡胶材料为: NR,SBR,BR(发动机悬置,衬套等)有耐油性要求的减震橡胶材料为:NBR(油管支架等)有耐候性要求的减震橡胶材料为:CR(球销衬套)有耐热性要求的减震橡胶材料为:EPDM(排气管吊件)阻尼性要求大的减震橡胶材料为:IIR(因其加工工艺性差,一般不采用)RUP一般用于减震支柱中的复原缓冲块.1.2弹性体材料对减震特性的影响从橡胶配方上考虑,影响橡胶的减震特性的主要因素是:生胶的选用;弹黑的选用和配合量;油的种类的选用.下面以NR/SBR/BR系为例介绍橡胶配方与减震特性的关系:①改变静刚度:生胶选用时改变SBR和BR的并用量对静刚度没有影响;碳黑选用时粒径小的碳黑可以提高静刚度,增大碳黑的配合量可以提高静刚度;油的选用时使用芳香烃油比使用环烷烃油的配方有利于提高静刚度;②改变动刚度:生胶选用时减少SBR的并用量有利于降低动刚度, 改变BR的并用量对动刚度没有影响,碳黑选用时粒径大的碳黑可以降低动刚度,减少碳黑的配合量有利于降低动刚度;油的选用时选用环烷烃油比使用芳香烃油有利于降低动刚度;③改变动倍率: 生胶选用时减少SBR的并用量有利于降低动倍率, 改变BR的并用量对动倍率没有影响,碳黑选用时粒径大的碳黑可以降低动倍率,减少碳黑的配合量有利于降低动倍率;油的选用时使用环烷烃油比使用芳香烃油有利于降低动倍率;④改变损耗系数:生胶选用时增加SBR的并用量有利于提高损耗系数, 改变BR的并用量对动倍率没有影响,碳黑选用时粒径小的碳黑可以提高损耗系数,增加碳黑的配合量有利于提高损耗系数;;⑤耐久性:生胶选用时增加先增后减的变化趋势; 增加BR的并用量耐久性会出现;因此SBR和BR的并用量应适当,碳黑选用时粒径小的碳黑可以提高耐久性,增加碳黑的配合量耐久性:出现后减的变化趋势,2.刚性骨架实际应用时减震橡胶基本都是带有刚性骨架的零件,同时这些刚性骨架都对减震橡胶的减震性能有一定的影响,它们起到联接和支撑作用.常用的刚性骨架材料有:钢,铝合金,工程塑料等.2.1钢因其具有高强度而被广泛用于减震橡胶中,常用的结构形式有①板材冲压(热轧板,冷轧板);②冷拔管材③铸造件④锻压件等多种形式2.2铝合金因其有较轻的比重而在汽车上得到越来越多的应用, 常用的结构形式有①板材冲压;②冷拔管材③铸造件④锻压件等多种形式2.3因工程塑料的聚合体具有较轻的比重但其强度硬度较低,对温度的依赖性很强,高的热膨涨和低的热传导性,在使用时一般需对原材料进行处理,加入填料和加固物,减震橡胶中常用的塑料PA66加20%-40%的玻璃纤维,一般常用于衬套和副车架支承的外套管.四汽车常用减震橡胶制品介绍:1.发动机悬置类:发动机悬置是用于发动机与车身的联接,对发动机起到支承作用,在这个系统中发动机是产生振动的振动源,而车身防振对象,这就要求发动机悬置能够有效地吸收振动,避免将振动传递到车身,提高乘车的舒适性,为满足这一性能就要求发动机悬置具有足够的静刚度的同时应尽量减小动刚度.2.驱动系统用减震件:驱动系统是指将发动机的动力传递到车轮的机构总成,主要有离合器变速器传动轴减速器差速器驱动桥和车轮组成,该系统主要的振动形式是扭振,该系统用减震件主要有用于传动轴的中心轴承,该产品的使用可避免传动轴过长造成固有频率降低而导致传动轴断裂,一般要求该产品的径向静刚度尽量小;3.操纵系统用减震件:操纵系统是指将方向盘的角变位传递到车轮的机构总成,该系统主要的振动形式是扭转,最常用的减震件是各类衬套,其主要受到径向冲击力和轴向的扭转和偏摆一般要求该类产品的耐久性能好;4.悬挂系统用减震件:悬挂系统主要作用是承受车体重量, 防止车轮的上下振动传递到车身,提高汽车的乘坐舒适性,同时能传递动力制动力和操纵时的侧向力,该系统使用的减震件特别多,如:前减上支架,后桥后弹性联接件,橡胶座分组件,防压垫,减震垫,弹簧垫,防撞垫,温定杆衬套,拉杆轴套,各类板簧衬套,各类摆臂衬套及各类缓冲块,现减震部生产的大部分产品是属于该系统的.五.汽车用典型减震橡胶制品结构设计基础1.发动机悬置1.1普通标准结构发动机悬置的工作状况如下:发动机是通过发动机悬置与车身相连接,发动机与车身之间发动机是振动源车身是防振对象,这就要求发动机悬置的性能为:能够有效地吸收振动,降低振动的传导率,避免将发动机的振动传递到车身,发动机工作时振动频率与振幅有如下关系,在低频振动时振幅较大,高频振动时振幅较小,因此对发动机悬置则要求在发动机低频振动区域有较大的损耗系数,以便能够迅速将大的振幅消减下来,而在发动机高频振动区域有较小的动刚度, 以便能够更好地吸收发动机的振动降低振动的传导率.通过近几十年的研究开发,一些形状结构被确定为基础设计,实际使用的发动机悬置大部分是在这些结构基础上的改型和调整.如图13-1所示,发动机的前悬置大多采用这种压缩/剪切结构,一般情况三点支撑的发动机都是采用前端两点后端一点的支撑形式,且两发动机前悬置采用倾斜一定的角度对装,在工作中同时受到压缩和剪切载荷的作用.而发动机的后悬置大多采用如图13-2所示这种楔形座结构,这种楔形对称结构的悬置在工作中易受到压缩和剪切变形,同时当弹性体部分设计成平行四边形结构还可以消除悬置所受的弯曲应力,这种楔形悬置的三个方向的刚度可以由空间尺寸和角度来决定,为各方向的刚度调整提供了方便. 图13-3所示的是一种衬套式的发动机悬置,这种结构都是由内外金属套管和橡胶硫化成型在一图13 发动机悬置常用标准结构型式以上这些发动机悬置都是属于常规的普通结构形式,对于在发动机的减震性能上都存在一定的局限性,对发动机悬置要求的性能是:高频时低的动刚度,低频时高的阻尼系数,实际上这是一对相互的矛盾体,因为悬置的动刚度和损耗系数都是橡胶自身的固有特性且都是随振动频率的增大而增大,在提高其损耗系数时动刚度也会随之增大,因此作为一般的减震橡胶已无法满足发动机悬置的这一特殊要求.1.2 液压悬置阻尼系数的这一特殊要求,采用了液体封入的结构形式,最早的液压悬置是德国大众于1979年开发的奥迪车用发动机液压悬置,现在这种液体封入技术已广范应用于汽车发动机悬置上. 发动机液压悬置从开始应用到汽车上至今主要经过了以下几个发展阶段.1.2.1单通道结构液压悬置发动机液压悬置发展的最初形式是如图14所示的单通道结构液压悬置,在液体封入前前,其性能与一般减震橡胶相似,当液体封入后, 液压悬置在低频振动区受到外力作用时,主体受压变形,压力传递到液体上,迫使液体从主液室向从液室流动,液体在通过通道时受到流动阻力,从而产生很大的损耗系数,使液压悬置在低频时具有较好的减震效果,当外加的振动频率等于液体的自身固有频率时,产生的损耗系数达到最大值.液体的自身固有频率与液封的结构及液体的性能有关:ωn: 液体的固有频率S0: 流道的截面积K1: 主体的动刚度K2: 液室部的动刚度ρ: 液体密度L0: 流道的长度液压悬置设计时应考虑到使液体的固有频率调整到与防震对象的频率一致,使得液封具有最佳的防振效果.1.2.2双通道结构液压悬置当外界施加的振动频率超过液体的固有频率后,液压悬置的动刚度有增大的趋势,这时动刚度就不能满足使用的要求,需要对液压悬置的结构进行改良,改良方法如图15所示,在开设低频通道的同时增设可动板结构(或叫解偶膜).发动机在各个不同的工作状态其振动频率与振幅情况分布如下:汽车行驶时: 振动频率在10HZ左右,振幅在±0.5mm至±1mm;发动机空转时: 振动频率在20HZ至40HZ,振幅在±0.1mm左右;发动机产生噪音时: 振动频率在50—200HZ,振幅在0.1mm以下;当汽车在正常行驶时振动频率低振幅较大,可动板的移动量大,能够把可动板附近的高频通道封住,此时液体只在低频通道中产生流动,由于通道的阻力产生较大的阻尼系数,有利于阻止发动机的振动传递到车身,提高减震效果.的滞后性,致使液体无法跟随外加振动而流动,在低频通道中不会产生液体的流动,此时因振幅较小,可动板的移动量小,不能将可动板附近的高频通道封住,可动板运动时带动周围的液体运动,使得液压悬置的动刚度降低,从而改善液压悬置在高频时的减震性能.1.2.3双通道带翼板结构液压悬置当外界施加的频率超过50HZ时,可动板振动的滞后性也使它无法跟随外界的振动而振动时,可动板的结构效应达到极限,动刚度又会有增大的趋势,此时如图16所示,在主体上增加翼板使液压悬置在可动板的结构效应达到极限后,翼板能始终跟随主体振动而振动,能对液室中1.3.1可转换装置随着人们对汽车乘坐舒适性的的要求的不断提高,开始出现了可转换装置的悬置,实现动刚度和阻尼的要求可以转换,图17就介绍了一种可转化装置的悬置,在传统的液压悬置的主体和主液室间增加了一个附加膜,当发动机处在怠速空转时,附加膜和主体间的空气对降低小振幅的动刚度有一定的效果,当汽车行驶时,真空泵将空气全部吸出,附加膜直接和主体连在一起,整个装置就成了一个传统结构的液压悬置,实现在低频下的高阻尼作用.这样就可以随着发动机的信号,通过真空泵的开关,实现降低动刚度和增大阻尼间的随意切换.图17 可转换装置液压悬置结构图1.3.2主动装置人们在新开发的产品中,有一种叫主动装置的悬置,这就意味着在运动中的零件可以对相关参数如阻尼和动刚度进行控制,以适合实际的行驶状态,主动意味着在短时间内这些参数可以调整. 图18就介绍了一种主动装置的悬置,在该结构中将通道壁设计成电极装置,通过对电极施加高电压,使得通道内的粘度增强,从而实现悬置从高弹性低阻尼的装态转变到高阻尼的装态,在这种主动装置中使用的液体主要是可导电硅油树脂,硅酸盐的悬浮液,但这些液体的长期稳定性不佳,在静置装态会出现沉定,这些沉定物不能在振动状态下分散,导致了液体不能5.1.1橡胶的角部及橡胶与金属连接处应有R过渡,在所有影响耐久性的位置都应考虑R过渡,避免应力集中提高产品的耐久性;5.1.2结构上不能有模具难以加工的以及生产困难的部位;5.1.3在骨架与橡胶的过渡处应考虑有适当的强制飞边,可以提高粘接性能避免粘合剂流出而污染模具;5.1.4骨架与橡胶模具的配合性是否良好,骨架的尺寸精度应合理;5.1.5形状上能否保证橡胶在成型时的压力,避免橡胶流出而造成粘接不良;5.1.6保证模具内部最小厚度尺寸在2mm 以上,以免模具因强度不足而变形;5.1.7产品的必要尺寸是否标注清楚;5.1.8衬套类产品的后道加工方法是否明确;5.2材料上:5.2.1骨架的材料及热处理方法是否明确;骨架的强度要求是否明确;5.2.2橡胶材料是否明确;5.3性能特性上:5.3.1相关部件的使用场合,尺寸及安装条件是否明确㈩5.3.2动静刚度的测定条件范围是否明确;5.3.3动静刚度的公差范围是否合理,减震橡胶一般为:±15%;5.3.4在各方向上都有刚度要求时应明确主方向,主方向的刚度应明确公差,其他方向刚度公差应放宽;5.3.5耐久试验条件是否明确(方向,载荷/位移,频率,耐久次数等)5.3.6现有试验设备的能力是否满足;六.减震橡胶制品生产技术1.橡胶混炼为提高产品使用性能,改进工艺和降低成本,常在生胶中加各种配合剂,在炼胶机上将各种配合剂加入生胶制成混炼胶的过程称为混炼。
隔震、减震结构计算与分析

4、屈曲约束支撑
4.1 软钢阻尼输入 .......................................................................................................... 10 4.2 直接建模 .......................................................................................................... 10 4.3 工程实例 .......................................................................................................... 11 1)工程概况 ......................................................................................................................... 11 2)设置屈曲约束支撑 ......................................................................................................... 11 3)计算结果对比 ................................................................................................................. 12 5、橡胶支座 .................................................................................................................. 13 .......................................................................................................... 13 .......................................................................................................... 14